1
|
Ji Z, Zhai B, Wang N, He Y, Wang H, Fei G, Wang C, Zhang G, Shao L. Transferring and Retaining of Different Polyaniline Nanofeatures via Electrophoretic Deposition for Enhanced Sensing Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300182. [PMID: 36828796 DOI: 10.1002/smll.202300182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/05/2023] [Indexed: 05/25/2023]
Abstract
Nanofeatured polyaniline (PANI) electrodes have demonstrated impressive sensing performance due to the enhanced electrolyte diffusion and ion transport. However, the retaining of these nanostructures on substrates via electrophoretic deposition (EPD) faces an insurmountable challenge from the involved dedoping process. Here, camphorsulfonic acid is utilized with high steric effects to dope PANI (PANI-CSA) that can be directly used EPD without involving a dedoping process. Five different nanofeatures (sea cucumber-like, nanofiber, amorphous, nanotube, and nanorod) are synthesized, and they have been all successfully transferred onto indium tin oxide substrate in a formic acid/acetonitrile system, namely a morphology memory effect. The mechanism of retaining these nanofeatures is revealed, which is realized via the processes of dissolution of PANI-CSA, codoping and solvation, and reassembly of basic units into the original nanofeature. The enhanced protonation level by the codoping of formic acid and solvation of acetonitrile plays the key role in retaining these nanofeatures. This method is also applicable to transfer PANI/gold nanorod composites (PANI-CSA/AuNRs). The PANI-CSA/AuNRs electrode as an ascorbic acid sensor has shown an excellent sensing performance with a sensitivity up to 872.7 µA mm-1 cm-2 and a detection limit of as low as 0.18 × 10-6 m.
Collapse
Affiliation(s)
- Zhanyou Ji
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Bingyan Zhai
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Nana Wang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yinkun He
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Huidi Wang
- College of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Guiqiang Fei
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Caiyun Wang
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, Innovation Campus, University of Wollongong, North Wollongong, NSW 2500, Australia
| | - Guohong Zhang
- Department of Machine Engineering, Faculty of Systems Science and Technology, Akita Prefectural University, Yurihonjo city, Akita, 015-0055, Japan
| | - Liang Shao
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| |
Collapse
|
2
|
Yin H, Tan C, Siddiqui S, Arumugam PU. Electrochemical Redox Cycling Behavior of Gold Nanoring Electrodes Microfabricated on a Silicon Micropillar. MICROMACHINES 2023; 14:726. [PMID: 37420959 DOI: 10.3390/mi14040726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/10/2023] [Accepted: 03/22/2023] [Indexed: 07/09/2023]
Abstract
We report the microfabrication and characterization of concentric gold nanoring electrodes (Au NREs), which were fabricated by patterning two gold nanoelectrodes on the same silicon (Si) micropillar tip. Au NREs of 165 ± 10 nm in width were micropatterned on a 6.5 ± 0.2 µm diameter 80 ± 0.5 µm height Si micropillar with an intervening ~ 100 nm thick hafnium oxide insulating layer between the two nanoelectrodes. Excellent cylindricality of the micropillar with vertical sidewalls as well as a completely intact layer of a concentric Au NRE including the entire micropillar perimeter has been achieved as observed via scanning electron microscopy and energy dispersive spectroscopy data. The electrochemical behavior of the Au NREs was characterized by steady-state cyclic voltammetry and electrochemical impedance spectroscopy. The applicability of Au NREs to electrochemical sensing was demonstrated by redox cycling with the ferro/ferricyanide redox couple. The redox cycling amplified the currents by 1.63-fold with a collection efficiency of > 90% on a single collection cycle. The proposed micro-nanofabrication approach with further optimization studies shows great promise for the creation and expansion of concentric 3D NRE arrays with controllable width and nanometer spacing for electroanalytical research and applications such as single-cell analysis and advanced biological and neurochemical sensing.
Collapse
Affiliation(s)
- Haocheng Yin
- School of Microelectronics, Xidian University, Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices of China, Xi'an 710071, China
| | - Chao Tan
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA 71272, USA
| | - Shabnam Siddiqui
- Department of Chemistry and Physics, Louisiana State University Shreveport, Shreveport, LA 71101, USA
| | - Prabhu U Arumugam
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA 71272, USA
| |
Collapse
|
3
|
Wu WT, Chen X, Jiao YT, Fan WT, Liu YL, Huang WH. Versatile Construction of Biomimetic Nanosensors for Electrochemical Monitoring of Intracellular Glutathione. Angew Chem Int Ed Engl 2022; 61:e202115820. [PMID: 35134265 DOI: 10.1002/anie.202115820] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Indexed: 11/08/2022]
Abstract
The current strategies for nanoelectrode functionalization usually involve sophisticated modification procedures, uncontrollable and unstable modifier assembly, as well as a limited variety of modifiers. To address this issue, we propose a versatile strategy for large-scale synthesis of biomimetic molecular catalysts (BMCs) modified nanowires (NWs) to construct functionalized electrochemical nanosensors. This design protocol employs an easy, controllable and stable assembly of diverse BMCs-poly(3,4-ethylenedioxythiophene) (PEDOT) composites on conductive NWs. The intrinsic catalytic activity of BMCs combined with outstanding electron transfer ability of conductive polymer enables the nanosensors to sensitively and selectively detect various biomolecules. Further application of sulfonated cobalt phthalocyanine functionalized nanosensors achieves real-time electrochemical monitoring of intracellular glutathione levels and its redox homeostasis in single living cells for the first time.
Collapse
Affiliation(s)
- Wen-Tao Wu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xi Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu-Ting Jiao
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wen-Ting Fan
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan-Ling Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei-Hua Huang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
4
|
Wu W, Chen X, Jiao Y, Fan W, Liu Y, Huang W. Versatile Construction of Biomimetic Nanosensors for Electrochemical Monitoring of Intracellular Glutathione. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wen‐Tao Wu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Xi Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Yu‐Ting Jiao
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Wen‐Ting Fan
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Yan‐Ling Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Wei‐Hua Huang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| |
Collapse
|
5
|
Koklu A, Ohayon D, Wustoni S, Druet V, Saleh A, Inal S. Organic Bioelectronic Devices for Metabolite Sensing. Chem Rev 2021; 122:4581-4635. [PMID: 34610244 DOI: 10.1021/acs.chemrev.1c00395] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrochemical detection of metabolites is essential for early diagnosis and continuous monitoring of a variety of health conditions. This review focuses on organic electronic material-based metabolite sensors and highlights their potential to tackle critical challenges associated with metabolite detection. We provide an overview of the distinct classes of organic electronic materials and biorecognition units used in metabolite sensors, explain the different detection strategies developed to date, and identify the advantages and drawbacks of each technology. We then benchmark state-of-the-art organic electronic metabolite sensors by categorizing them based on their application area (in vitro, body-interfaced, in vivo, and cell-interfaced). Finally, we share our perspective on using organic bioelectronic materials for metabolite sensing and address the current challenges for the devices and progress to come.
Collapse
Affiliation(s)
- Anil Koklu
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - David Ohayon
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Shofarul Wustoni
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Victor Druet
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Abdulelah Saleh
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
6
|
Xue C, Li S, Tang Y, An C, Liu S, Teng Y. A Sulfhydryl Azobenzene-Modified Polyaniline/Silver Electrode and Its Photoswitching Electrochemical Performance. ACS OMEGA 2021; 6:11519-11528. [PMID: 34056307 PMCID: PMC8154009 DOI: 10.1021/acsomega.1c00645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/13/2021] [Indexed: 05/24/2023]
Abstract
In this work, a sulfhydryl-functionalized azobenzene derivative (Azo) was synthesized and polyaniline/silver was modified (PANI/Ag) to make a nanocomposite (PANI/Ag/Azo). A series of characterization techniques like1HNMR, UV-vis absorption spectra, Raman spectra, FT-IR, XRD, SEM, TEM, and TGA was employed to study Azo, PANI/Ag, and PANI/Ag/Azo. Electrochemical properties were measured by cyclic voltammetry (CV) and galvanostatic charging/discharging (GCD). CV showed that UV and blue light had hardly any effect on PANI/Ag. However, with the prolonged exposure time of UV light, the maximum CV current density of PANI/Ag/Azo rose from 1.24 to 2.72 A g-1. Then, after 20 min of blue light irradiation, the maximum current density gradually recovered (from 2.72 to 1.26 A g-1). The GCD also obtained similar results. After formula calculation, the specific capacitance of PANI/Ag/Azo also presented a reversible trend under the alternating irradiation of UV light and blue light. All the results show that PANI/Ag/Azo has a good photoelectric response, and its electrochemical performance can be reversibly adjusted by light. This result provides a new design idea for developing electrode materials with real-time electrochemical properties.
Collapse
Affiliation(s)
- Changguo Xue
- School
of Material Science and Engineering, Anhui
University of Science and Technology, Huainan, Anhui 232001, China
| | - Shiqin Li
- School
of Material Science and Engineering, Anhui
University of Science and Technology, Huainan, Anhui 232001, China
| | - Yu Tang
- School
of Material Science and Engineering, Anhui
University of Science and Technology, Huainan, Anhui 232001, China
| | - Cunbin An
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory of
Polymer Physics and Chemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Song Liu
- School
of Material Science and Engineering, Anhui
University of Science and Technology, Huainan, Anhui 232001, China
| | - Yanhua Teng
- School
of Material Science and Engineering, Anhui
University of Science and Technology, Huainan, Anhui 232001, China
| |
Collapse
|
7
|
Mahalakshmi S, Sridevi V. In Situ Electrodeposited Gold Nanoparticles on Polyaniline-Modified Electrode Surface for the Detection of Dopamine in Presence of Ascorbic Acid and Uric Acid. Electrocatalysis (N Y) 2021. [DOI: 10.1007/s12678-021-00665-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Cao M, Zheng L, Gu Y, Wang Y, Zhang H, Xu X. Electrostatic self-assembly to fabricate ZnO nanoparticles/reduced graphene oxide composites for hypersensitivity detection of dopamine. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Fredj Z, Ben Ali M, Abbas MN, Dempsey E. Simultaneous determination of ascorbic acid, uric acid and dopamine using silver nanoparticles and copper monoamino-phthalocyanine functionalised acrylate polymer. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3883-3891. [PMID: 32716418 DOI: 10.1039/d0ay01183e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A silver nanoparticle and copper monoamino-phthalocyanine-acrylate (Cu-MAPA) polymer modified glassy carbon electrode was developed for the simultaneous detection of dopamine (DOP), ascorbic acid (AA) and uric acid (UA) using voltammetric techniques. Silver nanoparticles (AgNPs) were synthesised according to the citrate reduction method. Following synthesis and characterisation the copper phthalocyanine polymer was co-deposited with AgNPs realising a surface with enhanced electron transfer which lowered the overpotential required for analyte electro-oxidation. Differential pulse voltammetry (DPV) was employed for the simultaneous determination of dopamine (DOP), ascorbic acid (AA) and uric acid (UA) at AgNP/Cu-MAPA modified surfaces at <μM ranges. The peak potential separations for DOP-AA and DOP-UA were ca. 181 mV and 168 mV respectively. The chemical sensor was also capable of individual quantitation of DOP, UA and AA with detection limits of 0.7, 2.5 and 5.0 nM respectively. Overall, the approach realised a simple and effective electrode modifier for the selective discrimination and quantitation of DOP in the presence of physiological levels of AA and UA.
Collapse
Affiliation(s)
- Zina Fredj
- University of Sousse, Higher Institute of Applied Sciences and Technology of Sousse, GREENS-ISSAT, 4003 Ibn Khaldoun Sousse, Tunisia
| | | | | | | |
Collapse
|
10
|
Mariani F, Quast T, Andronescu C, Gualandi I, Fraboni B, Tonelli D, Scavetta E, Schuhmann W. Needle-type organic electrochemical transistor for spatially resolved detection of dopamine. Mikrochim Acta 2020; 187:378. [PMID: 32518976 PMCID: PMC7283208 DOI: 10.1007/s00604-020-04352-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/22/2020] [Indexed: 01/07/2023]
Abstract
In this work, the advantages of carbon nanoelectrodes (CNEs) and orgonic electrochemical transistors (OECTs) were merged to realise nanometre-sized, spearhead OECTs based on single- and double-barrel CNEs functionalised with a conducting polymer film. The needle-type OECT shows a high aspect ratio that allows its precise positioning by means of a macroscopic handle and its size is compatible with single-cell analysis. The device was characterised with respect to its electrolyte-gated behaviour and was employed as electrochemical sensor for the proof-of-concept detection of dopamine (DA) over a wide concentration range (10-12-10-6 M). Upon application of fixed drain and gate voltages (Vd = - 0.3 V, Vg = - 0.9 V, respectively), the nano-sized needle-type OECT sensor exhibited a linear response in the low pM range and from 0.002 to 7 μM DA, with a detection limit of 1 × 10-12 M. Graphical abstract.
Collapse
Affiliation(s)
- Federica Mariani
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Thomas Quast
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Corina Andronescu
- Chemical Technology III, Faculty of Chemistry and Center for Nanointegration (CENIDE), University Duisburg Essen, Carl-Benz-Str. 201, D-47057, Duisburg, Germany
| | - Isacco Gualandi
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Beatrice Fraboni
- Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy
| | - Domenica Tonelli
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Erika Scavetta
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy.
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
| |
Collapse
|
11
|
Gopi PK, Muthukutty B, Chen SM, Chen TW, Liu X, Alothman AA, Ali MA, Wabaidur SM. Platelet-structured strontium titanate perovskite decorated on graphene oxide as a nanocatalyst for electrochemical determination of neurotransmitter dopamine. NEW J CHEM 2020. [DOI: 10.1039/d0nj03564e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this work, we synthesized strontium titanate (SrTiO3) by a simple co-precipitation technique and decorated it with graphene oxide (SrTiO3/GO) for the effective determination of neurotransmitter agent dopamine (DA).
Collapse
Affiliation(s)
- Praveen Kumar Gopi
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Balamurugan Muthukutty
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Tse-Wei Chen
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Xiaoheng Liu
- Key Laboratory of Education Ministry for Soft Chemistry and Functional Materials
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Asma A. Alothman
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | | |
Collapse
|
12
|
Inagaki CS, Oliveira MM, Bergamini MF, Marcolino-Junior LH, Zarbin AJ. Facile synthesis and dopamine sensing application of three component nanocomposite thin films based on polythiophene, gold nanoparticles and carbon nanotubes. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.066] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Cao Q, Puthongkham P, Venton BJ. Review: New insights into optimizing chemical and 3D surface structures of carbon electrodes for neurotransmitter detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2019; 11:247-261. [PMID: 30740148 PMCID: PMC6366673 DOI: 10.1039/c8ay02472c] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The carbon-fiber microelectrode has been used for decades as a neurotransmitter sensor. Recently, new strategies have been developed for making carbon electrodes, including using carbon nanomaterials or pyrolyzing photoresist etched by nanolithography or 3D printing. This review summarizes how chemical and 3D surface structures of new carbon electrodes are optimized for neurotransmitter detection. There are effects of the chemical structure that are advantageous and nanomaterials are used ranging from carbon nanotube (CNT) to graphene to nanodiamond. Functionalization of these materials promotes surface oxide groups that adsorb dopamine and dopants introduce defect sites good for electron transfer. Polymer coatings such as poly(3,4-ethylenedioxythiophene) (PEDOT) or Nafion also enhance the selectivity, particularly for dopamine over ascorbic acid. Changing the 3D surface structure of an electrode increases current by adding more surface area. If the surface structure has roughness or pores on the micron scale, the electrode also acts as a thin layer cell, momentarily trapping the analyte for redox cycling. Vertically-aligned CNTs as well as lithographically-made or 3D printed pillar arrays act as thin layer cells, producing more reversible cyclic voltammograms. A better understanding of how chemical and surface structure affects electrochemistry enables rational design of electrodes. New carbon electrodes are being tested in vivo and strategies to reduce biofouling are being developed. Future studies should test the robustness for long term implantation, explore electrochemical properties of neurotransmitters beyond dopamine, and combine optimized chemical and physical structures for real-time monitoring of neurotransmitters.
Collapse
Affiliation(s)
| | | | - B. Jill Venton
- Dept. of Chemistry, University of Virginia, Charlottesville, VA 22901
| |
Collapse
|
14
|
Annalakshmi M, Balasubramanian P, Chen SM, Chen TW, Lin PH. Facile, low-temperature synthesis of tungsten carbide (WC) flakes for the sensitive and selective electrocatalytic detection of dopamine in biological samples. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00447e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal carbides have shown potential for use in electrochemical applications due to their excellent electronic conductivity, stability and electrocatalysis.
Collapse
Affiliation(s)
- Muthaiah Annalakshmi
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Paramasivam Balasubramanian
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
- Research and Development Center for Smart Textile Technology
| | - Pei-Hung Lin
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| |
Collapse
|
15
|
A voltammetric biosensor based on poly(o-methoxyaniline)-gold nanocomposite modified electrode for the simultaneous determination of dopamine and folic acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:512-523. [PMID: 30033283 DOI: 10.1016/j.msec.2018.05.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 04/25/2018] [Accepted: 05/23/2018] [Indexed: 11/24/2022]
Abstract
Dopamine (DA) and Folic acid (FA) are co-existing compounds in biological fluids that plays a vital role in central nervous system and human metabolism. DA is an important neurotransmitter in the brain's neural circuits and its diminution often results in Parkinson's disease. Folate is another form of folic acid, which is known as one of the B vitamins. It is utilized as an additive by women during pregnancy in order to prevent the neural tube defects. The present study reports on the fabrication of electrochemical sensor for the simultaneous determination of DA and FA using poly(o-methoxyaniline)-gold (POMA-Au) nanocomposite. The POMA-Au nanocomposite was prepared via insitu chemical oxidative polymerization method and characterized using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). The suitability of POMA-Au nanocomposite as a modifier for the electrocatalytic detection of DA and FA in aqueous solution was investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry (CA) techniques. The fabricated POMA-Au/GCE sensor exhibited sharp and intense peaks towards the electro-oxidation of DA and FA as compared to bare electrode. The sensor exhibited the promising electron mediating behavior with well separated oxidation peaks with a potential difference of about 350.0 mV. The linear calibration plots of DA and FA were obtained from 10.0 to 300.0 μM and 0.5 to 900.0 μM with the detection limits of 0.062 μM and 0.090 μM, respectively. The reliability of this sensor was verified to be precise as well as sensitive for the determination of DA and FA in pharmaceutical samples and human urine samples.
Collapse
|
16
|
Ding S, Liu Y, Ma C, Zhang J, Zhu A, Shi G. Development of Glass-sealed Gold Nanoelectrodes for in vivo
Detection of Dopamine in Rat Brain. ELECTROANAL 2018. [DOI: 10.1002/elan.201700522] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shushu Ding
- School of Chemistry and Molecular Engineering; East China Normal University; 500 Dongchuan Road Shanghai 200241 People's Republic of China
| | - Yingzi Liu
- Institute of Brain Functional Genomics; East China Normal University; 3663 Zhongshan Road North Shanghai 200062 People's Republic of China
| | - Chunrong Ma
- School of Chemistry and Molecular Engineering; East China Normal University; 500 Dongchuan Road Shanghai 200241 People's Republic of China
| | - Junqi Zhang
- School of Chemistry and Molecular Engineering; East China Normal University; 500 Dongchuan Road Shanghai 200241 People's Republic of China
| | - Anwei Zhu
- School of Chemistry and Molecular Engineering; East China Normal University; 500 Dongchuan Road Shanghai 200241 People's Republic of China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering; East China Normal University; 500 Dongchuan Road Shanghai 200241 People's Republic of China
| |
Collapse
|
17
|
Han J, Wang M, Hu Y, Zhou C, Guo R. Conducting polymer-noble metal nanoparticle hybrids: Synthesis mechanism application. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2017.04.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Synthesis of monodispersed PEDOT/Au hollow nanospheres and its application for electrochemical determination of dopamine and uric acid. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.01.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
19
|
New self-assembled layers composed with gold nanoparticles, cysteamine and dihydrolipoic acid deposited on bare gold template for highly sensitive and selective simultaneous sensing of dopamine in the presence of interfering ascorbic and uric acids. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3416-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Daneshinejad H, Chamjangali MA, Goudarzi N, Roudbari A. Application of a thin film of poly(solochrome black T) as a redox mediator for the electro-catalytic simultaneous determination of dopamine and acetaminophen in the pharmaceutical and biological samples. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:532-40. [DOI: 10.1016/j.msec.2015.08.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/09/2015] [Accepted: 08/22/2015] [Indexed: 11/15/2022]
|
21
|
Jiang G, Jiang T, Zhou H, Yao J, Kong X. Preparation of N-doped carbon quantum dots for highly sensitive detection of dopamine by an electrochemical method. RSC Adv 2015. [DOI: 10.1039/c4ra16773b] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The glass carbon electrode modified by N-doped carbon quantum dots (NCQD) (NCQD/GCE) has been used to detect dopamine (DA) with broad linear range and low detection limit.
Collapse
Affiliation(s)
- Guohua Jiang
- Department of Materials Engineering
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang)
| | - Tengteng Jiang
- Department of Materials Engineering
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
| | - Huijie Zhou
- Qixin Honours School
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
| | - Juming Yao
- Department of Materials Engineering
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang)
| | - Xiangdong Kong
- School of Life Science
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
| |
Collapse
|
22
|
Liu Y, Yao Q, Zhang X, Li M, Zhu A, Shi G. Development of gold nanoparticle-sheathed glass capillary nanoelectrodes for sensitive detection of cerebral dopamine. Biosens Bioelectron 2015; 63:262-268. [DOI: 10.1016/j.bios.2014.07.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 11/16/2022]
|
23
|
Chiniforoshan H, Tabrizi L, Pourrahim N. A new Ag-nanoparticle with 4-nitro phenylcyanamide ligand: synthesis characterization and application to the detection of dibucaine, naphazoline, dopamine, and acetaminophen. J APPL ELECTROCHEM 2014. [DOI: 10.1007/s10800-014-0758-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Łuczak T. Gold and Nanogold Electrodes Modified with Gold Nanoparticles andmeso-2,3-Dimercaptosuccinic Acid for the Simultaneous, Sensitive and Selective Determination of Dopamine and Its Biogenic Interferents. ELECTROANAL 2014. [DOI: 10.1002/elan.201400313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Huang Y, Miao YE, Ji S, Tjiu WW, Liu T. Electrospun carbon nanofibers decorated with Ag-Pt bimetallic nanoparticles for selective detection of dopamine. ACS APPLIED MATERIALS & INTERFACES 2014; 6:12449-12456. [PMID: 25029608 DOI: 10.1021/am502344p] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Electrospun nanoporous carbon nanofibers (pCNFs) decorated with Ag-Pt bimetallic nanoparticles have been successfully synthesized by combining template carbonization and seed-growth reduction approach. Porous-structured polyacrylonitrile (PAN) nanofibers (pPAN) were first prepared by electrospinning PAN/polyvinylpyrrolidone (PVP) blend solution, followed by subsequent water extraction and heat treatment to obtain pCNFs. Ag-Pt/pCNFs were then obtained by using pCNFs as support for bimetallic nanoparticle loading. Thus, the obtained Ag-Pt/pCNFs were used to modify glassy carbon electrode (GCE) for selective detection of dopamine (DA) in the presence of uric acid (UA) and ascorbic acid (AA). This novel sensor exhibits fast amperometric response and high sensitivity toward DA with a wide linear concentration range of 10-500 μM and a low detection limit of 0.11 μM (S/N = 3), wherein the interference of UA and AA can be eliminated effectively.
Collapse
Affiliation(s)
- Yunpeng Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, P. R. China
| | | | | | | | | |
Collapse
|
26
|
Ezhil Vilian A, Rajkumar M, Chen SM. In situ electrochemical synthesis of highly loaded zirconium nanoparticles decorated reduced graphene oxide for the selective determination of dopamine and paracetamol in presence of ascorbic acid. Colloids Surf B Biointerfaces 2014; 115:295-301. [DOI: 10.1016/j.colsurfb.2013.12.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/19/2013] [Accepted: 12/08/2013] [Indexed: 10/25/2022]
|
27
|
Wang W, Xu G, Cui XT, Sheng G, Luo X. Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide. Biosens Bioelectron 2014; 58:153-6. [PMID: 24632460 DOI: 10.1016/j.bios.2014.02.055] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/08/2014] [Accepted: 02/21/2014] [Indexed: 11/28/2022]
Abstract
Significantly enhanced catalytic activity of a nanocomposite composed of conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) doped with graphene oxide (GO) was achieved through a simple electrochemical reduction process. The nanocomposite (PEDOT/GO) was electrodeposited on an electrode and followed by electrochemical reduction, and the obtained reduced nanocomposite (PEDOT/RGO) modified electrode exhibited lowered electrochemical impedance and excellent electrocatalytic activity towards the oxidation of dopamine. Based on the excellent catalytic property of PEDOT/RGO, an electrochemical sensor capable of sensitive and selective detection of DA was developed. The fabricated sensor can detect DA in a wide linear range from 0.1 to 175μM, with a detection limit of 39nM, and it is free from common interferences such as uric acid and ascorbic acid.
Collapse
Affiliation(s)
- Wenting Wang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guiyun Xu
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Ge Sheng
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiliang Luo
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
28
|
Synthesis of polyaniline/Au composite nanotubes and their high performance in the detection of NADH. J Solid State Electrochem 2014. [DOI: 10.1007/s10008-014-2407-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Huang Y, Cheng C, Tian X, Zheng B, Li Y, Yuan H, Xiao D, Choi MM. Low-potential amperometric detection of dopamine based on MnO2 nanowires/chitosan modified gold electrode. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.11.071] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Gan YX. Structural assessment of nanocomposites. Micron 2012; 43:782-817. [DOI: 10.1016/j.micron.2012.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 02/08/2012] [Accepted: 02/08/2012] [Indexed: 10/28/2022]
|
31
|
Zheng J, Ma X, He X, Gao M, Li G. Praparation, characterizations, and its potential applications of PANi/ graphene oxide nanocomposite. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.proeng.2011.12.611] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Łuczak T, Bełtowska-Brzezinska M. Gold electrodes modified with gold nanoparticles and thio compounds for electrochemical sensing of dopamine alone and in presence of potential interferents. A comparative study. Mikrochim Acta 2011. [DOI: 10.1007/s00604-011-0614-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Jena BK, Percival SJ, Zhang B. Au Disk Nanoelectrode by Electrochemical Deposition in a Nanopore. Anal Chem 2010; 82:6737-43. [DOI: 10.1021/ac101261m] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Bikash Kumar Jena
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700
| | - Stephen J. Percival
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700
| | - Bo Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700
| |
Collapse
|
34
|
Komathi S, Gopalan AI, Lee KP. Nanomolar detection ofdopamine at multi-walled carbon nanotube grafted silica network/gold nanoparticle functionalised nanocomposite electrodes. Analyst 2010; 135:397-404. [DOI: 10.1039/b918335c] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|