1
|
Sun W, Tang L, Ge W, Fan Y, Sheng X, Dong L, Zhang W, Jiang H, Li C. Anionic Surfactant-Modulated Electrode-Electrolyte Interface Promotes H 2O 2 Electrosynthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405474. [PMID: 39049687 PMCID: PMC11423143 DOI: 10.1002/advs.202405474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/01/2024] [Indexed: 07/27/2024]
Abstract
Conventional strategies for highly selective and active hydrogen peroxide (H2O2) electrosynthesis primarily focus on catalyst design. Electrocatalytic reactions take place at the electrified electrode-electrolyte interface. Well-designed electrolytes, when combined with commercial catalysts, can be directly applied to high-efficiency H2O2 electrosynthesis. However, the role of electrolyte components is equally crucial but is significantly under-researched. In this study, anionic surfactant n-tetradecylphosphonic acid (TDPA) and its analogs are used as electrolyte additives to enhance the selectivity of the two-electron oxygen reduction reaction. Mechanistic studies reveal that TDPA assembled over the electrode-electrolyte interface modulates the electrical double-layer structure, which repels interfacial water and weakens the hydrogen-bond network for proton transfer. Additionally, the hydrophilic phosphonate moiety affects the coordination of water molecules in the solvation shell, thereby directly influencing the proton-coupled kinetics at the interface. The TDPA-containing catalytic system achieves a Faradaic efficiency of H2O2 production close to 100% at a current density of 200 mA cm-2 using commercial carbon black catalysts. This research provides a simple strategy to enhance H2O2 electrosynthesis by adjusting the interfacial microenvironment through electrolyte design.
Collapse
Affiliation(s)
- Wen Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lei Tang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wangxin Ge
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yu Fan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuedi Sheng
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lei Dong
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenfei Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hongliang Jiang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunzhong Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
2
|
Ünsal S, Schmidt TJ, Herranz J. Effect of Aggregate Size and Film Quality on the Electrochemical Properties of Non-noble Metal Catalysts in Rotating Ring Disk Electrode Measurements. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
3
|
Belenov S, Nevelskaya A, Nikulin A, Tolstunov M. The Effect of Pretreatment on a PtCu/C Catalyst's Structure and Functional Characteristics. Int J Mol Sci 2023; 24:ijms24032177. [PMID: 36768501 PMCID: PMC9916518 DOI: 10.3390/ijms24032177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
This research focuses on studying the effects of various pretreatment types on a PtCu/C catalyst synthesized by the co-deposition of metal precursors. The treatment in a 1 M HNO3 solution for 1 h is shown to result in a slight increase in activity in the oxygen electroreduction reaction (both the mass activity and specific activity calculated for the value of the electrochemically active surface area). The sample obtained after the thermal treatment, which is carried out at 350 °C under an argon atmosphere for 1 h, demonstrates 1.7 times higher specific activity than the sample before the treatment. The durability testing results obtained by the stress testing method in a potential range of 0.6-1.4 V during 2000 cycles show that the PtCu/C catalysts after both the acid treatment and the thermal treatment are characterized by higher residual activity than the sample in the "as-prepared" state.
Collapse
Affiliation(s)
- Sergey Belenov
- Chemistry Faculty, Southern Federal University, 7 Zorge St, 344090 Rostov-on-Don, Russia
- Prometheus R&D LLC, 4g/36 Zhmaylova St, 344091 Rostov-on-Don, Russia
- Correspondence:
| | - Alina Nevelskaya
- Chemistry Faculty, Southern Federal University, 7 Zorge St, 344090 Rostov-on-Don, Russia
| | - Alexey Nikulin
- Chemistry Faculty, Southern Federal University, 7 Zorge St, 344090 Rostov-on-Don, Russia
- Federal State Budgetary Institution of Science “Federal Research Centre The Southern Scientific Centre of the Russian Academy of Sciences” (SSC RAS), St. Chehova, 41, 344006 Rostov-on-Don, Russia
| | - Mikhail Tolstunov
- Chemistry Faculty, Southern Federal University, 7 Zorge St, 344090 Rostov-on-Don, Russia
- Federal State Budgetary Institution of Science “Federal Research Centre The Southern Scientific Centre of the Russian Academy of Sciences” (SSC RAS), St. Chehova, 41, 344006 Rostov-on-Don, Russia
| |
Collapse
|
4
|
Experimental probing of the effect of PFSA ionomer poisoning at different Pt loadings in a PEMFC. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Yuan S, Peng J, Zhang Y, Zheng DJ, Bagi S, Wang T, Román-Leshkov Y, Shao-Horn Y. Tuning the Catalytic Activity of Fe-Phthalocyanine-Based Catalysts for the Oxygen Reduction Reaction by Ligand Functionalization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuai Yuan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jiayu Peng
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yirui Zhang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daniel J. Zheng
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sujay Bagi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tao Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yang Shao-Horn
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
He C, Sankarasubramanian S, Ells A, Parrondo J, Gumeci C, Kodali M, Matanovic I, Yadav AK, Bhattacharyya K, Dale N, Atanassov P, Ramani VK. Self-Anchored Platinum-Decorated Antimony-Doped-Tin Oxide as a Durable Oxygen Reduction Electrocatalyst. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Cheng He
- Center for Solar Energy and Energy Storage and Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Shrihari Sankarasubramanian
- Center for Solar Energy and Energy Storage and Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Andrew Ells
- Center for Solar Energy and Energy Storage and Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Javier Parrondo
- Nissan Technical Center North America, Farmington Hills, Michigan 48331, United States
| | - Cenk Gumeci
- Nissan Technical Center North America, Farmington Hills, Michigan 48331, United States
| | - Mounika Kodali
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, Irvine, California 92697, United States
| | - Ivana Matanovic
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ashok Kumar Yadav
- Atomic & Molecular Physics Division, Bhabha Atomic Research Center, Mumbai, Maharashtra 400094, India
| | | | - Nilesh Dale
- Nissan Technical Center North America, Farmington Hills, Michigan 48331, United States
| | - Plamen Atanassov
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, Irvine, California 92697, United States
| | - Vijay K. Ramani
- Center for Solar Energy and Energy Storage and Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
7
|
Fortunato GV, Pizzutilo E, Cardoso ES, Lanza MR, Katsounaros I, Freakley SJ, Mayrhofer KJ, Maia G, Ledendecker M. The oxygen reduction reaction on palladium with low metal loadings: The effects of chlorides on the stability and activity towards hydrogen peroxide. J Catal 2020. [DOI: 10.1016/j.jcat.2020.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
He C, Sankarasubramanian S, Matanovic I, Atanassov P, Ramani V. Understanding the Oxygen Reduction Reaction Activity and Oxidative Stability of Pt Supported on Nb-Doped TiO 2. CHEMSUSCHEM 2019; 12:3468-3480. [PMID: 30835947 DOI: 10.1002/cssc.201900499] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Indexed: 05/10/2023]
Abstract
Commercial fuel cell electrocatalyst degradation results from carbon electrocatalyst support oxidation at high operating potential transients. Guided by density functional theory (DFT) calculations, Nb-doped TiO2 (NTO) was synthesized, which exhibits a unique combination of high surface area, high electrical conductivity, and high porosity. This catalyst retained 78 % of its initial electrochemically active surface area compared with 57.6 % retained by Pt/C following the DOE/FCCJ protocol for accelerated stability test. Strong metal-support interactions, which were predicted by DFT calculations and confirmed experimentally by X-ray photoelectron spectroscopy and kinetics measurements, resulted in 21 % higher oxygen reduction reaction mass activity (at 0.9 V vs. reversible hydrogen electrode) on Pt/NTO compared with commercial Pt/C. The ex situ activity and durability of Pt/NTO translated to a fuel cell. The rise in electrode ohmic resistance and non-electrode concentration overpotential indicate that improving the conductivity of NTO and optimizing the catalyst ink formulation are critical next steps in the development of Pt/NTO-catalyzed proton exchange membrane fuel cells.
Collapse
Affiliation(s)
- Cheng He
- Center for Solar Energy and Energy Storage, Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO, 63130, USA
| | - Shrihari Sankarasubramanian
- Center for Solar Energy and Energy Storage, Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO, 63130, USA
| | - Ivana Matanovic
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM 87131, USA
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Plamen Atanassov
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM 87131, USA
| | - Vijay Ramani
- Center for Solar Energy and Energy Storage, Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO, 63130, USA
| |
Collapse
|
9
|
Wei C, Rao RR, Peng J, Huang B, Stephens IEL, Risch M, Xu ZJ, Shao-Horn Y. Recommended Practices and Benchmark Activity for Hydrogen and Oxygen Electrocatalysis in Water Splitting and Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806296. [PMID: 30656754 DOI: 10.1002/adma.201806296] [Citation(s) in RCA: 442] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/09/2018] [Indexed: 05/25/2023]
Abstract
Electrochemical energy storage by making H2 an energy carrier from water splitting relies on four elementary reactions, i.e., the hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). Herein, the central objective is to recommend systematic protocols for activity measurements of these four reactions and benchmark activities for comparison, which is critical to facilitate the research and development of catalysts with high activity and stability. Details for the electrochemical cell setup, measurements, and data analysis used to quantify the kinetics of the HER, HOR, OER, and ORR in acidic and basic solutions are provided, and examples of state-of-the-art specific and mass activity of catalysts to date are given. First, the experimental setup is discussed to provide common guidelines for these reactions, including the cell design, reference electrode selection, counter electrode concerns, and working electrode preparation. Second, experimental protocols, including data collection and processing such as ohmic- and background-correction and catalyst surface area estimation, and practice for testing and comparing different classes of catalysts are recommended. Lastly, the specific and mass activity activities of some state-of-the-art catalysts are benchmarked to facilitate the comparison of catalyst activity for these four reactions across different laboratories.
Collapse
Affiliation(s)
- Chao Wei
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- The Cambridge Centre for Advanced Research and Education in Singapore, 1 CREATE way, Singapore, 138602, Singapore
- Solar Fuels Laboratory, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- Energy Research Institute @ Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Reshma R Rao
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jiayu Peng
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Botao Huang
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Ifan E L Stephens
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Marcel Risch
- Institute of Materials Physics, University of Goettingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- The Cambridge Centre for Advanced Research and Education in Singapore, 1 CREATE way, Singapore, 138602, Singapore
- Solar Fuels Laboratory, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- Energy Research Institute @ Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise, NEW-CREATE Phase II, Campus for Research Excellence and Techno-logical Enterprise (CREATE), 138602, Singapore
| | - Yang Shao-Horn
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
10
|
Accurate Determination of Catalyst Loading on Glassy Carbon Disk and Its Impact on Thin Film Rotating Disk Electrode for Oxygen Reduction Reaction. Anal Chem 2018; 90:14181-14187. [DOI: 10.1021/acs.analchem.8b02697] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Markiewicz M, Zalitis C, Kucernak A. Performance measurements and modelling of the ORR on fuel cell electrocatalysts – the modified double trap model. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.04.066] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Bandarenka AS, Ventosa E, Maljusch A, Masa J, Schuhmann W. Techniques and methodologies in modern electrocatalysis: evaluation of activity, selectivity and stability of catalytic materials. Analyst 2015; 139:1274-91. [PMID: 24418971 DOI: 10.1039/c3an01647a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development and optimisation of materials that promote electrochemical reactions have recently attracted attention mainly due to the challenge of sustainable provision of renewable energy in the future. The need for better understanding and control of electrode-electrolyte interfaces where these reactions take place, however, implies the continuous need for development of efficient analytical techniques and methodologies capable of providing detailed information about the performance of electrocatalysts, especially in situ, under real operational conditions of electrochemical systems. During the past decade, significant efforts in the fields of electrocatalysis and (electro)analytical chemistry have resulted in the evolution of new powerful methods and approaches providing ever deeper and unique insight into complex and dynamic catalytic systems. The combination of various electrochemical and non-electrochemical methods as well as the application of quantum chemistry calculations has become a viable modern approach in the field. The focus of this critical review is primarily set on discussion of the most recent cutting-edge achievements in the development of analytical techniques and methodologies designed to evaluate three key constituents of the performance of electrocatalysts, namely, activity, selectivity and stability. Possible directions and future challenges in the design and elaboration of analytical methods for electrocatalytic research are outlined.
Collapse
Affiliation(s)
- Aliaksandr S Bandarenka
- Center for Electrochemical Sciences - CES, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
13
|
Panomsuwan G, Saito N, Ishizaki T. Nitrogen-doped carbon nanoparticles derived from acrylonitrile plasma for electrochemical oxygen reduction. Phys Chem Chem Phys 2015; 17:6227-32. [DOI: 10.1039/c4cp05995f] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrogen-doped carbon nanoparticles were synthesized via a solution plasma process, with acrylonitrile as a simple single-source precursor, for use as oxygen reduction catalysts.
Collapse
Affiliation(s)
- Gasidit Panomsuwan
- Department of Materials Science and Engineering
- Faculty of Engineering
- Shibaura Institute of Technology
- Tokyo 135-8548
- Japan
| | - Nagahiro Saito
- Department of Materials
- Physics and Energy Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
| | - Takahiro Ishizaki
- Department of Materials Science and Engineering
- Faculty of Engineering
- Shibaura Institute of Technology
- Tokyo 135-8548
- Japan
| |
Collapse
|
14
|
Beyhan S, Şahin NE, Pronier S, Léger JM, Kadırgan F. Comparison of oxygen reduction reaction on Pt/C, Pt-Sn/C, Pt-Ni/C, and Pt-Sn-Ni/C catalysts prepared by Bönnemann method: A rotating ring disk electrode study. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2014.11.053] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
The impact of chloride ions and the catalyst loading on the reduction of H2O2 on high-surface-area platinum catalysts. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.03.156] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Ono K, Yasuda Y, Sekizawa K, Takeuchi N, Yoshida T, Sudoh M. Evaluation of Pt/C catalyst degradation and H2O2 formation changes under simulated PEM fuel cell condition by a rotating ring-disk electrode. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.02.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Siahrostami S, Björketun ME, Strasser P, Greeley J, Rossmeisl J. Tandem cathode for proton exchange membrane fuel cells. Phys Chem Chem Phys 2013; 15:9326-34. [DOI: 10.1039/c3cp51479j] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Katsounaros I, Schneider WB, Meier JC, Benedikt U, Biedermann PU, Cuesta A, Auer AA, Mayrhofer KJJ. The impact of spectator species on the interaction of H2O2 with platinum – implications for the oxygen reduction reaction pathways. Phys Chem Chem Phys 2013; 15:8058-68. [DOI: 10.1039/c3cp50649e] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Cai PJ, Xiao X, He YR, Li WW, Zang GL, Sheng GP, Lam MHW, Yu L, Yu HQ. Reactive oxygen species (ROS) generated by cyanobacteria act as an electron acceptor in the biocathode of a bio-electrochemical system. Biosens Bioelectron 2012; 39:306-10. [PMID: 22819632 DOI: 10.1016/j.bios.2012.06.058] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 10/28/2022]
Abstract
The enhanced electricity generation in a biocathode bio-electrochemical system (BES) with Microcystis aeruginosa IPP as the cathodic microorganism under illumination is investigated. The results show that this cyanobacterium is able to act as a potential cathodic microorganism under illumination. In addition, M. aeruginosa IPP is found to produce reactive oxygen species (ROS) in its growth in the BES. ROS, as more competitive electron acceptors than oxygen, are utilized prior to oxygen. The BES current is substantially reduced when the ROS production is inhibited by mannitol, indicating that the ROS secreted by the cyanobacterium play an important role in the electricity generation of such a biocathode BES. This work demonstrates that the ROS released by cyanobacteria benefit for an enhanced electricity generation of BES.
Collapse
Affiliation(s)
- Pei-Jie Cai
- Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Effect of mass transfer on the oxygen reduction reaction catalyzed by platinum dendrimer encapsulated nanoparticles. Proc Natl Acad Sci U S A 2012; 109:11493-7. [PMID: 22665772 DOI: 10.1073/pnas.1201370109] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here we report on the effect of the mass transfer rate (k(t)) on the oxygen reduction reaction (ORR) catalyzed by Pt dendrimer-encapsulated nanoparticles (DENs) comprised of 147 and 55 atoms (Pt(147) and Pt(55)). The experiments were carried out using a dual-electrode microelectrochemical device, which enables the study of the ORR under high k(t) conditions with simultaneous detection of H(2)O(2). At low k(t) (0.02 to 0.12 cm s(-1)) the effective number of electrons involved in ORR, n(eff), is 3.7 for Pt(147) and 3.4 for Pt(55). As k(t) is increased, the mass-transfer-limited current for the ORR becomes significantly lower than the value predicted by the Levich equation for a 4-electron process regardless of catalyst size. However, the percentage of H(2)O(2) detected remains constant, such that n(eff) barely changes over the entire k(t) range explored (0.02 cm s(-1)). This suggests that mass transfer does not affect n(eff), which has implications for the mechanism of the ORR on Pt nanoparticles. Interestingly, there is a significant difference in n(eff) for the two sizes of Pt DENs (n(eff) = 3.7 and 3.5 for Pt(147) and Pt(55), respectively) that cannot be assigned to mass transfer effects and that we therefore attribute to a particle size effect.
Collapse
|
21
|
Ke K, Hiroshima K, Kamitaka Y, Hatanaka T, Morimoto Y. An accurate evaluation for the activity of nano-sized electrocatalysts by a thin-film rotating disk electrode: Oxygen reduction on Pt/C. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.04.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Jinnouchi R, Kodama K, Hatanaka T, Morimoto Y. First principles based mean field model for oxygen reduction reaction. Phys Chem Chem Phys 2011; 13:21070-83. [DOI: 10.1039/c1cp21349k] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|