1
|
Zhang F, Hu H, Wang L, Zhou Q, Huang X. Effects of rare earth and acid rain pollution on plant chloroplast ATP synthase and element contents at different growth stages. CHEMOSPHERE 2018; 194:441-449. [PMID: 29227892 DOI: 10.1016/j.chemosphere.2017.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
UNLABELLED Combined rare earth and acid rain pollution has become a new environmental problem, seriously affecting plant survival. The effects of these two kinds of pollutants on plant photosynthesis have been reported, but the micro mechanisms are not very clear. In this research, we studied the effects of lanthanum [La(III), 0.08, 1.20 and 2.40 mM] and acid rain (pH value = 2.5, 3.5 and 4.5) on the ATPase activity and gene transcription level and the functional element contents in rice leaf chloroplasts. The results showed that the combined 0.08 mM La(III) and pH 4.5 acid rain increased the ATPase activity and gene transcription level as well as contents of some functional elements. But other combined treatments of acid rain and La(III) reduced the ATPase activity and gene transcription level as well as functional element contents. The change magnitude of the above indexes at rice booting stage was greater than that in seedling stage or grain filling stage. These results reveal that effects of La(III) and acid rain on ATPase activity and functional element contents in rice leaf chloroplasts are related to the combination of La(III) dose and acid rain intensity and the plant growth stage. In addition, the changes in the ATPase activity were related to ATPase gene transcription level. This study would provide a reference for understanding the microcosmic mechanism of rare earth and acid rain pollution on plant photosynthesis and contribute to evaluate the possible environmental risks associated with combined La(III) and acid rain pollution. ONE SENTENCE SUMMARY The effects of La(III) and acid rain on activity and gene transcription level of rice chloroplast ATPase and contents of functional elements were different at different growth stages.
Collapse
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Huiqing Hu
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Lihong Wang
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Qing Zhou
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Cooperative Innovation Center of Water Treatment Technology and Materials, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xiaohua Huang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
2
|
Hu H, Wang L, Li Y, Sun J, Zhou Q, Huang X. Insight into mechanism of lanthanum (III) induced damage to plant photosynthesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 127:43-50. [PMID: 26802561 DOI: 10.1016/j.ecoenv.2016.01.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 12/31/2015] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
A great deal of literature is available regarding the environmental and ecological effects of rare earth element pollution on plants. These studies have shown that excess lanthanum (La) (III) in the environment can inhibit plant growth and even cause plant death. Moreover, inhibition of plant photosynthesis is known to be one of the physiological bases of these damages. However, the mechanism responsible for these effects is still unclear. In this study, the mechanism of La(III)-induced damage to plant photosynthesis was clarified from the viewpoint of the chloroplast ultrastructure, the contents of chloroplast mineral elements and chlorophyll, the transcription of chloroplast ATPase subunits and chloroplast Mg(2+)-ATPase activity, in which rice was selected as a study object. Following treatment with low level of La(III), the chloroplast ultrastructure of rice was not changed, and the contents of chloroplast mineral elements (Mg, P, K, Ca, Mn, Fe, Ni, Cu, and Zn) increased, but the chlorophyll content did not change significantly. Moreover, the transcription of chloroplast ATPase subunits, chloroplast Mg(2+)-ATPase activity, the net photosynthetic rate and growth indices increased. Following treatment with high levels of La(III), the chloroplast ultrastructure was damaged, chloroplast mineral elements (except Cu and Zn) and chlorophyll contents decreased, and the transcription of chloroplast ATPase subunits, chloroplast Mg(2+)-ATPase activity, the net photosynthetic rate and growth indices decreased. Based on these results, a possible mechanism of La(III)-induced damage to plant photosynthesis was proposed to provide a reference for scientific evaluation of the potential ecological risk of rare earth elements in the environment.
Collapse
Affiliation(s)
- Huiqing Hu
- State Key Laboratory of Food Science and Technology, Jiangsu Coorperative Innovation Center of Water Treatment Technology and Materials, College of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Lihong Wang
- State Key Laboratory of Food Science and Technology, Jiangsu Coorperative Innovation Center of Water Treatment Technology and Materials, College of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yueli Li
- State Key Laboratory of Food Science and Technology, Jiangsu Coorperative Innovation Center of Water Treatment Technology and Materials, College of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jingwen Sun
- State Key Laboratory of Food Science and Technology, Jiangsu Coorperative Innovation Center of Water Treatment Technology and Materials, College of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Qing Zhou
- State Key Laboratory of Food Science and Technology, Jiangsu Coorperative Innovation Center of Water Treatment Technology and Materials, College of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Xiaohua Huang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China; School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Zhang X, Wang L, Zhou Q. Roles of horseradish peroxidase in response to terbium stress. Biol Trace Elem Res 2014; 161:130-5. [PMID: 25055927 DOI: 10.1007/s12011-014-0079-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 07/14/2014] [Indexed: 10/25/2022]
Abstract
The pollution of the environment by rare earth elements (REEs) causes deleterious effects on plants. Peroxidase plays important roles in plant response to various environmental stresses. Here, to further understand the overall roles of peroxidase in response to REE stress, the effects of the REE terbium ion (Tb(3+)) on the peroxidase activity and H2O2 and lignin contents in the leaves and roots of horseradish during different growth stages were simultaneously investigated. The results showed that after 24 and 48 h of Tb(3+) treatment, the peroxidase activity in horseradish leaves decreased, while the H2O2 and lignin contents increased. After a long-term (8 and 16 days) treatment with Tb(3+), these effects were also observed in the roots. The analysis of the changes in peroxidase activity and H2O2 and lignin contents revealed that peroxidase plays important roles in not only reactive oxygen species scavenging but also cell wall lignification in horseradish under Tb(3+) stress. These roles were closely related to the dose of Tb(3+), duration of stress, and growth stages of horseradish.
Collapse
Affiliation(s)
- Xuanbo Zhang
- State Key Laboratory of Food Science and Technology, Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | | | | |
Collapse
|
4
|
Dai L, Wu B, Tan F, He M, Wang W, Qin H, Tang X, Zhu Q, Pan K, Hu Q. Engineered hydrochar composites for phosphorus removal/recovery: Lanthanum doped hydrochar prepared by hydrothermal carbonization of lanthanum pretreated rice straw. BIORESOURCE TECHNOLOGY 2014; 161:327-32. [PMID: 24727355 DOI: 10.1016/j.biortech.2014.03.086] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 05/12/2023]
Abstract
Engineered hydrochar composites (EHC) were synthesized by hydrothermal carbonization (HTC) of lanthanum pretreated rice straw. The as-prepared composite with about 30% lanthanum content showed greater P removal potential than La(OH)3, indicating the synergistic effect of hydrochar and lanthanum in P removal. The adsorption results showed that EHC showed great P adsorption capacities (>50mgPg(-1)) in the pH range of 2.5-10.5, and the presence of competing anions had little negative effects on P adsorption on EHC. The equilibrium time for P adsorption on EHC was considerably reduced under acid condition (12h) compared to alkaline condition (48h). The maximum adsorption capacity was 61.57mgPg(-1) according to Langmuir isotherms. These results suggested that EHC was highly effective in P adsorption in a wide range of pH and the presence of competing anions, thus EHC could be a promising adsorbent for phosphorus removal/recovery from wastewater.
Collapse
Affiliation(s)
- Lichun Dai
- Biomass Energy Technology Research Center, Biogas Institute of Ministry of Agriculture, Chengdu 610041, China
| | - Bo Wu
- Biomass Energy Technology Research Center, Biogas Institute of Ministry of Agriculture, Chengdu 610041, China
| | - Furong Tan
- Biomass Energy Technology Research Center, Biogas Institute of Ministry of Agriculture, Chengdu 610041, China
| | - Mingxiong He
- Biomass Energy Technology Research Center, Biogas Institute of Ministry of Agriculture, Chengdu 610041, China
| | - Wenguo Wang
- Biomass Energy Technology Research Center, Biogas Institute of Ministry of Agriculture, Chengdu 610041, China
| | - Han Qin
- Biomass Energy Technology Research Center, Biogas Institute of Ministry of Agriculture, Chengdu 610041, China
| | - Xiaoyu Tang
- Biomass Energy Technology Research Center, Biogas Institute of Ministry of Agriculture, Chengdu 610041, China
| | - Qili Zhu
- Biomass Energy Technology Research Center, Biogas Institute of Ministry of Agriculture, Chengdu 610041, China
| | - Ke Pan
- Biomass Energy Technology Research Center, Biogas Institute of Ministry of Agriculture, Chengdu 610041, China
| | - Qichun Hu
- Biomass Energy Technology Research Center, Biogas Institute of Ministry of Agriculture, Chengdu 610041, China.
| |
Collapse
|
5
|
Wang L, Zhou Q, Huang X. Direct interaction between terbium ion and peroxidase in horseradish at different pH values. Biol Trace Elem Res 2014; 157:183-8. [PMID: 24420373 DOI: 10.1007/s12011-013-9883-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 12/29/2013] [Indexed: 11/26/2022]
Abstract
Rare earth elements (REEs) entering plant cells can directly interact with peroxidase in plants, which is the structural basis for the decrease in the activity of peroxidase. Different cellular compartments have different pH values. However, little information is available regarding the direct interaction between REEs and peroxidase in plants at different pH values. Here, we investigated the charge distribution on the surface of horseradish peroxidase (HRP) molecule as well as the interaction of terbium ion (Tb(3+), one type of REEs) and HRP at different pH values. Using the molecular dynamics simulation, we found that when the pH value was from 4.0 to 8.0, a large amount of negative charges were intensively distributed on the surface of HRP molecule, and thus, we speculated that Tb(3+) with positive charges might directly interact with HRP at pH 4.0-8.0. Subsequently, using ultraviolet-visible spectroscopy, we demonstrated that Tb(3+) could directly interact with HRP in the simulated physiological solution at pH 7.0 and did not interact with HRP in other solutions at pH 5.0, pH 6.0 and pH 8.0. In conclusion, we showed that the direct interaction between Tb(3+) and HRP molecule depended on the pH value of cellular compartments.
Collapse
Affiliation(s)
- Lihong Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | | | | |
Collapse
|
6
|
Graça JS, de Oliveira RF, de Moraes ML, Ferreira M. Amperometric glucose biosensor based on layer-by-layer films of microperoxidase-11 and liposome-encapsulated glucose oxidase. Bioelectrochemistry 2014; 96:37-42. [PMID: 24491835 DOI: 10.1016/j.bioelechem.2014.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/27/2013] [Accepted: 01/04/2014] [Indexed: 12/22/2022]
Abstract
An important step in several bioanalytical applications is the immobilization of biomolecules. Accordingly, this procedure must be carefully chosen to preserve their biological structure and fully explore their properties. For this purpose, we combined the versatility of the layer-by-layer (LbL) method for the immobilization of biomolecules with the protective behavior of liposome-encapsulated systems to fabricate a novel amperometric glucose biosensor. To obtain the biosensing unit, an LbL film of the H2O2 catalyst polypeptide microperoxidase-11 (MP-11) was assembled onto an indium-tin oxide (ITO) electrode followed by the deposition of a liposome-encapsulated glucose oxidase (GOx) layer. The biosensor response toward glucose detection showed a sensitivity of 0.91±0.09 (μA/cm2)/mM and a limit of detection (LOD) of 8.6±1.1 μM, demonstrating an improved performance compared to similar biosensors with a single phospholipid-liposome or even containing a non-encapsulated GOx layer. Finally, glucose detection was also performed in a zero-lactose milk sample to demonstrate the potential of the biosensor for food analysis.
Collapse
Affiliation(s)
- J S Graça
- Federal University of São Carlos, UFSCar, Campus Sorocaba, 18052-780 Sorocaba, SP, Brazil.
| | - R F de Oliveira
- São Paulo State University, UNESP, Postgraduate Program in Materials Science and Technology, 17033-360 Bauru, SP, Brazil.
| | - M L de Moraes
- Federal University of São Paulo, UNIFESP, Campus São José dos Campos, 12231-280 São José dos Campos, SP, Brazil.
| | - M Ferreira
- Federal University of São Carlos, UFSCar, Campus Sorocaba, 18052-780 Sorocaba, SP, Brazil.
| |
Collapse
|
7
|
Li R, Liu J, Li L, Wang H, Weng Z, Lam SKH, Du A, Chen Y, Barrow CJ, Yang W. Non-covalent surface modification of boron nitride nanotubes for enhanced catalysis. Chem Commun (Camb) 2014; 50:225-7. [DOI: 10.1039/c3cc45667f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Guo S, Wang L, Lu T, Ding X, Huang X. Direct electrochemistry and electrocatalysis of complex of horseradish peroxidase and La(III) at nano-gold colloid/cysteine/gold electrode. J Electroanal Chem (Lausanne) 2010. [DOI: 10.1016/j.jelechem.2010.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Guo S, Zhou Q, Lu T, Ding X, Huang X. Inhibition Mechanism of TbIIIon Horseradish Peroxidase Activity. Chem Biodivers 2008; 5:2050-2059. [DOI: 10.1002/cbdv.200890187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Guo S, Cao R, Lu A, Zhou Q, Lu T, Ding X, Li C, Huang X. One of the possible mechanisms for the inhibition effect of Tb(III) on peroxidase activity in horseradish (Armoracia rusticana) treated with Tb(III). J Biol Inorg Chem 2008; 13:587-97. [PMID: 18274791 DOI: 10.1007/s00775-008-0347-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2007] [Accepted: 01/27/2008] [Indexed: 11/25/2022]
Abstract
One of the possible mechanisms for the inhibition effect of Tb(III) on peroxidase activity in horseradish (Armoracia rusticana) treated with Tb(III) was investigated using some biophysical and biochemical methods. Firstly, it was found that a large amount of Tb(III) can be distributed on the cell wall, that some Tb(III) can enter into the horseradish cell, indicating that peroxidase was mainly distributed on cell wall, and thus that Tb(III) would interact with horseradish peroxidase (HRP) in the plant. In addition, peroxidase bioactivity was decreased in the presence of Tb(III). Secondly, a new peroxidase-containing Tb(III) complex (Tb-HRP) was obtained from horseradish after treatment with Tb(III); the molecular mass of Tb-HRP is near 44 kDa and the pI is about 8.80. Thirdly, the electrocatalytic activity of Tb-HRP is much lower than that of HRP obtained from horseradish without treatment with Tb(III). The decrease in the activity of Tb-HRP is due to the destruction (unfolding) of the conformation in Tb-HRP. The planarity of the heme active center in the Tb-HRP molecule was increased and the extent of exposure of Fe(III) in heme was decreased, leading to inhibition of the electron transfer. The microstructure change in Tb-HRP might be the result of the inhibition effect of Tb(III) on peroxidase activity in horseradish.
Collapse
Affiliation(s)
- Shaofen Guo
- Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Environmental Science, Nanjing Normal University, Nanjing 210097, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Guo S, Zhou Q, Lu T, Ding X, Huang X. Spectroscopic studies of interactions involving horseradish peroxidase and Tb3+. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2008; 70:818-823. [PMID: 18024195 DOI: 10.1016/j.saa.2007.09.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2007] [Revised: 09/18/2007] [Accepted: 09/20/2007] [Indexed: 05/25/2023]
Abstract
The spectroscopic properties of interactions involving horseradish peroxidase (HRP) and Tb3+ in the simulated physiological solution was investigated with some electrochemical and spectroscopic methods, such as cyclic voltammetry (CV), circular dichroism (CD), X-ray photoelectron spectroscopy (XPS) and synchronous fluorescence (SF). It was found that Tb3+ can coordinate with oxygen atoms in carbonyl groups in the peptide chain of HRP, form the complex of Tb3+ and HRP (Tb-HRP), and then lead to the conformation change of HRP. The increase in the random coil content of HRP can disturb the microstructure of the heme active center of HRP, in which the planarity of the porphyrin cycle in the heme group is increased and then the exposure extent of the electrochemical active center is decreased. Thus Tb3+ can inhibit the electrochemical reaction of HRP and its electrocatalytic activity for the reduction of H2O2 at the Au/Cys/GC electrode. The changes in the microstructure of HRP obstructed the electron transfer of Fe(III) in the porphyrin cycle of the heme group, thus HRP catalytic activity is inhibited. The inhibition effect of Tb3+ on HRP catalytic activity is increased with the increasing of Tb3+ concentration. This study would provide some references for better understanding the rare earth elements and heavy metals on peroxidase toxicity in living organisms.
Collapse
Affiliation(s)
- Shaofen Guo
- The Key Laboratory of Industry Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | | | | | | | | |
Collapse
|