1
|
Jana S, Parthiban A, Rusli W. Polymer material innovations for a green hydrogen economy. Chem Commun (Camb) 2025; 61:3233-3249. [PMID: 39847386 DOI: 10.1039/d4cc05750c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Polymeric materials are ubiquitous in modern life. Similar to many other technological applications, polymer materials are essential in advancing the green hydrogen economy, offering solutions for hydrogen production, storage, transport, and utilization. In production, polymeric proton exchange membranes in water electrolysers enable efficient green hydrogen generation using renewable energy. Polymer-based composite tanks provide lightweight, high-strength on-board storage options for vehicles, enhancing safety and reducing costs. Polymeric proton exchange membranes in fuel cells efficiently convert hydrogen into electricity. Polymers also support hydrogen infrastructure with corrosion-resistant, durable pipelines, distribution ports and as hydrogen sensors. Additionally, porous and reversible hydrogenated-to-dehydrogenated forms of polymers show promise for material-based storage systems. This review highlights the role of polymer materials, their current advancements supporting a green hydrogen economy as a solution for a low-carbon future and future research directions.
Collapse
Affiliation(s)
- Satyasankar Jana
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore 627833, Republic of Singapore.
| | - Anbanandam Parthiban
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore 627833, Republic of Singapore.
| | - Wendy Rusli
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore 627833, Republic of Singapore.
| |
Collapse
|
2
|
Wang C, Stansberry JM, Mukundan R, Chang HMJ, Kulkarni D, Park AM, Plymill AB, Firas NM, Liu CP, Lang JT, Lee JK, Tolouei NE, Morimoto Y, Wang CH, Zhu G, Brouwer J, Atanassov P, Capuano CB, Mittelsteadt C, Peng X, Zenyuk IV. Proton Exchange Membrane (PEM) Water Electrolysis: Cell-Level Considerations for Gigawatt-Scale Deployment. Chem Rev 2025; 125:1257-1302. [PMID: 39899322 PMCID: PMC11996138 DOI: 10.1021/acs.chemrev.3c00904] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 02/04/2025]
Abstract
Hydrogen produced with no greenhouse gas emissions is termed "green hydrogen" and will be essential to reaching decarbonization targets set forth by nearly every country as per the Paris Agreement. Proton exchange membrane water electrolyzers (PEMWEs) are expected to contribute substantially to the green hydrogen market. However, PEMWE market penetration is insignificant, accounting for less than a gigawatt of global capacity. Achieving substantive decarbonization via green hydrogen will require PEMWEs to reach capacities of hundreds of gigawatts by 2030. This paper serves as an overarching roadmap for cell-level improvements necessary for gigawatt-scale PEMWE deployment, with insights from three well-established hydrogen technology companies included. Analyses will be presented for economies of scale, renewable energy prices, government policies, accelerated stress tests, and component-specific improvements.
Collapse
Affiliation(s)
- Cliffton
Ray Wang
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
| | - John M. Stansberry
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
- Department
of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, California 92617, United States
| | - Rangachary Mukundan
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Hung-Ming Joseph Chang
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
| | | | - Andrew M. Park
- The
Chemours Company, Newark, Delaware 19713, United States
| | | | - Nausir Mahmoud Firas
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
- Department
of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, California 92617, United States
| | - Christopher Pantayatiwong Liu
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
| | - Jack T. Lang
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
| | - Jason Keonhag Lee
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Mechanical Engineering, University of
Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nadia E. Tolouei
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
| | - Yu Morimoto
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
| | - CH Wang
- TreadStone
Technologies, Inc., Princeton, New Jersey 08540, United States
| | - Gaohua Zhu
- Toyota
Research Institute of North America, Ann Arbor, Michigan 48105, United States
| | - Jack Brouwer
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
- Department
of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, California 92617, United States
| | - Plamen Atanassov
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
- Department
of Materials Science and Engineering, University
of California, Irvine, Irvine, California 92617, United States
| | | | | | - Xiong Peng
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Iryna V. Zenyuk
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
- Department
of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, California 92617, United States
- Department
of Materials Science and Engineering, University
of California, Irvine, Irvine, California 92617, United States
| |
Collapse
|
3
|
Bodard A, Chen Z, ELJarray O, Zhang G. Green Hydrogen Production by Low-Temperature Membrane-Engineered Water Electrolyzers, and Regenerative Fuel Cells. SMALL METHODS 2024; 8:e2400574. [PMID: 39285832 DOI: 10.1002/smtd.202400574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/03/2024] [Indexed: 12/28/2024]
Abstract
Green hydrogen (H2) is an essential component of global plans to reduce carbon emissions from hard-to-abate industries and heavy transport. However, challenges remain in the highly efficient H2 production from water electrolysis powered by renewable energies. The sluggish oxygen evolution restrains the H2 production from water splitting. Rational electrocatalyst designs for highly efficient H2 production and oxygen evolution are pivotal for water electrolysis. With the development of high-performance electrolyzers, the scale-up of H2 production to an industrial-level related activity can be achieved. This review summarizes recent advances in water electrolysis such as the proton exchange membrane water electrolyzer (PEMWE) and anion exchange membrane water electrolyzer (AEMWE). The critical challenges for PEMWE and AEMWE are the high cost of noble-metal catalysts and their durability, respectively. This review highlights the anode and cathode designs for improving the catalytic performance of electrocatalysts, the electrolyte and membrane engineering for membrane electrode assembly (MEA) optimizations, and stack systems for the most promising electrolyzers in water electrolysis. Besides, the advantages of integrating water electrolyzers, fuel cells (FC), and regenerative fuel cells (RFC) into the hydrogen ecosystem are introduced. Finally, the perspective of electrolyzer designs with superior performance is presented.
Collapse
Affiliation(s)
- Alexandre Bodard
- Department of Electrical Engineering, École de Technologie Supérieure (ÉTS), Montreal, Québec, H3C 1K3, Canada
- IMT Mines Albi, University of Toulouse, Albi, 81013, France
| | - Zhangsen Chen
- Institut National de la Recherche Scientifique (INRS), Centre Énergie Matériaux Télécommunications, Varennes, Québec, J3X 1P7, Canada
| | - Oumayma ELJarray
- Department of Electrical Engineering, École de Technologie Supérieure (ÉTS), Montreal, Québec, H3C 1K3, Canada
| | - Gaixia Zhang
- Department of Electrical Engineering, École de Technologie Supérieure (ÉTS), Montreal, Québec, H3C 1K3, Canada
| |
Collapse
|
4
|
Kim JD. High-Temperature Water Electrolysis Properties of Membrane Electrode Assemblies with Nafion and Crosslinked Sulfonated Polyphenylsulfone Membranes by Using a Decal Method. MEMBRANES 2024; 14:173. [PMID: 39195425 DOI: 10.3390/membranes14080173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
To improve the stability of high-temperature water electrolysis, I prepared membrane electrode assemblies (MEAs) using a decal method and investigated their water electrolysis properties. Nafion 115 and crosslinked sulfonated polyphenylsulfone (CSPPSU) membranes were used. IrO2 was used as the oxygen evolution reaction (OER) catalyst, and Pt/C was used as the hydrogen evolution reaction (HER) catalyst. The conductivity of the CSPPSU membrane at 80 °C and 90% RH (relative humidity) is about four times lower than that of the Nafion 115 membrane. Single-cell water electrolysis was performed while measuring the current density and performing electrochemical impedance spectroscopy (EIS) at cell temperatures from 80 to 150 °C and the stability of the current density over time at 120 °C and 1.7 V. The current density of water electrolysis using Nafion 115 and CSPPSU membranes at 150 °C and 2 V was 1.2 A/cm2 for both. The current density of the water electrolysis using the CSPPSU membrane at 120 °C and 1.7 V was stable for 40 h. The decal method improved the contact between the CSPPSU membrane and the catalyst electrode, and a stable current density was obtained.
Collapse
Affiliation(s)
- Je-Deok Kim
- Environmental Circulation Composite Materials Group, Functional Materials Field, Research Center for Electronic and Optical Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
5
|
Altaf C, Colak TO, Karagoz E, Kurt M, Sankir ND, Sankir M. A Review of the Recent Advances in Composite Membranes for Hydrogen Generation Technologies. ACS OMEGA 2024; 9:23138-23154. [PMID: 38854521 PMCID: PMC11154723 DOI: 10.1021/acsomega.4c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024]
Abstract
Keeping global warming at 2 degrees and below as stated in the "Paris Climate Agreement" and minimizing emissions can only be achieved by establishing a hydrogen (H2) ecosystem. Therefore, H2 technologies stand out in terms of accomplishing zero net emissions. Although H2 is the most abundant element in the known universe, molecular H2 is very rare in nature and must be produced. In H2 production, reforming natural gas and renewable hydrogen processes using electrolyzers comes to the fore. The key to all these technologies is to enhance production speed, performance, and system lifetime. At this point, composite membranes used in both processes come to the fore. This review article summarizes composite membrane technologies used in methane, ethanol, and biomass steam reforming processes, proton exchange membranes, alkaline water electrolysis, and hybrid sulfur cycle. In addition to these common H2 production technologies at large quantities, the innovative systems developed with solar energy integration for H2 generation were linked to composite membrane utilization. This study aimed to draw attention to the importance of composite membranes in H2 production. It aims to prepare a guiding summary for those working on membranes by combining the latest and cutting-edge studies on this subject.
Collapse
Affiliation(s)
- Cigdem
Tuc Altaf
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, Sogutozu Caddesi No 43 Sogutozu, 06560 Ankara, Turkey
| | - Tuluhan Olcayto Colak
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, Sogutozu Caddesi No 43 Sogutozu, 06560 Ankara, Turkey
| | - Emine Karagoz
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, Sogutozu Caddesi No 43 Sogutozu, 06560 Ankara, Turkey
| | - Mehmet Kurt
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, Sogutozu Caddesi No 43 Sogutozu, 06560 Ankara, Turkey
| | - Nurdan Demirci Sankir
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, Sogutozu Caddesi No 43 Sogutozu, 06560 Ankara, Turkey
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Sogutozu Caddesi No 43 Sogutozu, 06560 Ankara, Turkey
| | - Mehmet Sankir
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, Sogutozu Caddesi No 43 Sogutozu, 06560 Ankara, Turkey
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Sogutozu Caddesi No 43 Sogutozu, 06560 Ankara, Turkey
| |
Collapse
|
6
|
Perović K, Morović S, Jukić A, Košutić K. Alternative to Conventional Solutions in the Development of Membranes and Hydrogen Evolution Electrocatalysts for Application in Proton Exchange Membrane Water Electrolysis: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6319. [PMID: 37763596 PMCID: PMC10534479 DOI: 10.3390/ma16186319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Proton exchange membrane water electrolysis (PEMWE) represents promising technology for the generation of high-purity hydrogen using electricity generated from renewable energy sources (solar and wind). Currently, benchmark catalysts for hydrogen evolution reactions in PEMWE are highly dispersed carbon-supported Pt-based materials. In order for this technology to be used on a large scale and be market competitive, it is highly desirable to better understand its performance and reduce the production costs associated with the use of expensive noble metal cathodes. The development of non-noble metal cathodes poses a major challenge for scientists, as their electrocatalytic activity still does not exceed the performance of the benchmark carbon-supported Pt. Therefore, many published works deal with the use of platinum group materials, but in reduced quantities (below 0.5 mg cm-2). These Pd-, Ru-, and Rh-based electrodes are highly efficient in hydrogen production and have the potential for large-scale application. Nevertheless, great progress is needed in the field of water electrolysis to improve the activity and stability of the developed catalysts, especially in the context of industrial applications. Therefore, the aim of this review is to present all the process features related to the hydrogen evolution mechanism in water electrolysis, with a focus on PEMWE, and to provide an outlook on recently developed novel electrocatalysts that could be used as cathode materials in PEMWE in the future. Non-noble metal options consisting of transition metal sulfides, phosphides, and carbides, as well as alternatives with reduced noble metals content, will be presented in detail. In addition, the paper provides a brief overview of the application of PEMWE systems at the European level and related initiatives that promote green hydrogen production.
Collapse
Affiliation(s)
- Klara Perović
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia; (S.M.); (A.J.)
| | | | | | - Krešimir Košutić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia; (S.M.); (A.J.)
| |
Collapse
|
7
|
Liu RT, Xu ZL, Li FM, Chen FY, Yu JY, Yan Y, Chen Y, Xia BY. Recent advances in proton exchange membrane water electrolysis. Chem Soc Rev 2023; 52:5652-5683. [PMID: 37492961 DOI: 10.1039/d2cs00681b] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Proton exchange membrane water electrolyzers (PEMWEs) are an attractive technology for renewable energy conversion and storage. By using green electricity generated from renewable sources like wind or solar, high-purity hydrogen gas can be produced in PEMWE systems, which can be used in fuel cells and other industrial sectors. To date, significant advances have been achieved in improving the efficiency of PEMWEs through the design of stack components; however, challenges remain for their large-scale and long-term application due to high cost and durability issues in acidic conditions. In this review, we examine the latest developments in engineering PEMWE systems and assess the gap that still needs to be filled for their practical applications. We provide a comprehensive summary of the reaction mechanisms, the correlation among structure-composition-performance, manufacturing methods, system design strategies, and operation protocols of advanced PEMWEs. We also highlight the discrepancies between the critical parameters required for practical PEMWEs and those reported in the literature. Finally, we propose the potential solution to bridge the gap and enable the appreciable applications of PEMWEs. This review may provide valuable insights for research communities and industry practitioners working in these fields and facilitate the development of more cost-effective and durable PEMWE systems for a sustainable energy future.
Collapse
Affiliation(s)
- Rui-Ting Liu
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Zheng-Long Xu
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Fu-Min Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan 430074, China.
| | - Fei-Yang Chen
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Jing-Ya Yu
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Ya Yan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Bao Yu Xia
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan 430074, China.
| |
Collapse
|
8
|
Chen T, Lv B, Sun S, Hao J, Shao Z. Novel Nafion/Graphitic Carbon Nitride Nanosheets Composite Membrane for Steam Electrolysis at 110 °C. MEMBRANES 2023; 13:308. [PMID: 36984695 PMCID: PMC10059807 DOI: 10.3390/membranes13030308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen is expected to have an important role in future energy systems; however, further research is required to ensure the commercial viability of hydrogen generation. Proton exchange membrane steam electrolysis above 100 °C has attracted significant research interest owing to its high electrolytic efficiency and the potential to reduce the use of electrical energy through waste heat utilization. This study developed a novel composite membrane fabricated from graphitic carbon nitride (g-C3N4) and Nafion and applied it to steam electrolysis with excellent results. g-C3N4 is uniformly dispersed among the non-homogeneous functionalized particles of the polymer, and it improves the thermostability of the membranes. The amino and imino active sites on the nanosheet surface enhance the proton conductivity. In ultrapure water at 90 °C, the proton conductivity of the Nafion/0.4 wt.% g-C3N4 membrane is 287.71 mS cm-1. Above 100 °C, the modified membranes still exhibit high conductivity, and no sudden decreases in conductivity were observed. The Nafion/g-C3N4 membranes exhibit excellent performance when utilized as a steam electrolyzer. Compared with that of previous studies, this approach achieves better electrolytic behavior with a relatively low catalyst loading. Steam electrolysis using a Nafion/0.4 wt.% g-C3N4 membranes achieves a current density of 2260 mA cm-2 at 2 V, which is approximately 69% higher than the current density achieved using pure Nafion membranes under the same conditions.
Collapse
Affiliation(s)
- Taipu Chen
- Fuel Cell System and Engineering Laboratory, Key Laboratory of Fuel Cells & Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Bo Lv
- Fuel Cell System and Engineering Laboratory, Key Laboratory of Fuel Cells & Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Shucheng Sun
- Fuel Cell System and Engineering Laboratory, Key Laboratory of Fuel Cells & Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jinkai Hao
- Fuel Cell System and Engineering Laboratory, Key Laboratory of Fuel Cells & Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhigang Shao
- Fuel Cell System and Engineering Laboratory, Key Laboratory of Fuel Cells & Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
9
|
Zhang W, Liu M, Gu X, Shi Y, Deng Z, Cai N. Water Electrolysis toward Elevated Temperature: Advances, Challenges and Frontiers. Chem Rev 2023. [PMID: 36749705 DOI: 10.1021/acs.chemrev.2c00573] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Since severe global warming and related climate issues have been caused by the extensive utilization of fossil fuels, the vigorous development of renewable resources is needed, and transformation into stable chemical energy is required to overcome the detriment of their fluctuations as energy sources. As an environmentally friendly and efficient energy carrier, hydrogen can be employed in various industries and produced directly by renewable energy (called green hydrogen). Nevertheless, large-scale green hydrogen production by water electrolysis is prohibited by its uncompetitive cost caused by a high specific energy demand and electricity expenses, which can be overcome by enhancing the corresponding thermodynamics and kinetics at elevated working temperatures. In the present review, the effects of temperature variation are primarily introduced from the perspective of electrolysis cells. Following an increasing order of working temperature, multidimensional evaluations considering materials and structures, performance, degradation mechanisms and mitigation strategies as well as electrolysis in stacks and systems are presented based on elevated temperature alkaline electrolysis cells and polymer electrolyte membrane electrolysis cells (ET-AECs and ET-PEMECs), elevated temperature ionic conductors (ET-ICs), protonic ceramic electrolysis cells (PCECs) and solid oxide electrolysis cells (SOECs).
Collapse
Affiliation(s)
- Weizhe Zhang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Haidian District, Beijing 100084, China.,Beijing Institute of Smart Energy, Changping District, Beijing 102209, China
| | - Menghua Liu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Haidian District, Beijing 100084, China.,Beijing Institute of Smart Energy, Changping District, Beijing 102209, China
| | - Xin Gu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Haidian District, Beijing 100084, China
| | - Yixiang Shi
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Haidian District, Beijing 100084, China.,Beijing Institute of Smart Energy, Changping District, Beijing 102209, China
| | - Zhanfeng Deng
- Beijing Institute of Smart Energy, Changping District, Beijing 102209, China
| | - Ningsheng Cai
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Haidian District, Beijing 100084, China
| |
Collapse
|
10
|
Mishra K, Devi N, Siwal SS, Zhang Q, Alsanie WF, Scarpa F, Thakur VK. Ionic Liquid-Based Polymer Nanocomposites for Sensors, Energy, Biomedicine, and Environmental Applications: Roadmap to the Future. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202187. [PMID: 35853696 PMCID: PMC9475560 DOI: 10.1002/advs.202202187] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/30/2022] [Indexed: 05/19/2023]
Abstract
Current interest toward ionic liquids (ILs) stems from some of their novel characteristics, like low vapor pressure, thermal stability, and nonflammability, integrated through high ionic conductivity and broad range of electrochemical strength. Nowadays, ionic liquids represent a new category of chemical-based compounds for developing superior and multifunctional substances with potential in several fields. ILs can be used in solvents such as salt electrolyte and additional materials. By adding functional physiochemical characteristics, a variety of IL-based electrolytes can also be used for energy storage purposes. It is hoped that the present review will supply guidance for future research focused on IL-based polymer nanocomposites electrolytes for sensors, high performance, biomedicine, and environmental applications. Additionally, a comprehensive overview about the polymer-based composites' ILs components, including a classification of the types of polymer matrix available is provided in this review. More focus is placed upon ILs-based polymeric nanocomposites used in multiple applications such as electrochemical biosensors, energy-related materials, biomedicine, actuators, environmental, and the aviation and aerospace industries. At last, existing challenges and prospects in this field are discussed and concluding remarks are provided.
Collapse
Affiliation(s)
- Kirti Mishra
- Department of ChemistryM.M. Engineering CollegeMaharishi Markandeshwar (Deemed to be University)Mullana‐AmbalaHaryana133207India
| | - Nishu Devi
- Mechanics and Energy LaboratoryDepartment of Civil and Environmental EngineeringNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
| | - Samarjeet Singh Siwal
- Department of ChemistryM.M. Engineering CollegeMaharishi Markandeshwar (Deemed to be University)Mullana‐AmbalaHaryana133207India
| | - Qibo Zhang
- Key Laboratory of Ionic Liquids MetallurgyFaculty of Metallurgical and Energy EngineeringKunming University of Science and TechnologyKunming650093P. R. China
- State Key Laboratory of Complex Nonferrous Metal Resources Cleaning Utilization in Yunnan ProvinceKunming650093P. R. China
| | - Walaa F. Alsanie
- Department of Clinical Laboratories SciencesThe Faculty of Applied Medical SciencesTaif UniversityP.O. Box 11099Taif21944Saudi Arabia
| | - Fabrizio Scarpa
- Bristol Composites InstituteUniversity of BristolBristolBS8 1TRUK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research CenterScotland's Rural College (SRUC)Kings Buildings, West Mains RoadEdinburghEH9 3JGUK
- School of EngineeringUniversity of Petroleum and Energy Studies (UPES)DehradunUttarakhand248007India
| |
Collapse
|
11
|
Crosslinked Sulfonated Polyphenylsulfone (CSPPSU) Membranes for Elevated-Temperature PEM Water Electrolysis. MEMBRANES 2021; 11:membranes11110861. [PMID: 34832090 PMCID: PMC8624943 DOI: 10.3390/membranes11110861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022]
Abstract
In order to reduce the burden on the environment, there is a need to develop non-fluorinated electrolyte membranes as alternatives to fluorinated electrolyte membranes, and water electrolysis using hydrocarbon-based electrolyte membranes has been studied in recent years. In this paper, for the first time, we report elevated-temperature water electrolysis properties of crosslinked sulfonated polyphenylsulfone (CSPPSU) membranes prepared by sulfonation and crosslinking of hydrocarbon-based PPSU engineering plastics. The sulfone groups of the CSPPSU membrane in water were stable at 85 °C (3600 h) and 150 °C (2184 h). In addition, the polymer structure of the CSPPSU membrane was stable during small-angle X-ray scattering (SAXS) measurements from room temperature to 180 °C. A current density of 456 mA/cm2 was obtained at 150 °C and 1.8 V in water electrolysis using the CSPPSU membrane and IrO2/Ti as the catalytic electrode for oxygen evolution. The stability of the CSPPSU membrane at elevated temperatures with time was evaluated. There were some issues in the assembly of the CSPPSU membrane and the catalytic electrode. However, the CSPPSU membrane has the potential to be used as an electrolyte membrane for elevated-temperature water electrolysis.
Collapse
|
12
|
Barjola A, Reyes-Rodríguez JL, Solorza-Feria O, Giménez E, Compañ V. Novel SPEEK-ZIF-67 Proton Exchange Nanocomposite Membrane for PEMFC Application at Intermediate Temperatures. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Arturo Barjola
- Instituto de Tecnología de Materiales, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain
| | - José Luis Reyes-Rodríguez
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del I.P.N. (CINVESTAV), Av. I.P.N. 2508, Col. Zacatenco, Delegación Gustavo A. Madero, C.P. 07360 Ciudad de México, México
| | - Omar Solorza-Feria
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del I.P.N. (CINVESTAV), Av. I.P.N. 2508, Col. Zacatenco, Delegación Gustavo A. Madero, C.P. 07360 Ciudad de México, México
| | - Enrique Giménez
- Instituto de Tecnología de Materiales, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain
| | - Vicente Compañ
- Escuela Técnica Superior de Ingenieros Industriales, Departamento de Termodinámica Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46020 Valencia, Spain
| |
Collapse
|
13
|
Garbe S, Futter J, Schmidt TJ, Gubler L. Insight into elevated temperature and thin membrane application for high efficiency in polymer electrolyte water electrolysis. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138046] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Kim JD, Ohira A. Water Electrolysis Using a Porous IrO 2/Ti/IrO 2 Catalyst Electrode and Nafion Membranes at Elevated Temperatures. MEMBRANES 2021; 11:330. [PMID: 33946195 PMCID: PMC8146578 DOI: 10.3390/membranes11050330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022]
Abstract
Porous IrO2/Ti/IrO2 catalyst electrodes were obtained by coating IrO2 on both sides of three types of porous Ti powder sheets (sample 1, sample 2, and sample 3) using different surface treatment methods, and a hydrogen evolution catalyst electrode was obtained by coating Pt/C on carbon gas diffusion layers. A Nafion115 membrane was used as an electrolyte for the membrane electrode assemblies (MEA). Water electrolysis was investigated at cell temperatures up to 150 °C, and the electrical characteristics of the three types of porous IrO2/Ti/IrO2 catalyst electrodes were investigated. The sheet resistance of sample 1 was higher than those of samples 2 and 3, although during water electrolysis, a high current density was observed due to the nanostructure of the IrO2 catalyst. In addition, the structural stabilities of Nafion and Aquivion membranes up to 150 °C were investigated by using small angle X-ray scattering (SAXS). The polymer structures of Nafion and Aquivion membranes were stable up to 80 °C, whereas the crystalline domains grew significantly above 120 °C. In other words, the initial polymer structure did not recover after the sample was heated above the glass transition temperature.
Collapse
Affiliation(s)
- Je-Deok Kim
- Research Center for Functional Materials, Functional Clay Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Akihiro Ohira
- Energy Storage Technology Group, Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan;
| |
Collapse
|
15
|
Li Y, Wang H, Priest C, Li S, Xu P, Wu G. Advanced Electrocatalysis for Energy and Environmental Sustainability via Water and Nitrogen Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000381. [PMID: 32671924 DOI: 10.1002/adma.202000381] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/23/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Clean and efficient energy storage and conversion via sustainable water and nitrogen reactions have attracted substantial attention to address the energy and environmental issues due to the overwhelming use of fossil fuels. These electrochemical reactions are crucial for desirable clean energy technologies, including advanced water electrolyzers, hydrogen fuel cells, and ammonia electrosynthesis and utilization. Their sluggish reaction kinetics lead to inefficient energy conversion. Innovative electrocatalysis, i.e., catalysis at the interface between the electrode and electrolyte to facilitate charge transfer and mass transport, plays a vital role in boosting energy conversion efficiency and providing sufficient performance and durability for these energy technologies. Herein, a comprehensive review on recent progress, achievements, and remaining challenges for these electrocatalysis processes related to water (i.e., oxygen evolution reaction, OER, and oxygen reduction reaction, ORR) and nitrogen (i.e., nitrogen reduction reaction, NRR, for ammonia synthesis and ammonia oxidation reaction, AOR, for energy utilization) is provided. Catalysts, electrolytes, and interfaces between the two within electrodes for these electrocatalysis processes are discussed. The primary emphasis is device performance of OER-related proton exchange membrane (PEM) electrolyzers, ORR-related PEM fuel cells, NRR-driven ammonia electrosynthesis from water and nitrogen, and AOR-related direct ammonia fuel cells.
Collapse
Affiliation(s)
- Yi Li
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Huanhuan Wang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Cameron Priest
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Siwei Li
- Department MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Ping Xu
- Department MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
16
|
Elezović NR, Zabinski P, Lačnjevac UČ, Pajić MNK, Jović VD. Electrochemical deposition and characterization of iridium oxide films on Ti2AlC support for oxygen evolution reaction. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04816-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Composite Polymers Development and Application for Polymer Electrolyte Membrane Technologies-A Review. Molecules 2020; 25:molecules25071712. [PMID: 32276482 PMCID: PMC7180464 DOI: 10.3390/molecules25071712] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 11/24/2022] Open
Abstract
Nafion membranes are still the dominating material used in the polymer electrolyte membrane (PEM) technologies. They are widely used in several applications thanks to their excellent properties: high proton conductivity and high chemical stability in both oxidation and reduction environment. However, they have several technical challenges: reactants permeability, which results in reduced performance, dependence on water content to perform preventing the operation at higher temperatures or low humidity levels, and chemical degradation. This paper reviews novel composite membranes that have been developed for PEM applications, including direct methanol fuel cells (DMFCs), hydrogen PEM fuel cells (PEMFCs), and water electrolysers (PEMWEs), aiming at overcoming the drawbacks of the commercial Nafion membranes. It provides a broad overview of the Nafion-based membranes, with organic and inorganic fillers, and non-fluorinated membranes available in the literature for which various main properties (proton conductivity, crossover, maximum power density, and thermal stability) are reported. The studies on composite membranes demonstrate that they are suitable for PEM applications and can potentially compete with Nafion membranes in terms of performance and lifetime.
Collapse
|
18
|
Sun X, Simonsen SC, Norby T, Chatzitakis A. Composite Membranes for High Temperature PEM Fuel Cells and Electrolysers: A Critical Review. MEMBRANES 2019; 9:E83. [PMID: 31336708 PMCID: PMC6680835 DOI: 10.3390/membranes9070083] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023]
Abstract
Polymer electrolyte membrane (PEM) fuel cells and electrolysers offer efficient use and production of hydrogen for emission-free transport and sustainable energy systems. Perfluorosulfonic acid (PFSA) membranes like Nafion® and Aquivion® are the state-of-the-art PEMs, but there is a need to increase the operating temperature to improve mass transport, avoid catalyst poisoning and electrode flooding, increase efficiency, and reduce the cost and complexity of the system. However, PSFAs-based membranes exhibit lower mechanical and chemical stability, as well as proton conductivity at lower relative humidities and temperatures above 80 °C. One approach to sustain performance is to introduce inorganic fillers and improve water retention due to their hydrophilicity. Alternatively, polymers where protons are not conducted as hydrated H3O+ ions through liquid-like water channels as in the PSFAs, but as free protons (H+) via Brønsted acid sites on the polymer backbone, can be developed. Polybenzimidazole (PBI) and sulfonated polyetheretherketone (SPEEK) are such materials, but need considerable acid doping. Different composites are being investigated to solve some of the accompanying problems and reach sufficient conductivities. Herein, we critically discuss a few representative investigations of composite PEMs and evaluate their significance. Moreover, we present advances in introducing electronic conductivity in the polymer binder in the catalyst layers.
Collapse
Affiliation(s)
- Xinwei Sun
- Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, FERMiO, Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Stian Christopher Simonsen
- Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, FERMiO, Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Truls Norby
- Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, FERMiO, Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Athanasios Chatzitakis
- Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, FERMiO, Gaustadalléen 21, NO-0349 Oslo, Norway.
| |
Collapse
|
19
|
Mazzapioda L, Panero S, Navarra MA. Polymer Electrolyte Membranes Based on Nafion and a Superacidic Inorganic Additive for Fuel Cell Applications. Polymers (Basel) 2019; 11:polym11050914. [PMID: 31121828 PMCID: PMC6571891 DOI: 10.3390/polym11050914] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/25/2019] [Accepted: 05/05/2019] [Indexed: 01/29/2023] Open
Abstract
Nafion composite membranes, containing different amounts of mesoporous sulfated titanium oxide (TiO2-SO4) were prepared by solvent-casting and tested in proton exchange membrane fuel cells (PEMFCs), operating at very low humidification levels. The TiO2-SO4 additive was originally synthesized by a sol-gel method and characterized through x-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and ion exchange capacity (IEC). Peculiar properties of the composite membranes, such as the thermal transitions and ion exchange capacity, were investigated and here discussed. When used as an electrolyte in the fuel cell, the composite membrane guaranteed an improvement with respect to bare Nafion systems at 30% relative humidity and 110 °C, exhibiting higher power and current densities.
Collapse
Affiliation(s)
- Lucia Mazzapioda
- Department of Chemistry, Sapienza University of Rome. Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Stefania Panero
- Department of Chemistry, Sapienza University of Rome. Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Maria Assunta Navarra
- Department of Chemistry, Sapienza University of Rome. Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
20
|
Chemically stabilised extruded and recast short side chain Aquivion® proton exchange membranes for high current density operation in water electrolysis. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Giancola S, Zatoń M, Reyes-Carmona Á, Dupont M, Donnadio A, Cavaliere S, Rozière J, Jones DJ. Composite short side chain PFSA membranes for PEM water electrolysis. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.09.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
The effect of cathode nitrogen purging on cell performance and in operando neutron imaging of a polymer electrolyte membrane electrolyzer. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.05.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
|
24
|
Albert A, Barnett AO, Thomassen MS, Schmidt TJ, Gubler L. Radiation-Grafted Polymer Electrolyte Membranes for Water Electrolysis Cells: Evaluation of Key Membrane Properties. ACS APPLIED MATERIALS & INTERFACES 2015; 7:22203-22212. [PMID: 26393461 DOI: 10.1021/acsami.5b04618] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Radiation-grafted membranes can be considered an alternative to perfluorosulfonic acid (PFSA) membranes, such as Nafion, in a solid polymer electrolyte electrolyzer. Styrene, acrylonitrile, and 1,3-diisopropenylbenzene monomers are cografted into preirradiated 50 μm ethylene tetrafluoroethylene (ETFE) base film, followed by sulfonation to introduce proton exchange sites to the obtained grafted films. The incorporation of grafts throughout the thickness is demonstrated by scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analysis of the membrane cross-sections. The membranes are analyzed in terms of grafting kinetics, ion-exchange capacity (IEC), and water uptake. The key properties of radiation-grafted membranes and Nafion, such as gas crossover, area resistance, and mechanical properties, are evaluated and compared. The plot of hydrogen crossover versus area resistance of the membranes results in a property map that indicates the target areas for membrane development for electrolyzer applications. Tensile tests are performed to assess the mechanical properties of the membranes. Finally, these three properties are combined to establish a figure of merit, which indicates that radiation-grafted membranes obtained in the present study are promising candidates with properties superior to those of Nafion membranes. A water electrolysis cell test is performed as proof of principle, including a comparison to a commercial membrane electrode assembly (MEA).
Collapse
Affiliation(s)
- Albert Albert
- Electrochemistry Laboratory, Paul Scherrer Institut , CH-5232 Villigen PSI, Switzerland
| | - Alejandro O Barnett
- New Energy Solutions, SINTEF Materials and Chemistry , NO-7465 Trondheim, Norway
| | - Magnus S Thomassen
- New Energy Solutions, SINTEF Materials and Chemistry , NO-7465 Trondheim, Norway
| | - Thomas J Schmidt
- Electrochemistry Laboratory, Paul Scherrer Institut , CH-5232 Villigen PSI, Switzerland
- Laboratory of Physical Chemistry, ETH Zürich , CH-8093 Zürich, Switzerland
| | - Lorenz Gubler
- Electrochemistry Laboratory, Paul Scherrer Institut , CH-5232 Villigen PSI, Switzerland
| |
Collapse
|
25
|
Rausch B, Symes MD, Chisholm G, Cronin L. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science 2014; 345:1326-30. [PMID: 25214625 DOI: 10.1126/science.1257443] [Citation(s) in RCA: 328] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The electrolysis of water using renewable energy inputs is being actively pursued as a route to sustainable hydrogen production. Here we introduce a recyclable redox mediator (silicotungstic acid) that enables the coupling of low-pressure production of oxygen via water oxidation to a separate, catalytic hydrogen production step outside the electrolyzer that requires no post-electrolysis energy input. This approach sidesteps the production of high-pressure gases inside the electrolytic cell (a major cause of membrane degradation) and essentially eliminates the hazardous issue of product gas crossover at the low current densities that characterize renewables-driven water-splitting devices. We demonstrated that a platinum-catalyzed system can produce pure hydrogen over 30 times faster than state-of-the-art proton exchange membrane electrolyzers at equivalent platinum loading.
Collapse
Affiliation(s)
- Benjamin Rausch
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Mark D Symes
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Greig Chisholm
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Leroy Cronin
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK.
| |
Collapse
|
26
|
Electrochemical characterization of a PEM water electrolyzer based on a sulfonated polysulfone membrane. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.07.058] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Aricò AS, Siracusano S, Briguglio N, Baglio V, Di Blasi A, Antonucci V. Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources. J APPL ELECTROCHEM 2012. [DOI: 10.1007/s10800-012-0490-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
NMR and Electrochemical Investigation of the Transport Properties of Methanol and Water in Nafion and Clay-Nanocomposites Membranes for DMFCs. MEMBRANES 2012; 2:325-45. [PMID: 24958179 PMCID: PMC4021886 DOI: 10.3390/membranes2020325] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/08/2012] [Accepted: 06/12/2012] [Indexed: 11/17/2022]
Abstract
Water and methanol transport behavior, solvents adsorption and electrochemical properties of filler-free Nafion and nanocomposites based on two smectite clays, were investigated using impedance spectroscopy, DMFC tests and NMR methods, including spin-lattice relaxation and pulsed-gradient spin-echo (PGSE) diffusion under variable temperature conditions. Synthetic (Laponite) and natural (Swy-2) smectite clays, with different structural and physical parameters, were incorporated into the Nafion for the creation of exfoliated nanocomposites. Transport mechanism of water and methanol appears to be influenced from the dimensions of the dispersed platelike silicate layers as well as from their cation exchange capacity (CEC). The details of the NMR results and the effect of the methanol solution concentration are discussed. Clays particles, and in particular Swy-2, demonstrate to be a potential physical barrier for methanol cross-over, reducing the methanol diffusion with an evident blocking effect yet nevertheless ensuring a high water mobility up to 130 °C and for several hours, proving the exceptional water retention property of these materials and their possible use in the DMFCs applications. Electrochemical behavior is investigated by cell resistance and polarization measurements. From these analyses it is derived that the addition of clay materials to recast Nafion decreases the ohmic losses at high temperatures extending in this way the operating range of a direct methanol fuel cell.
Collapse
|
29
|
Kim SJ, Sakai T, Oda H, Okuyama Y, Mizutani Y, Hamagami JI, Matsuka M, Ishihara T, Matsumoto H. Long-term stability of sulfated hydrous titania-based electrolyte for water electrolysis. J Solid State Electrochem 2012. [DOI: 10.1007/s10008-012-1793-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
30
|
|
31
|
Nicotera I, Enotiadis A, Angjeli K, Coppola L, Ranieri GA, Gournis D. Effective improvement of water-retention in nanocomposite membranes using novel organo-modified clays as fillers for high temperature PEMFCs. J Phys Chem B 2011; 115:9087-97. [PMID: 21671588 DOI: 10.1021/jp202954g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Toward an enhanced water-retention of polymer electrolyte membranes at high temperatures, novel organo-modified clays were prepared and tested as fillers for the creation of hybrid Nafion nanocomposites. Two smectite clays (Laponite and montmorillonite), with different structural and physical parameters, were loaded with various cationic organic molecules bearing several hydrophilic functional groups (-NH(2), -OH, -SO(3)H) and incorporated in Nafion by solution intercalation. The resulted hybrid membranes were characterized by a combination of powder X-ray diffraction, FTIR spectroscopy, and thermal analysis (DTA/TGA) showing that highly homogeneous exfoliated nanocomposites were created where the individual organoclay layers are uniformly dispersed in the continuous polymeric matrix. In this paper, water-transport properties were investigated by NMR spectroscopy, including pulsed-field-gradient spin-echo diffusion and spectral measurements conducted under variable temperature. Organo-montmorillonite nanofillers demonstrate a considerable effect on the Nafion polymer in terms both of water absorption/retention and water mobility with a remarkable behavior in the region of high temperatures (100-130 °C), denoting that the surface modifications of this clay with acid organic molecules significantly improve the performance of the final composite membrane. (1)H NMR spectral analysis allowed a general description of the water distribution in the system and an estimation of the number of water molecules involved in the hydration shell of the sulfonic groups as well as that absorbed on the organoclay particles.
Collapse
Affiliation(s)
- Isabella Nicotera
- Department of Chemistry, University of Calabria, 87036 Rende, Cosenza, Italy.
| | | | | | | | | | | |
Collapse
|
32
|
Baglio V, D'Urso C, Di Blasi A, Ornelas R, Arriaga LG, Antonucci V, Aricò AS. Investigation of IrO2/Pt Electrocatalysts in Unitized Regenerative Fuel Cells. INTERNATIONAL JOURNAL OF ELECTROCHEMISTRY 2011. [DOI: 10.4061/2011/276205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IrO2/Pt catalysts (at different concentrations) were synthesized by incipient wetness technique and characterized by XRD, XRF, and SEM. Water electrolysis/fuel cell performances were evaluated in a 5 cm2single cell under Unitized Regenerative Fuel Cell (URFC) configuration. The IrO2/Pt composition of 14/86 showed the highest performance for water electrolysis and the lowest one as fuel cell. It is derived that for fuel cell operation an excess of Pt favours the oxygen reduction process whereas IrO2promotes oxygen evolution. From the present results, it appears that the diffusion characteristics and the reaction rate in fuel cell mode are significantly lower than in the electrolyser mode. This requires the enhancement of the gas diffusion properties of the electrodes and the catalytic properties for cathode operation in fuel cells.
Collapse
Affiliation(s)
- V. Baglio
- CNR-Istituto di Tecnologie Avanzate per l'Energia “Nicola Giordano” (ITAE), Via Salita S. Lucia sopra Contesse 5, 98126 Messina, Italy
| | - C. D'Urso
- CNR-Istituto di Tecnologie Avanzate per l'Energia “Nicola Giordano” (ITAE), Via Salita S. Lucia sopra Contesse 5, 98126 Messina, Italy
| | - A. Di Blasi
- CNR-Istituto di Tecnologie Avanzate per l'Energia “Nicola Giordano” (ITAE), Via Salita S. Lucia sopra Contesse 5, 98126 Messina, Italy
| | - R. Ornelas
- Tozzi Apparecchiature Elettriche S.p.A., Via Zuccherificio, 10-48010 Mezzano, Italy
| | - L. G. Arriaga
- Centro de Investigacióny Desarrollo Tecnológico en Electroquímica S.C., 76700 Querétaro Sanfandila, QRO, Mexico
| | - V. Antonucci
- CNR-Istituto di Tecnologie Avanzate per l'Energia “Nicola Giordano” (ITAE), Via Salita S. Lucia sopra Contesse 5, 98126 Messina, Italy
| | - A. S. Aricò
- CNR-Istituto di Tecnologie Avanzate per l'Energia “Nicola Giordano” (ITAE), Via Salita S. Lucia sopra Contesse 5, 98126 Messina, Italy
| |
Collapse
|
33
|
Intaraprasit N, Kongkachuichay P. Preparation and properties of sulfonated poly(ether ether ketone)/Analcime composite membrane for a proton exchange membrane fuel cell (PEMFC). J Taiwan Inst Chem Eng 2011. [DOI: 10.1016/j.jtice.2010.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Ghassemzadeh L, Pace G, Di Noto V, Müller K. Effect of SiO2 on the dynamics of proton conducting [Nafion/(SiO2)X] composite membranes: a solid-state 19F NMR study. Phys Chem Chem Phys 2011; 13:9327-34. [DOI: 10.1039/c0cp02316g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Viganò M, Ragaini F, Buonomenna MG, Lariccia R, Caselli A, Gallo E, Cenini S, Jansen JC, Drioli E. Catalytic Polymer Membranes under Forcing Conditions: Reduction of Nitrobenzene by CO/H2O Catalyzed by Ruthenium Bis(arylimino)acenaphthene Complexes. ChemCatChem 2010. [DOI: 10.1002/cctc.201000044] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Kongkachuichay P, Pimprom S. Nafion/Analcime and Nafion/Faujasite composite membranes for polymer electrolyte membrane fuel cells. Chem Eng Res Des 2010. [DOI: 10.1016/j.cherd.2009.08.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
MICHISHITA H, AKABORI KI, TANAKA K, MATSUMOTO H, HARUTA D, NAGATA Y, YAMAMOTO N, ISHIHARA T. Effects of Pressure on Stability of Nafion Membrane under Water Electrolysis. ELECTROCHEMISTRY 2010. [DOI: 10.5796/electrochemistry.78.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
38
|
Preparation and characterization of titanium suboxides as conductive supports of IrO2 electrocatalysts for application in SPE electrolysers. Electrochim Acta 2009. [DOI: 10.1016/j.electacta.2009.05.094] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|