1
|
Ehtiati S, Naeeni B, Qeysouri B, Heidarian E, Azmon M, Ahmadzade R, Movahedpour A, Kazemi F, Motamedzadeh A, Khatami SH. Electrochemical biosensors in early leukemia detection. Clin Chim Acta 2024; 562:119871. [PMID: 39009333 DOI: 10.1016/j.cca.2024.119871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Leukemia, a type of blood cancer marked by an abnormal increase in white blood cells, poses a significant challenge to healthcare. The key to successful treatment lies in early detection. However, traditional methods often fall short. This review investigates the potential of electrochemical biosensors for a more accurate and earlier diagnosis of leukemia. Electrochemical biosensors are compact devices that transform biological interactions into electrical signals. Their small size, ease of use, and minimal sample requirements make them perfectly suited for point-of-care applications. Their remarkable sensitivity and specificity enable the detection of subtle biomolecular changes associated with leukemia, which is crucial for early disease detection. This review delves into studies that have utilized these biosensors to identify various types of leukemia. It examines the roles of electrodes, biorecognition elements, and signal transduction mechanisms. The discussion includes the integration of nanomaterials such as gold nanoparticles and nitrogen-doped graphene into biosensor design. These materials boost sensitivity, enhance signal amplification, and facilitate multi-analyte detection, thereby providing a more holistic view of the disease. Beyond technical advancements, the review underscores the practical benefits of these biosensors. Their portability makes them a promising tool for resource-constrained settings, enabling swift diagnosis in remote areas or at a patient's bedside. The potential for monitoring treatment effectiveness and detecting minimal residual disease to prevent relapse is also explored. This review emphasizes the transformative potential of electrochemical biosensors in combating leukemia. By facilitating earlier and more accurate diagnosis, these biosensors stand to revolutionize patient care and enhance treatment outcomes.
Collapse
Affiliation(s)
- Sajad Ehtiati
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Naeeni
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram Qeysouri
- Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Erfan Heidarian
- Department of Clinical Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Marzyeh Azmon
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhane Ahmadzade
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Kazemi
- Metabolic Diseases Research Center, Institute for Prevention of Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Oliveira LS, Avelino KYPS, Oliveira SRDE, Lucena-Silva N, de Oliveira HP, Andrade CAS, Oliveira MDL. Flexible genosensors based on polypyrrole and graphene quantum dots for PML/RARα fusion gene detection: A study of acute promyelocytic leukemia in children. J Pharm Biomed Anal 2023; 235:115606. [PMID: 37544275 DOI: 10.1016/j.jpba.2023.115606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
Acute promyelocytic leukemia (APL) in children is associated with a favorable initial prognosis. However, minimal residual disease (MRD) follow-up remains poorly defined, and relapse cases are concerning due to their recurrent nature. Thus, we report two electrochemical flexible genosensors based on polypyrrole (PPy) and graphene quantum dots (GQDs) for label-free PML-RARα oncogene detection. Atomic force microscopy (AFM), scanning electron microscope (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) were used to characterize the technological biosensor development. M7 and APLB oligonucleotide sequences were used as bioreceptors to detect oncogenic segments on chromosomes 15 and 17, respectively. AFM characterization revealed heterogeneous topographical surfaces with maximum height peaks for sensor layers when tested with positive patient samples. APLB/Genosensor exhibited a percentage change in anode peak current (ΔI) of 423 %. M7/Genosensor exhibited a ΔI of 61.44 % for more concentrated cDNA samples. The described behavior is associated with the biospecific recognition of the proposed biosensors. Limits of detection (LOD) of 0.214 pM and 0.677 pM were obtained for APLB/Genosensor and M7/Genosensor, respectively. The limits of quantification (LOQ) of 0.648 pM and 2.05 pM were estimated for APLB/Genosensor and M7/Genosensor, respectively. The genosensors showed reproducibility with a relative standard deviation of 7.12 % for APLB and 1.18 % for M7 and high repeatability (9.89 % for APLB and 1.51 % for M7). In addition, genetic tools could identify the PML-RARα oncogene in purified samples, plasmids, and clinical specimens from pediatric patients diagnosed with APL with high bioanalytical performance. Therefore, biosensors represent a valuable alternative for the clinical diagnosis of APL and monitoring of MRD with an impact on public health.
Collapse
Affiliation(s)
- Léony S Oliveira
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Karen Y P S Avelino
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Sevy R D E Oliveira
- Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Norma Lucena-Silva
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (Fiocruz), 50670-420 Recife, PE, Brazil; Laboratório de Biologia Molecular, Departamento de Oncologia Pediátrica, Instituto de Medicina Integral Professor Fernando Figueira (IMIP), 50070-550 Recife, PE, Brazil
| | - Helinando P de Oliveira
- Institute Pesquisa em Ciência dos Materiais, Universidade Federal do Vale do São Francisco, Juazeiro, Brazil
| | - Cesar A S Andrade
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Maria D L Oliveira
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil.
| |
Collapse
|
3
|
Lei Y, Wang K, Yang JY, Lin XH, Liu AL. Sequence-specific amperometric detection based on a double-probe mode and enzyme-mediated multiple signal electrocatalysis for the double-stranded DNA of PML/RARα-related fusion gene. Anal Chim Acta 2022; 1231:340436. [DOI: 10.1016/j.aca.2022.340436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/22/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
|
4
|
Yan L, Shi F, Zhang J, Niu Y, Huang L, Huang Y, Sun W. Electrochemical DNA biosensor based on platinum-gold bimetal decorated graphene modified electrode for the detection of Vibrio Parahaemolyticus specific tlh gene sequence. CURR ANAL CHEM 2021. [DOI: 10.2174/1573411017666211217164846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
By using bimetal nanocomposite modified electrode, the electrochemical DNA biosensor showed the advantages of high sensitivity, low cost, rapid response and convenient operation, which was applied for disease diagnosis, food safety, and biological monitoring.
Objective:
A nanocomposite consisting of platinum (Pt)-gold (Au) bimetal and two-dimensional graphene (GR) was synthesized by hydrothermal method, which was modified on the surface of carbon ionic liquid electrode and further used for the immobilization of probe ssDNA related to Vibrio Parahaemolyticus tlh gene to construct an electrochemical DNA sensor.
Method:
Potassium ferricyanide was selected as electrochemical indicator, cyclic voltammetry was used to study the electrochemical behaviours of different modified electrodes and differential pulse voltammetry was employed to test the analytical performance of this biosensor for the detection of target gene sequence.
Results:
This electrochemical DNA biosensor could detect the Vibrio Parahaemolyticus tlh gene sequence as the linear concentration in the range from 1.0×10-13 mol L-1 to 1.0×10-6 mol L-1 with the detection limit as 2.91×10-14 mol L-1 (3σ).
Conclusion:
This proposed electrochemical DNA biosensor could be used to identify the special gene sequence with good selectivity, low detection limit and wide detection range.
Collapse
Affiliation(s)
- Lijun Yan
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Fan Shi
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Jingyao Zhang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yanyan Niu
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Lifang Huang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yuhao Huang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
5
|
Lei Y, Wang K, Wu SY, Huang DD, Dai M, Zheng YJ, Sun ZL, Chen YZ, Lin XH, Liu AL. 2'-Fluoro ribonucleic acid modified DNA dual-probe sensing strategy for enzyme-amplified electrochemical detection of double-strand DNA of PML/RARα related fusion gene. Biosens Bioelectron 2018; 112:170-176. [PMID: 29704785 DOI: 10.1016/j.bios.2018.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022]
Abstract
In the study, a novel sensing strategy based on dual-probe mode, which involved two groups of 2'-fluoro ribonucleic acid (2'-F RNA) modified probes, was designed for the detection of synthetic target double-strand DNA (dsDNA) of PML/RARα fusion genes in APL. And each pair of probes contained a thiolated capture probe (C1 or C2) immobilized on one of electrode surfaces in the dual-channel electrochemical biosensor and a biotinylated reporter probe (R1 or R2). The two groups of 2'-F RNA modified probes were separately complementary with the corresponding strand (Sa or Sb) from target dsDNA in order to prevent renaturation of target dsDNA. Through flanking target dsDNA, two "sandwitch" complexes (C1/Sa/R1 and C2/Sb/R2) were separately shaped by capture probes (C1 and C2) and free reporter probes (R1 and R2) in hybridization solution on the surfaces of different electrodes after the thermal denaturation. The biotin-modified enzyme which produced the measurable electrochemical current signal was localized to the surface by affinity binding between biotin with streptavidin. Under the optimal condition, the biosensor was able to detect 84 fM target dsDNA and showed a good specificity in PBS hybridization solution. Otherwise, the investigations of the specificity and sensitivity of the biosensor were carried out further in the mixed hybridization solution containing different kinds of mismatch sequences as interference background. It can be seen that under a certain interference background, the method still exhibited excellent selectivity and specificity for the discrimination between the fully-complementary and the mismatch sequences. The results of our research laid a good basis of further detection research in practical samples.
Collapse
Affiliation(s)
- Yun Lei
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350004, China; Nano Biomedical Technology Research Center, Fujian Medical University, Fuzhou 350004, China
| | - Kun Wang
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350004, China; Department of Pharmacy, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Shan-Yue Wu
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Dan-Dan Huang
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Ming Dai
- Fujian Inspection and Research Institute for Product Quality, National Center of Processed Foods Quality Supervision and Inspection, Fuzhou 350002, China
| | - Yan-Jie Zheng
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350004, China; Nano Biomedical Technology Research Center, Fujian Medical University, Fuzhou 350004, China
| | - Zhou-Liang Sun
- Department of Pharmacy, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Yuan-Zhong Chen
- Fujian Institute of Hematology, the Affiliated Union Hospital of Fujian Medical University, Fuzhou 350000, China.
| | - Xin-Hua Lin
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350004, China; Nano Biomedical Technology Research Center, Fujian Medical University, Fuzhou 350004, China.
| | - Ai-Lin Liu
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350004, China; Nano Biomedical Technology Research Center, Fujian Medical University, Fuzhou 350004, China.
| |
Collapse
|
6
|
Niu X, Chen W, Wang X, Men Y, Wang Q, Sun W, Li G. A graphene modified carbon ionic liquid electrode for voltammetric analysis of the sequence of the Staphylococcus aureus nuc gene. Mikrochim Acta 2018; 185:167. [PMID: 29594481 DOI: 10.1007/s00604-018-2719-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 01/28/2018] [Indexed: 11/28/2022]
Abstract
The authors describe a voltammetric method for the detection of the nuc ssDNA sequence originating from Staphylococcus aureus by using a carbon ionic liquid electrode modified with electrodeposited three-dimensional graphene (3DGR). Probe ssDNA was electrostatically adsorbed on the modified electrode by a potentiostatic method. The porous structure and large surface area of 3DGR greatly increase the amount of immobilized probe ssDNA on the interface, which is beneficial for the reaction with target ssDNA. By using Methylene Blue (MB) as the electrochemical probe, the reduction peak current of MB (best measured at -0.30 V vs. SCE) can be used for detecting hybridization. The differential pulse voltammetric current of MB increases linearly in the 1.0 × 10-12 mol L-1 to 1.0 × 10-6 mol L-1 nuc concentration range, and the detection limit is 3.3 × 10-13 mol L-1 (at 3σ). The DNA sensor was successfully applied to the determination of the PCR product of the gene in pork. Graphical abstract Response of an electrochemical DNA biosensor based on the use of a carbon ionic liquid electrode modified with three-dimensional graphene. It enables sensitive voltammetric detection of the specific sequence of the Staphylococcus aureus nuc gene.
Collapse
Affiliation(s)
- Xueliang Niu
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, People's Republic of China
| | - Wei Chen
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, People's Republic of China.,College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xiuli Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yongling Men
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, People's Republic of China
| | - Qin Wang
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, People's Republic of China
| | - Wei Sun
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, People's Republic of China. .,Key Laboratory of Soft Chemistry and Functional Materials of Ministry of Education, College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China.
| | - Guangjiu Li
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| |
Collapse
|
7
|
Niu X, Zheng W, Yin C, Weng W, Li G, Sun W, Men Y. Electrochemical DNA biosensor based on gold nanoparticles and partially reduced graphene oxide modified electrode for the detection of Listeria monocytogenes hly gene sequence. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.10.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Dual-probe electrochemical DNA biosensor based on the “Y” junction structure and restriction endonuclease assisted cyclic enzymatic amplification for detection of double-strand DNA of PML/RARα related fusion gene. Biosens Bioelectron 2015; 71:463-469. [DOI: 10.1016/j.bios.2015.04.071] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/01/2015] [Accepted: 04/14/2015] [Indexed: 01/31/2023]
|
9
|
An electrochemical DNA biosensor based on gold nanorods decorated graphene oxide sheets for sensing platform. Anal Biochem 2013; 443:117-23. [DOI: 10.1016/j.ab.2013.08.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/12/2013] [Accepted: 08/28/2013] [Indexed: 12/15/2022]
|
10
|
Liu W, Zhang J, Wang Q, Xie X, Lou Y, Han X, Xia B. Microsized TiO2 activated by high-energy ball milling as starting material for the preparation of Li4Ti5O12 anode material. POWDER TECHNOL 2013. [DOI: 10.1016/j.powtec.2013.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|