1
|
Fardin AB, Jamshidi-Zanjani A, Saeedi M. A comprehensive review of soil remediation contaminated by persistent organic pollutants using electrokinetic: Challenging enhancement techniques. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123587. [PMID: 39657472 DOI: 10.1016/j.jenvman.2024.123587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/15/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
The hydrophobic, hard-to-naturally-decompose compounds, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pesticides, are categorized as persistent organic pollutants (POPs). POPs are toxic/hazardous and present serious risks to human health. Electrokinetic (EK) remediation is highly flexible and cost-effective, suitable for both in-situ and ex-situ applications. It effectively targets a wide range of contaminants, including metals and organic compounds, especially in low-permeability and low-hydraulic conductivity soils, where traditional methods are less effective. This technology is easy to install and can be combined with other strategies for enhanced remediation in complex soil environments. This paper underscores EK remediation as a promising method for addressing soil pollution caused by these organic pollutants, especially in low-permeability soil. The present review starts with the classification, toxicity effects, and source of POPs in the environment. Theoretical aspects and fundamentals of EK, including transport mechanisms and principles, are also reviewed. The theoretical underpinnings of effective factors are comprehensively explored, such as surface charge, zeta potential, pHpzc, and numerical modeling of transport fluxes. Moreover, a comprehensive examination is undertaken regarding the operation and design considerations of the EK process, encompassing factors like pH, electrode arrangement, electrolyte, and voltage. Subsequently, it is highlighted that EK has the potential to come in synergistically in contact with other remediation technologies to augment the POPs' degradation. Various enhancement techniques are also explored, including solvent extraction, chemical oxidation, bioremediation, and permeable reactive barriers to combine with EK. Each method is examined in terms of its advantages, limitations, recent developments, and ongoing research. Finally, the potential and challenges associated with enhanced EK methods combined with other techniques for the removal of POPs were reviewed.
Collapse
Affiliation(s)
- Ali Barati Fardin
- Department of Mining and Environmental Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Jamshidi-Zanjani
- Department of Mining and Environmental Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Mohsen Saeedi
- University Canada West, 1461, Granville St., Vancouver, BC, V6Z 0E5, Canada
| |
Collapse
|
2
|
Zhao Y, Wei R, He D, Niu D, Zhou T. Enhanced volatile fatty acid production from food waste via anaerobic fermentation: effect of irons with different sizes. ENVIRONMENTAL TECHNOLOGY 2024; 45:50-60. [PMID: 35792808 DOI: 10.1080/09593330.2022.2099309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
ABSTRACTFood waste is an excellent organic matter for anaerobic fermentation. This study provided a cost-effective and highly efficient volatile fatty acid (VFA) production strategy by the addition of zero-valent iron (ZVI). Results showed that VFA concentration of 44.6 g/L was obtained with the optimized conditions of 200-mesh iron powder at a dosage of 20.0 g, fermentation time of 11 d, total solids (TS) of 10 wt.%, and fermentation temperature of 37 ℃. Further, the iron of different particle sizes (iron scraps, 200-mesh iron powder, and 800-mesh iron powder) had a differential influence on total organic carbon (TOC), total nitrogen (TN), and VFA concentrations. For the reactor containing 200-mesh iron powder, the conversion rate of organic compound into VFA increased with the increase of dosage, which reached 58.4% at the 40.0 g dosage. The mechanism revealed that the VFA production was enhanced by micro-electrolysis, which can rapidly inactivate bacteria and increase the conversion of macromolecular organics into micromolecular organics.
Collapse
Affiliation(s)
- Youcai Zhao
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People's Republic of China
| | - Ran Wei
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People's Republic of China
| | - Dongwei He
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Dongjie Niu
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Tao Zhou
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Jin C, Tang Q, Xu H, Sheng Y. Effects of anode materials on nitrate reduction and microbial community in a three-dimensional electrode biofilm reactor with sulfate. CHEMOSPHERE 2023; 340:139909. [PMID: 37611758 DOI: 10.1016/j.chemosphere.2023.139909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/22/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Graphite rod corrosion and peeling are serious problems in three-dimensional electrode biofilm reactors (3D-BERs). In this study, titanium rods, titanium suboxide-coated titanium rods and graphite rods were used as anodes to investigate the effect of anodic materials on the electrochemical and bioelectrochemical reduction of nitrate and sulfate. The results showed that the reactor with the titanium suboxide-coated titanium rod anode (3D-ER-T) exhibited a stable NO3--N removal efficiency (46%-95%) with a current range of 160-320 mA in the electrochemical reduction process. In the bioelectrochemical reduction, the removal efficiencies of NO3--N and SO42- and nitrogen selectivity in the 3D-BER with titanium suboxide-coated titanium rod anode (3D-BER-T) were higher than those in the 3D-BER with titanium suboxide-coated graphite rod anode (3D-BER-G). The removal efficiencies of NO3--N and SO42- and nitrogen selectivity were 92%, 43% and 86%, respectively, in 3D-BER-T under 320 mA and HRT 12 h. Anode materials affected the microbial community. Hydrogenophaga and Dethiobacter were the dominant bacteria in 3D-BER-T, while OPB41 and Sulfurospirillum were dominant in 3D-BER-G. Nitrate and sulfate were effectively removed in 3D-BER-T by the synergistic work of electrochemical reduction, bioelectrochemical reduction and indirect electrochemical reduction. The resupply/reserve mode of the electron donor promoted the load of shock resistance of 3D-BER-T via the sulfur cycle. Titanium suboxide coating could significantly enhance the anti-corrosion ability of matrix anodes.
Collapse
Affiliation(s)
- Chunhong Jin
- CAS Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Qi Tang
- CAS Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hengduo Xu
- CAS Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yanqing Sheng
- CAS Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
4
|
Lan J, Wen F, Ren Y, Liu G, Jiang Y, Wang Z, Zhu X. An overview of bioelectrokinetic and bioelectrochemical remediation of petroleum-contaminated soils. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 16:100278. [PMID: 37251519 PMCID: PMC10220241 DOI: 10.1016/j.ese.2023.100278] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/31/2023]
Abstract
The global problem of petroleum contamination in soils seriously threatens environmental safety and human health. Current studies have successfully demonstrated the feasibility of bioelectrokinetic and bioelectrochemical remediation of petroleum-contaminated soils due to their easy implementation, environmental benignity, and enhanced removal efficiency compared to bioremediation. This paper reviewed recent progress and development associated with bioelectrokinetic and bioelectrochemical remediation of petroleum-contaminated soils. The working principles, removal efficiencies, affecting factors, and constraints of the two technologies were thoroughly summarized and discussed. The potentials, challenges, and future perspectives were also deliberated to shed light on how to overcome the barriers and realize widespread implementation on large scales of these two technologies.
Collapse
Affiliation(s)
- Jun Lan
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Fang Wen
- Xinjiang Academy of Environmental Protection Science, Urumqi, 830011, China
| | - Yongxiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xiuping Zhu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| |
Collapse
|
5
|
An Overview of Emerging Cyanide Bioremediation Methods. Processes (Basel) 2022. [DOI: 10.3390/pr10091724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Cyanide compounds are hazardous compounds which are extremely toxic to living organisms, especially free cyanide in the form of hydrogen cyanide gas (HCN) and cyanide ion (CN−). These cyanide compounds are metabolic inhibitors since they can tightly bind to the metals of metalloenzymes. Anthropogenic sources contribute significantly to CN− contamination in the environment, more specifically to surface and underground waters. The treatment processes, such as chemical and physical treatment processes, have been implemented. However, these processes have drawbacks since they generate additional contaminants which further exacerbates the environmental pollution. The biological treatment techniques are mostly overlooked as an alternative to the conventional physical and chemical methods. However, the recent research has focused substantially on this method, with different reactor configurations that were proposed. However, minimal attention was given to the emerging technologies that sought to accelerate the treatment with a subsequent resource recovery from the process. Hence, this review focuses on the recent emerging tools that can be used to accelerate cyanide biodegradation. These tools include, amongst others, electro-bioremediation, anaerobic biodegradation and the use of microbial fuel cell technology. These processes were demonstrated to have the possibility of producing value-added products, such as biogas, co-factors of neurotransmitters and electricity from the treatment process.
Collapse
|
6
|
Fan R, Tian H, Wu Q, Yi Y, Yan X, Liu B. Mechanism of bio-electrokinetic remediation of pyrene contaminated soil: Effects of an electric field on the degradation pathway and microbial metabolic processes. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126959. [PMID: 34449353 DOI: 10.1016/j.jhazmat.2021.126959] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
In this study, the mechanism of bio-electrokinetic (BIO-EK) remediation to improve the degradation of pyrene was evaluated based on an analysis of the intermediate products and the microbial community. The results show that BIO-EK remediation has a higher pyrene degradation efficiency on pyrene and its intermediate products than the bioremediation and electrokinetic (EK) remediation processes. A series of intermediate products were detected. According to the type of the intermediate products, two degradation pathways, biological metabolism and electrochemical oxidation, are proposed in the BIO-EK remediation of pyrene. Furthermore, the primary microbial taxa involved in the pollutant degradation changed, which led to variations in the functional gene components. The abundant and functional genes related to metabolism were specifically analyzed. The results indicate that the electric field promotes the expression of metabolisms associated with 14 carbohydrates, 13 lipids, 13 amino acids, five energies, and in particular, 11 xenobiotics. These results suggest that in addition to the promotion effect on the microbial metabolism caused by the electric field, BIO-EK remediation can promote the degradation of pollutants due to the coexistence of a microbial metabolic pathway and an electrochemical oxidation pathway.
Collapse
Affiliation(s)
- Ruijuan Fan
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China; Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People's Republic of China, Yinchuan 750021, China.
| | - Haihua Tian
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China
| | - Qiong Wu
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China
| | - Yuanyuan Yi
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China
| | - Xingfu Yan
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China; Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People's Republic of China, Yinchuan 750021, China
| | - Bingru Liu
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China; Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People's Republic of China, Yinchuan 750021, China
| |
Collapse
|
7
|
Sprocati R, Flyvbjerg J, Tuxen N, Rolle M. Process-based modeling of electrokinetic-enhanced bioremediation of chlorinated ethenes. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122787. [PMID: 32388097 DOI: 10.1016/j.jhazmat.2020.122787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/01/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
This study presents a process-based modeling analysis of electrokinetic-enhanced bioremediation (EK-Bio) to illuminate the complex interactions between physical, electrostatic and biogeochemical processes occurring during the application of this remediation technique. The features of the proposed model include: (i) multidimensional electrokinetic transport in saturated porous media by electromigration and electroosmosis, (ii) charge interactions, (iii) degradation kinetics, (iv) microbial populations dynamics of indigenous and specialized exogenous degraders, (v) mass transfer limitations, and (vi) geochemical reactions. A scenario modeling investigation is presented, which was inspired by an EK-Bio pilot application conducted in a clayey aquitard at the Skuldelev site (Denmark) contaminated by chlorinated ethenes. Lactate and specialized degraders are delivered under conservative and reactive transport conditions. In the considered setup, transport of lactate using electrokinetics results in more than fourfold increase in the distribution efficiency with respect to a diffusion-only scenario. Moreover, EK transport by electromigration and electroosmosis yields fluxes at least two orders of magnitude larger than diffusive fluxes. Quantitative metrics are also defined and used to assess the amendment distribution and the enhanced contaminant biodegradation in the different conservative and reactive transport scenarios.
Collapse
Affiliation(s)
- Riccardo Sprocati
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kgs. Lyngby, Denmark
| | - John Flyvbjerg
- Centre for Regional Development, Capital Region of Denmark, Kongens Vænge 2, 3400, Hillerød, Denmark
| | - Nina Tuxen
- Centre for Regional Development, Capital Region of Denmark, Kongens Vænge 2, 3400, Hillerød, Denmark
| | - Massimo Rolle
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
8
|
Li F, Guo S, Wang S, Zhao M. Changes of microbial community and activity under different electric fields during electro-bioremediation of PAH-contaminated soil. CHEMOSPHERE 2020; 254:126880. [PMID: 32957287 DOI: 10.1016/j.chemosphere.2020.126880] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Electro-bioremediation is a promising technology for remediation of soil contaminated with persistent organic compounds such as polycyclic aromatic hydrocarbons (PAHs). During electro-bioremediation, electrical fields have been shown to increase pollutant degradation. However, it remains unclear whether there is an optimal strength for the electrical field applied that is conductive to the maximum role played by microbes. This study aimed to determine the optimal strength of electric field through the analysis of the effects of different voltages on the microbial community and activity. Four bench-scale experiments with voltages of 0, 1, 2 and 3 V cm-1 were conducted for 90 days in an aged PAH-contaminated soil. The spatiotemporal changes of the soil pH, moisture content and temperature, microbial biomass and community structure, and the degradation extent of PAHs were researched over 90 days. The results indicated that the total microbial biomass and degradation activity were highest at voltages of 2 V cm-1. The concentration of total phospholipid fatty acids, used to quantify soil microbial biomass, reached 65.7 nmol g-1 soil, and the mean degradation extent of PAHs was 44.0%. Similarly, the maximum biomass of actinomycetes, bacteria and fungus also occurred at the voltage of 2 V cm-1. The Gram-positive/Gram-negative and (cy17:0+cy 19:0)/(16:1ω7+18:1ω7) ratios also showed that the intensity of electric field and electrode reactions strongly influenced the microbial community structure. Therefore, to optimize the electro-bioremediation of PAH-contaminated soil, the strength of electric field needs to be selected carefully. This work provides reference for the development of novel electrokinetically enhanced bioremediation processes.
Collapse
Affiliation(s)
- Fengmei Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, China.
| | - Sa Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, China
| | - Mingyang Zhao
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
9
|
Zhang M, Guo P, Wu B, Guo S. Change in soil ion content and soil water-holding capacity during electro-bioremediation of petroleum contaminated saline soil. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:122003. [PMID: 31901846 DOI: 10.1016/j.jhazmat.2019.122003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/14/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
This study investigated changes in soil ion content and soil water-holding capacity during electro-bioremediation (EK-Bio) of petroleum contaminated saline soil (ion content of 3.92 g/kg). The results indicated that the soil ions surrounded the electrodes with increasing time, thus changing the soil water-holding capacity. According to the Van Genuchten model fitting results, the soil residual water content (θr) increased with the soil ion content, which represented a capacity decrease of the soil water supply. At the end of the EK-Bio experiment, the θr values in the soil near (site A) and far from (site B) the electrodes were 19.1 % and 12.1 %, where the soil ion content was 7.92 g/kg and 0.55 g/kg, respectively. The ion aggregation process significantly impacted the growth of soil microbial. The bacteria numbers decreased when the soil ion content was high (7.41 g/kg, site A) and low (0.84 g/kg, site B) after 70 days of treatment. The applied electric field significantly enhanced the bioremediation efficiency. However, the biodegradation promotion effect was the weakest at site A. The synergistic effect between the applied electric field and degrading bacteria was delayed.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-Physicochemical Synergistic Process, Shenyang, 110016, China
| | | | - Bo Wu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-Physicochemical Synergistic Process, Shenyang, 110016, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-Physicochemical Synergistic Process, Shenyang, 110016, China.
| |
Collapse
|
10
|
Hyldegaard BH, Ottosen LM, Alshawabkeh AN. Transformation of tetrachloroethylene in a flow-through electrochemical reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135566. [PMID: 31767295 PMCID: PMC6980996 DOI: 10.1016/j.scitotenv.2019.135566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/04/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Electrochemical transformation of harmful tetrachloroethylene (PCE) is evaluated as a method for management of groundwater plumes to protect the drinking water resource, its consumers and the environment. In contrast to previous work that reported transformation of trichloroethylene, a byproduct of PCE, this work focuses on transformation of PCE in a saturated porous matrix and the influence of design parameters on the removal performance. Design parameters investigated were electrode configuration, catalyst load, electrode spacing, current intensity, orientation of reactor and flow through a porous matrix. A removal of 86% was reached in the fully liquid-filled, horizontally oriented reactor at a current of 120 mA across a cathode → bipolar electrode → anode arrangement with a Darcy velocity of 0.03 cm/min (150 m/yr). The palladium load on the cathode significantly influenced the removal. Enhanced removal was observed with increased electrode spacing. Presence of an inert porous matrix improved PCE removal by 9%-point compared to a completely liquid-filled reactor. Normalization of the data indicated, that a higher charge transfer per contaminant mass is required for removal of low PCE concentrations. No chlorinated intermediates were formed. The results suggest, that PCE can be electrochemically transformed in reactor designs replicating that of a potential field-implementation. Further work is required to better understand the reduction and oxidation processes established and the parameters influencing such. This knowledge is essential for optimization towards testing in complex conditions and variations of contaminated sites.
Collapse
Affiliation(s)
- Bente H Hyldegaard
- Department of Waste & Contaminated Sites, COWI, Parallelvej 2, 2800 Kgs. Lyngby, Denmark; Department of Civil Engineering, Brovej, Building 118, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; Department of Civil & Environmental Engineering, 501 Stearns, 360 Huntington Avenue, Boston, MA 02115, United States of America.
| | - Lisbeth M Ottosen
- Department of Civil Engineering, Brovej, Building 118, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Akram N Alshawabkeh
- Department of Civil & Environmental Engineering, 501 Stearns, 360 Huntington Avenue, Boston, MA 02115, United States of America
| |
Collapse
|
11
|
Hyldegaard BH, Jakobsen R, Ottosen LM. Electrochemical transformation of an aged tetrachloroethylene contamination in realistic aquifer settings. CHEMOSPHERE 2020; 243:125340. [PMID: 31760284 DOI: 10.1016/j.chemosphere.2019.125340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Electrochemical removal of chlorinated ethenes in groundwater plumes may potentially overcome some of the challenges faced by current remediation technologies. So far, studies have been conducted in simplified settings of synthetic groundwater and inert porous matrices. This study is a stepwise investigation of the influence of field-extracted groundwater, sandy sediment and groundwater aquifer temperatures on the removal of an aged partially degraded contamination of tetrachloroethylene (PCE) at a typical groundwater flow rate. The aim is to assess the potential for applying electrochemistry at contaminated sites. At a constant current of 120 mA, pH and conductivity were unaffected downgradient the electrochemical zone. Major groundwater species were reduced and oxidized. Some minerals deposited, others dissolved. Hydrogen peroxide, a strong oxidant, was formed in levels up to 5 mg L-1 with a limited distribution into the sandy sediment. Trichloromethane was formed, supposedly by oxidation of organic matter in the sandy sediment in the presence of chloride. The more realistic the settings, the higher the PCE removal, bringing concentrations down to 7.8 ± 2.3 μg L-1. A complete removal of trichloroethylene and cis-1,2-dichloroethylene was obtained. The results suggest that competing reactions related to the natural complex hydrogeochemistry are insignificant in terms of affecting the electrochemical degradation of PCE and chlorinated intermediates.
Collapse
Affiliation(s)
- Bente H Hyldegaard
- Department of Waste & Contaminated Sites, COWI A/S, Parallelvej 2, 2800, Kgs. Lyngby, Denmark; Department of Civil Engineering, Brovej, Building 118, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| | - Rasmus Jakobsen
- Department of Geochemistry, Geological Survey of Denmark and Greenland, Øster Voldgade 10, 1350, København K, Denmark
| | - Lisbeth M Ottosen
- Department of Civil Engineering, Brovej, Building 118, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
12
|
Lévesque S, Graham T, Bejan D, Lawson J, Zhang P, Dixon M. Inactivation of Rhizoctonia solani in fertigation water using regenerative in situ electrochemical hypochlorination. Sci Rep 2019; 9:14237. [PMID: 31578375 PMCID: PMC6775103 DOI: 10.1038/s41598-019-50600-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/10/2019] [Indexed: 11/17/2022] Open
Abstract
The capture and re-use of greenhouse fertigation water is an efficient use of fertilizer and limited water resources, although the practice is not without risk. Plant pathogens and chemical contaminants can build up over successive capture and re-use cycles; if not properly managed they can lead to reduced productivity or crop loss. There are numerous established and emerging water treatment technologies available to treat fertigation water. Electrochemical processes are emerging as effective means for controlling pathogens via in situ regenerative hypochlorination; a process that is demonstrated here to achieve pathogen control in fertigation solutions without leading to the accumulation of potentially phytotoxic free chlorine residuals associated with other chlorination processes. An electrochemical flow cell (EFC) outfitted with ruthenium dioxide (RuO2) dimensionally stable anodes (DSA) was characterized and evaluated for free chlorine production and Rhizoctonia solani inactivation in both irrigation and fertigation solutions. Pathogen inactivation was achieved at low current densities and short residence or cell contact times. Effluent free chlorine concentrations were significantly lower than commonly reported phytotoxic threshold values (approximately 2.5 mg/L) when fertilizer (containing ammonium) was present in the test solution; an effect attributable to reactions associated with breakpoint chlorination, including chloramine formation, as well as the presence of other oxidizable compounds in the fertilizer. Chloride concentrations were stable under the test conditions suggesting that the EFC was operating as a regenerative in situ electrochemical hypochlorination system. No significant changes to macronutrient concentrations were found following passage through the EFC.
Collapse
Affiliation(s)
- Serge Lévesque
- Controlled Environment Systems Research Facility, School of Environmental Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Thomas Graham
- Controlled Environment Systems Research Facility, School of Environmental Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Dorin Bejan
- Environmental Technology Consultant for CESRF, 275 Royalton Common Unit 49, Oakville, Ontario, L6H 0N2, Canada
| | - Jamie Lawson
- Controlled Environment Systems Research Facility, School of Environmental Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Ping Zhang
- Controlled Environment Systems Research Facility, School of Environmental Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Mike Dixon
- Controlled Environment Systems Research Facility, School of Environmental Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
13
|
Wang K, Wu Y, Wang Z, Wang W, Ren N. Insight into effects of electro-dewatering pretreatment on nitrous oxide emission involved in related functional genes in sewage sludge composting. BIORESOURCE TECHNOLOGY 2018; 265:25-32. [PMID: 29864734 DOI: 10.1016/j.biortech.2018.05.089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Electro-dewatering (ED) pretreatment could improve sludge dewatering performance and remove heavy metal, but the effect of ED pretreatment on nitrous oxide (N2O) emission and related functional genes in sludge composting process is still unknown, which was firstly investigated in this study. The results revealed that ED pretreatment changed the physicochemical characteristics of sludge and impacted N2O related functional genes, resulting in the reduction of cumulative N2O emission by 77.04% during 60 days composting. The higher pH and NH4+-N, but lower moisture, ORP and NO2--N emerged in the composting of ED sludge compared to mechanical dewatering (MD) sludge. Furthermore, ED pretreatment reduced amoA, hao, narG, nirK and nosZ in ED sludge on Day-10 and Day-60 of composting. It was found that nirK reduction was the major factor impacting N2O generation in the initial composting of ED sludge, and the decline of amoA restricted N2O production in the curing period.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Yiqi Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhe Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
14
|
Ramadan BS, Sari GL, Rosmalina RT, Effendi AJ. An overview of electrokinetic soil flushing and its effect on bioremediation of hydrocarbon contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 218:309-321. [PMID: 29689534 DOI: 10.1016/j.jenvman.2018.04.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 04/08/2018] [Accepted: 04/14/2018] [Indexed: 06/08/2023]
Abstract
Combination of electrokinetic soil flushing and bioremediation (EKSF-Bio) technology has attracted many researchers attention in the last few decades. Electrokinetic is used to increase biodegradation rate of microorganisms in soil pores. Therefore, it is necessary to use solubilizing agents such as surfactants that can improve biodegradation process. This paper describes the basic understanding and recent development associated with electrokinetic soil flushing, bioremediation, and its combination as innovative hybrid solution for treating hydrocarbon contaminated soil. Surfactant has been widely used in many studies and practical applications in remediation of hydrocarbon contaminant, but specific review about those combination technology cannot be found. Surfactants and other flushing/solubilizing agents have significant effects to increase hydrocarbon remediation efficiency. Thus, this paper is expected to provide clear information about fundamental interaction between electrokinetic, flushing agents and bioremediation, principal factors, and an inspiration for ongoing and future research benefit.
Collapse
Affiliation(s)
- Bimastyaji Surya Ramadan
- Faculty of Environmental Engineering, Institut Teknologi Yogyakarta, Yogyakarta, 55171, Indonesia.
| | - Gina Lova Sari
- Faculty of Engineering, Universitas Singaperbangsa, Karawang, 41361, Indonesia.
| | | | - Agus Jatnika Effendi
- Department of Environmental Engineering, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia.
| |
Collapse
|
15
|
Chen S, Liu X, Wang L, Wan C. In situ construction of low permeable barrier in soil to prevent pollutant migration by applying weak electric field. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 193:584-591. [PMID: 28258774 DOI: 10.1016/j.jenvman.2017.02.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/19/2017] [Accepted: 02/24/2017] [Indexed: 06/06/2023]
Abstract
In order to prevent vertical migration of pollutant in soil matrix, this study firstly proposed to construct an in situ low permeable barrier (LPB) through synchronously transporting calcium and carbonate. After LPB construction, the soil permeability was declined tenfold. Exchangeable calcium (37.3%) and calcium bonding to carbonate (41.7%) respectively alleviated flocculation of microaggregates and cementation of marcoaggregates. Accordingly, smaller particles (<1 mm) aggregated into bigger ones (>2 mm) after electrokinetic remediation. The other soil characters like pH, moisture, and bacterial communities were well preserved after remediation. In addition, the pollutant prevention was divided into two phases as unsaturated phase and saturated phase. In unsaturated phase, phenol, F-, Cd2+, and Ni2+ in filtrate were all lower than 0.1 mg, and Cr2O42--Cr discharged from LPB was 1/5.1 than that from initial soil. In saturated phase, LPB prevented 4.3-12.1 fold pollutant than initial soil. Taken together, proposed method could effectively prevent vertical migration of pollutants, indicating significant values for saving soil remediation cost or avoiding contamination of underground water.
Collapse
Affiliation(s)
- Si Chen
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Li Wang
- Center of Analysis and Measurement, Fudan University, Shanghai 200433, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
16
|
Sydow A, Krieg T, Ulber R, Holtmann D. Growth medium and electrolyte-How to combine the different requirements on the reaction solution in bioelectrochemical systems using Cupriavidus necator. Eng Life Sci 2017; 17:781-791. [PMID: 32624824 DOI: 10.1002/elsc.201600252] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/08/2017] [Accepted: 02/27/2017] [Indexed: 01/23/2023] Open
Abstract
Microbial electrosynthesis is a relatively new research field where microbial carbon dioxide fixation based on the energy supplied by a cathode is investigated. Reaction media used in such bioelectrochemical systems have to fulfill requirements of classical biotechnology as well as electrochemistry. The design and characterization of a medium that enables fast electroautotrophic growth of Cupriavidus necator in microbial electrosynthesis was investigated in detail. The identified chloride-free medium mainly consists of low buffer concentration and is supplied with trace elements. Biotechnologically relevant parameters, such as high-specific growth rates and short lag phases, were determined for growth characterization. Fast growth under all conditions tested, i.e. heterotrophic, autotrophic and electroautotrophic was achieved. The lag phase was shortened by increasing the FeSO₄ concentration. Additionally, electrochemical robustness of the reaction media was proven. Under reductive conditions, no deposits on electrodes or precipitations in the media were observed and no detectable hydrogen peroxide evolved. In the bioelectrochemical system, no lag phase occurred and specific growth rate of C. necator was 0.09 h⁻¹. Using this medium shortens seed train drastically and enables fast electrobiotechnological production processes based on C. necator.
Collapse
Affiliation(s)
- Anne Sydow
- Biochemical Engineering DECHEMA-Forschungsinstitut Frankfurt Germany
| | - Thomas Krieg
- Biochemical Engineering DECHEMA-Forschungsinstitut Frankfurt Germany
| | - Roland Ulber
- Bioprocess Engineering University of Kaiserslautern Kaiserslautern Germany
| | - Dirk Holtmann
- Biochemical Engineering DECHEMA-Forschungsinstitut Frankfurt Germany
| |
Collapse
|
17
|
Gomes MDN, Cardoso JS, Leitão AC, Quaresma CH. Mutagenic and genotoxic potential of direct electric current in Escherichia coli and Salmonella thyphimurium strains. Bioelectromagnetics 2016; 37:234-43. [PMID: 27018544 DOI: 10.1002/bem.21970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 03/04/2016] [Indexed: 01/01/2023]
Abstract
Direct electric current has several therapeutic uses such as antibacterial and antiprotozoal action, tissues scarring and regeneration, as well as tumor treatment. This method has shown promising results in vivo and in vitro, with significant efficacy and almost no side effects. Considering lack of studies regarding direct electric current mutagenic and/or genotoxic effects, the present work evaluated both aspects by using five different bacterial experimental assays: survival of repair-deficient mutants, Salmonella-histidine reversion mutagenesis (Ames test), forward mutations to rifampicin resistance, phage reactivation, and lysogenic induction. In these experimental conditions, cells were submitted to an approach that allows evaluation of anodic, cathodic, and electro-ionic effects generated by 2 mA of direct electric current, with doses ranging from 0.36 to 3.60 Coulombs. Our results showed these doses did not induce mutagenic or genotoxic effects.
Collapse
Affiliation(s)
- Marina das Neves Gomes
- Núcleo de Ciências Biomédicas Aplicadas, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Brazil
| | - Janine Simas Cardoso
- Laboratório de Radiobiologia Molecular, Programa de Biologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Alvaro Costa Leitão
- Laboratório de Radiobiologia Molecular, Programa de Biologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Carla Holandino Quaresma
- Laboratório Multidisciplinar de Ciências Farmacêuticas, Departamento de Medicamentos, Faculdade de Farmácia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Hassan I, Mohamedelhassan E, Yanful EK, Yuan ZC. A Review Article: Electrokinetic Bioremediation Current Knowledge and New Prospects. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/aim.2016.61006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Isolation and characterization of heavy polycyclic aromatic hydrocarbon-degrading bacteria adapted to electrokinetic conditions. Biodegradation 2015; 27:1-13. [PMID: 26615425 DOI: 10.1007/s10532-015-9750-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
Abstract
Polycyclic aromatic hydrocarbon (PAH)-degrading bacteria capable of growing under electrokinetic conditions were isolated using an adjusted acclimation and enrichment procedure based on soil contaminated with heavy PAHs in the presence of an electric field. Their ability to degrade heavy PAHs under an electric field was individually investigated in artificially contaminated soils. The results showed that strains PB4 (Pseudomonas fluorescens) and FB6 (Kocuria sp.) were the most efficient heavy PAH degraders under electrokinetic conditions. They were re-inoculated into a polluted soil from an industrial site with a PAH concentration of 184.95 mg kg(-1). Compared to the experiments without an electric field, the degradation capability of Pseudomonas fluorescens and Kocuria sp. was enhanced in the industrially polluted soil under electrokinetic conditions. The degradation extents of total PAHs were increased by 15.4 and 14.0% in the electrokinetic PB4 and FB6 experiments (PB4 + EK and FB6 + EK) relative to the PB4 and FB6 experiments without electrokinetic conditions (PB4 and FB6), respectively. These results indicated that P. fluorescens and Kocuria sp. could efficiently degrade heavy PAHs under electrokinetic conditions and have the potential to be used for the electro-bioremediation of PAH-contaminated soil, especially if the soil is contaminated with heavy PAHs.
Collapse
|
20
|
Li WW, Yu HQ. Electro-assisted groundwater bioremediation: fundamentals, challenges and future perspectives. BIORESOURCE TECHNOLOGY 2015; 196:677-684. [PMID: 26227572 DOI: 10.1016/j.biortech.2015.07.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 06/04/2023]
Abstract
Bioremediation is envisaged as an important way to abate groundwater contamination, but the need for chemical addition and limited bioavailability of electron donors/acceptors or contaminants hamper its application. As a promising means to enhance such processes, electrochemical system has drawn considerable attention, as it offers distinct advantages in terms of environmental benignity, controllability and treatment efficiency. Meanwhile, there are also potential risks and considerable engineering challenges for its practical application. This review provides a first comprehensive introduction of this emerging technology, discusses its potential applications and current challenges, identifies the knowledge gaps, and outlooks the future opportunities to bring it to field application. The need for a better understanding on the microbiology under electrochemical stimulation and the future requirements on process monitoring, modeling and evaluation protocols and field investigations are highlighted.
Collapse
Affiliation(s)
- Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China.
| |
Collapse
|
21
|
Boshagh F, Mokhtarani B, Mortaheb HR. Effect of electrokinetics on biodesulfurization of the model oil by Rhodococcus erythropolis PTCC1767 and Bacillus subtilis DSMZ 3256. JOURNAL OF HAZARDOUS MATERIALS 2014; 280:781-787. [PMID: 25244073 DOI: 10.1016/j.jhazmat.2014.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 08/30/2014] [Accepted: 09/02/2014] [Indexed: 06/03/2023]
Abstract
Biodesulfurization of the model oil using Rhodococcus erythropolis PTCC1767 (R. erythropolis) and Bacillus subtilis DSMZ 3256 (B. subtilis) strains assisted by applying electrokinetic was investigated as a novel method for desulfurization. The yield of biodesulfurization is low because it takes long time to be completed. Electrokinetic reduces the process time and accelerates degradation of the sulfur compounds. A mixture of normal hexadecane with 10mM dibenzotiophene (DBT) was employed as the model oil. The biodesulfurization experiments were initially performed. The results represented 34% and 62% DBT conversions after 1 and 6 days by R. erythropolis and the biodesulfurization yields were 11% and 36%, respectively. However, the DBT conversions for B. subtilis strain after 1 and 6 days were 31% and 55% and the biodesulfurization yields were 9% and 31%, respectively. The electrokinetic biodesulfurization experiments were studied at different current densities and the optimum current density was selected. According to the results, DBT conversion and biodesulfurization yield for R. erythropolis after 3 days were 76% and 39%, respectively, at the current density of 7.5 mA/cm(2). At the same conditions, the DBT conversion and biodesulfurization yield for B. subtilis were 71% and 37%, respectively. The experimental results indicate that the electrokinetic significantly reduces the biodesulfurization time. The combination of electrokinetic and biodesulfurization has the potential to obtain 'zero sulfur' products.
Collapse
Affiliation(s)
- Fatemeh Boshagh
- Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran
| | - Babak Mokhtarani
- Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran.
| | - Hamid Reza Mortaheb
- Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran
| |
Collapse
|
22
|
Guo S, Fan R, Li T, Hartog N, Li F, Yang X. Synergistic effects of bioremediation and electrokinetics in the remediation of petroleum-contaminated soil. CHEMOSPHERE 2014; 109:226-233. [PMID: 24613072 DOI: 10.1016/j.chemosphere.2014.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 06/03/2023]
Abstract
The present study evaluated the coupling interactions between bioremediation (BIO) and electrokinetics (EK) in the remediation of total petroleum hydrocarbons (TPH) by using bio-electrokinetics (BIO-EK) with a rotatory 2-D electric field. The results demonstrated an obvious positive correlation between the degradation extents of TPH and electric intensity both in the EK and BIO-EK tests. The use of BIO-EK showed a significant improvement in degradation of TPH as compared to BIO or EK alone. The actual degradation curve in BIO-EK tests fitted well with the simulated curve obtained by combining the degradation curves in BIO- and EK-only tests during the first 60 d, indicating a superimposed effect of biological degradation and electrochemical stimulation. The synergistic effect was particularly expressed during the later phase of the experiment, concurrent with changes in the microbial community structure. The community composition changed mainly according to the duration of the electric field, leading to a reduction in diversity. No significant spatial shifts in microbial community composition and bacterial numbers were detected among different sampling positions. Soil pH was uniform during the experimental process, soil temperature showed no variations between the soil chambers with and without an electric field.
Collapse
Affiliation(s)
- Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Ruijuan Fan
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Niels Hartog
- KWR Watercycle Research Institute, 3433 PE Nieuwegein, The Netherlands
| | - Fengmei Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | | |
Collapse
|
23
|
Gill RT, Harbottle MJ, Smith JWN, Thornton SF. Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications. CHEMOSPHERE 2014; 107:31-42. [PMID: 24875868 DOI: 10.1016/j.chemosphere.2014.03.019] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/18/2014] [Accepted: 03/03/2014] [Indexed: 06/03/2023]
Abstract
There is current interest in finding sustainable remediation technologies for the removal of contaminants from soil and groundwater. This review focuses on the combination of electrokinetics, the use of an electric potential to move organic and inorganic compounds, or charged particles/organisms in the subsurface independent of hydraulic conductivity; and bioremediation, the destruction of organic contaminants or attenuation of inorganic compounds by the activity of microorganisms in situ or ex situ. The objective of the review is to examine the state of knowledge on electrokinetic bioremediation and critically evaluate factors which affect the up-scaling of laboratory and bench-scale research to field-scale application. It discusses the mechanisms of electrokinetic bioremediation in the subsurface environment at different micro and macroscales, the influence of environmental processes on electrokinetic phenomena and the design options available for application to the field scale. The review also presents results from a modelling exercise to illustrate the effectiveness of electrokinetics on the supply electron acceptors to a plume scale scenario where these are limiting. Current research needs include analysis of electrokinetic bioremediation in more representative environmental settings, such as those in physically heterogeneous systems in order to gain a greater understanding of the controlling mechanisms on both electrokinetics and bioremediation in those scenarios.
Collapse
Affiliation(s)
- R T Gill
- Groundwater Protection and Restoration Group, University of Sheffield, Department of Civil & Structural Engineering, Kroto Research Institute, Broad Lane, Sheffield S3 7HQ, UK.
| | - M J Harbottle
- Institute of Environment and Sustainability, Cardiff University, School of Engineering, Queen's Buildings, The Parade, Cardiff CF24 3AA, UK
| | - J W N Smith
- Shell Global Solutions, Lange Kleiweg 40, 2288 GK Rijswijk, The Netherlands; Groundwater Protection and Restoration Group, University of Sheffield, Department of Civil & Structural Engineering, Kroto Research Institute, Broad Lane, Sheffield S3 7HQ, UK
| | - S F Thornton
- Groundwater Protection and Restoration Group, University of Sheffield, Department of Civil & Structural Engineering, Kroto Research Institute, Broad Lane, Sheffield S3 7HQ, UK
| |
Collapse
|
24
|
Effect of a direct electric current on the activity of a hydrocarbon-degrading microorganism culture used as the flushing liquid in soil remediation processes. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2014.01.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Gomes HI, Dias-Ferreira C, Ribeiro AB. Electrokinetic remediation of organochlorines in soil: enhancement techniques and integration with other remediation technologies. CHEMOSPHERE 2012; 87:1077-1090. [PMID: 22386462 DOI: 10.1016/j.chemosphere.2012.02.037] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 02/07/2012] [Accepted: 02/10/2012] [Indexed: 05/31/2023]
Abstract
Electrokinetic remediation has been increasingly used in soils and other matrices for numerous contaminants such as inorganic, organic, radionuclides, explosives and their mixtures. Several strategies were tested to improve this technology effectiveness, namely techniques to solubilize contaminants, control soil pH and also couple electrokinetics with other remediation technologies. This review focus in the experimental work carried out in organochlorines soil electroremediation, aiming to systemize useful information to researchers in this field. It is not possible to clearly state what technique is the best, since experimental approaches and targeted contaminants are different. Further research is needed in the application of some of the reviewed techniques. Also a number of technical and environmental issues will require evaluation for full-scale application. Removal efficiencies reported in real contaminated soils are much lower than the ones obtained with spiked kaolinite, showing the influence of other factors like aging of the contamination and adsorption to soil particles, resulting in important challenges when transferring technologies into the field.
Collapse
Affiliation(s)
- Helena I Gomes
- CENSE, Departamento de Ciências e Engenharia do Ambiente, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | | | | |
Collapse
|
26
|
Yeung AT, Gu YY. A review on techniques to enhance electrochemical remediation of contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2011; 195:11-29. [PMID: 21889259 DOI: 10.1016/j.jhazmat.2011.08.047] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/15/2011] [Accepted: 08/15/2011] [Indexed: 05/27/2023]
Abstract
Electrochemical remediation is a promising remediation technology for soils contaminated with inorganic, organic, and mixed contaminants. A direct-current electric field is imposed on the contaminated soil to extract the contaminants by the combined mechanisms of electroosmosis, electromigration, and/or electrophoresis. The technology is particularly effective in fine-grained soils of low hydraulic conductivity and large specific surface area. However, the effectiveness of the technology may be diminished by sorption of contaminants on soil particle surfaces and various effects induced by the hydrogen ions and hydroxide ions generated at the electrodes. Various enhancement techniques have been developed to tackle these diminishing effects. A comprehensive review of these techniques is given in this paper with a view to providing useful information to researchers and practitioners in this field.
Collapse
Affiliation(s)
- Albert T Yeung
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | | |
Collapse
|
27
|
Gomes MDN, Teixeira CAA, Barbosa GM, Froes MT, Silva MB, da Veiga VF, Soares RMDA, dos Santos ALS, Holandino C. Effects of direct electric current on Herpetomonas samuelpessoai: An ultrastructural study. Bioelectromagnetics 2011; 33:334-45. [DOI: 10.1002/bem.20712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 09/18/2011] [Indexed: 01/28/2023]
|
28
|
Aulenta F, Tocca L, Verdini R, Reale P, Majone M. Dechlorination of trichloroethene in a continuous-flow bioelectrochemical reactor: effect of cathode potential on rate, selectivity, and electron transfer mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:8444-51. [PMID: 21877695 DOI: 10.1021/es202262y] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The exciting discovery that dechlorinating bacteria can use polarized graphite cathodes as direct electron donors in the reductive dechlorination has prompted investigations on the development of novel bioelectrochemical remediation approaches. In this work, we investigated the performance of a bioelectrochemical reactor for the treatment of trichloroethene (TCE). The reactor was continuously operated for about 570 days, at different potentiostatically controlled cathode potentials, ranging from -250 mV to -750 mV vs standard hydrogen electrode. The rate and extent of TCE dechlorination, as well as the competition for the available electrons, were highly dependent on the set cathode potential. When the cathode was controlled at -250 mV, no abiotic hydrogen production occurred and TCE dechlorination (predominantly to cis-DCE and VC), most probably sustained via direct extracellular electron transfer, proceeded at an average rate of 15.5 ± 1.2 μmol e(-)/L d. At this cathode, potential methanogenesis was almost completely suppressed and dechlorination accounted for 94.7 ± 0.1% of the electric current (15.0 ± 0.8 μA) flowing in the system. A higher rate of TCE dechlorination (up to 64 ± 2 μmol e(-)/L d) was achieved at cathode potentials lower than -450 mV, though in the presence of a very active methanogenesis which accounted for over 60% of the electric current. Remarkably, the bioelectrochemical reactor displayed a stable and reproducible performance even without the supply of organic carbon sources with the feed, confirming long-term viability.
Collapse
Affiliation(s)
- Federico Aulenta
- Department of Chemistry, Sapienza University of Rome , P.le Aldo Moro 5, 00185 Rome, Italy.
| | | | | | | | | |
Collapse
|
29
|
Lohner ST, Becker D, Mangold KM, Tiehm A. Sequential reductive and oxidative biodegradation of chloroethenes stimulated in a coupled bioelectro-process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:6491-6497. [PMID: 21678913 DOI: 10.1021/es200801r] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This article for the first time demonstrates successful application of electrochemical processes to stimulate sequential reductive/oxidative microbial degradation of perchloroethene (PCE) in mineral medium and in contaminated groundwater. In a flow-through column system, hydrogen generation at the cathode supported reductive dechlorination of PCE to cis-dichloroethene (cDCE), vinyl chloride (VC), and ethene (ETH). Electrolytically generated oxygen at the anode allowed subsequent oxidative degradation of the lower chlorinated metabolites. Aerobic cometabolic degradation of cDCE proved to be the bottleneck for complete metabolite elimination. Total removal of chloroethenes was demonstrated for a PCE load of approximately 1.5 μmol/d. In mineral medium, long-term operation with stainless steel electrodes was demonstrated for more than 300 days. In contaminated groundwater, corrosion of the stainless steel anode occurred, whereas DSA (dimensionally stable anodes) proved to be stable. Precipitation of calcareous deposits was observed at the cathode, resulting in a higher voltage demand and reduced dechlorination activity. With DSA and groundwater from a contaminated site, complete degradation of chloroethenes in groundwater was obtained for two months thus demonstrating the feasibility of the sequential bioelectro-approach for field application.
Collapse
Affiliation(s)
- Svenja T Lohner
- Water Technology Center, Department of Environmental Biotechnology, Karlsruhe, Germany
| | | | | | | |
Collapse
|
30
|
Tiehm A, Schmidt KR. Sequential anaerobic/aerobic biodegradation of chloroethenes—aspects of field application. Curr Opin Biotechnol 2011; 22:415-21. [DOI: 10.1016/j.copbio.2011.02.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
|
31
|
Fabrication and characterization of molybdenum(VI)complex-TiO2 nanoparticles modified electrode for the electrocatalytic determination of L-cysteine. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2011. [DOI: 10.2298/jsc100504042m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A novel voltammetric sensor for the determination of L-cysteine (L-Cys) was
fabricated based on a TiO2 nanoparticles/bis
[bis(salicylidene-1,4-phenylenediamine)-molybdenum(VI)] carbon paste
electrode. The electrochemical behavior of the sensor was investigated in
detail by cyclic voltammetry. The apparent electron transfer rate constant
(ks) and charge transfer coefficient (?) of the TiO2 nanoparticles /
molybdenum(VI) complex/CPE were also determined by cyclic voltammetry and
found to be about 4.53 s?1 and 0.54, respectively. The sensor displayed good
electrocatalytic activity towards the oxidation of LCys. The peak potential
for the oxidation of L-Cys was lowered by at least 130 mV compared with that
obtained at an unmodified CPE. Under optimal conditions, the linear range
spans L-Cys concentrations from 1.5?10?6 M to 1.2?10?3 M and the detection
limit was 0.70 ? 0.01 ?M at a signal-to-noise ratio of 2. In addition, the
sensor showed good stability and reproducibility.
Collapse
|
32
|
Wick LY, Buchholz F, Fetzer I, Kleinsteuber S, Härtig C, Shi L, Miltner A, Harms H, Pucci GN. Responses of soil microbial communities to weak electric fields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:4886-4893. [PMID: 20663541 DOI: 10.1016/j.scitotenv.2010.06.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 06/22/2010] [Accepted: 06/22/2010] [Indexed: 05/29/2023]
Abstract
Electrokinetically stimulated bioremediation of soils (electro-bioremediation) requires that the application of weak electric fields has no negative effect on the contaminant degrading microbial communities. This study evaluated the hypothesis that weak direct electric current (DC) fields per se do not negatively influence the physiology and composition of soil microbial communities given that secondary electrokinetic phenomena such as soil pH changes and temperatures are minimized. Mildly buffered, water-saturated laboratory mesocosms with agricultural soil were subjected for 34 days to a constant electric field (X=1.4 V cm(-1); J approximately 1.0 mA cm(-2)) and the spatiotemporal changes of soil microbial communities assessed by fingerprints of phospholipids fatty acids (PLFA) and terminal restriction fragment length polymorphisms (T-RFLP) of bacterial 16S rRNA genes. DC-induced electrolysis of the pore water led to pH changes (<1.5 pH units) in the immediate vicinity of the electrodes and concomitant distinct soil microbial community changes. By contrast, DC-treated bulk soil distant to the electrodes showed no pH changes and developed similar PLFA- and T-RFLP-fingerprints as control soil in the absence of DC. Our data suggest that the presence of an electric field, if suitably applied, will not influence the composition and physiology of soil microbial communities and hence not affect their potential to biodegrade contaminants.
Collapse
Affiliation(s)
- Lukas Y Wick
- UFZ, Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kim SH, Han HY, Lee YJ, Kim CW, Yang JW. Effect of electrokinetic remediation on indigenous microbial activity and community within diesel contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:3162-3168. [PMID: 20452646 DOI: 10.1016/j.scitotenv.2010.03.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/17/2010] [Accepted: 03/23/2010] [Indexed: 05/29/2023]
Abstract
Electrokinetic remediation has been successfully used to remove organic contaminants and heavy metals within soil. The electrokinetic process changes basic soil properties, but little is known about the impact of this remediation technology on indigenous soil microbial activities. This study reports on the effects of electrokinetic remediation on indigenous microbial activity and community within diesel contaminated soil. The main removal mechanism of diesel was electroosmosis and most of the bacteria were transported by electroosmosis. After 25 days of electrokinetic remediation (0.63 mA cm(-2)), soil pH developed from pH 3.5 near the anode to pH 10.8 near the cathode. The soil pH change by electrokinetics reduced microbial cell number and microbial diversity. Especially the number of culturable bacteria decreased significantly and only Bacillus and strains in Bacillales were found as culturable bacteria. The use of EDTA as an electrolyte seemed to have detrimental effects on the soil microbial activity, particularly in the soil near the cathode. On the other hand, the soil dehydrogenase activity was enhanced close to the anode and the analysis of microbial community structure showed the increase of several microbial populations after electrokinetics. It is thought that the main causes of changes in microbial activities were soil pH and direct electric current. The results described here suggest that the application of electrokinetics can be a promising soil remediation technology if soil parameters, electric current, and electrolyte are suitably controlled based on the understanding of interaction between electrokinetics, contaminants, and indigenous microbial community.
Collapse
Affiliation(s)
- Seong-Hye Kim
- Nano Environmental Engineering Lab, Dept. of Chemical & Biomolecular Engineering, KAIST, 335 Gwahangno, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | | | | | | | |
Collapse
|
34
|
Bio-electro-remediation: electrokinetic transport of nitrate in a flow-through system for enhanced toluene biodegradation. J APPL ELECTROCHEM 2010. [DOI: 10.1007/s10800-010-0101-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Lohner ST, Tiehm A. Application of electrolysis to stimulate microbial reductive PCE dechlorination and oxidative VC biodegradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:7098-7104. [PMID: 19806748 DOI: 10.1021/es900835d] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A novel approach was applied to stimulate biodegradation of chloroethenes bya coupled bioelectro-process. In a flow-through column system, microbial dechlorination of tetrachloroethene to cis-dichloroethene, vinyl chloride, and ethene was stimulated by hydrogen produced by water electrolysis. Dechlorinating bacteria (Dehalococcoides spp. and Desulfitobacterium spp.) and also methanogens and homoacetogens were detected in the anaerobic column. Simultaneously, oxidative biodegradation of lower chlorinated metabolites (vinyl chloride) was stimulated by electrolytic oxygen formation in the corresponding aerobic column. The process was stable for more than 100 days and an average removal of approximately 23 micromol/d PCE and 72 micromo/d vinyl chloride was obtained with a current density of 0.05 mA/cm2. Abiotic electrochemical degradation of the contaminants was not observed. Microbial dechlorination correlated with the current densities in the applied range of 0.01-0.05 mA/cm2. The results are promising for environmental applications, since with electrolysis hydrogen and oxygen can be supplied continuously to chloroethene degrading microorganisms, and the supply rates can be easily controlled by adjusting the electric current.
Collapse
Affiliation(s)
- Svenja T Lohner
- Water Technology Center, Department of Environmental Biotechnology, Karlsruhe, Germany
| | | |
Collapse
|