1
|
Zhang W, Li X, Liu X, Song K, Wang H, Wang J, Li R, Liu S, Peng Z. A Novel Electrochemical Sensor Based on Pd Confined Mesoporous Carbon Hollow Nanospheres for the Sensitive Detection of Ascorbic Acid, Dopamine, and Uric Acid. Molecules 2024; 29:2427. [PMID: 38893303 PMCID: PMC11173461 DOI: 10.3390/molecules29112427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
In this study, we designed a novel electrochemical sensor by modifying a glass carbon electrode (GCE) with Pd confined mesoporous carbon hollow nanospheres (Pd/MCHS) for the simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The structure and morphological characteristics of the Pd/MCHS nanocomposite and the Pd/MCHS/GCE sensor are comprehensively examined using SEM, TEM, XRD and EDX. The electrochemical properties of the prepared sensor are investigated through CV and DPV, which reveal three resolved oxidation peaks for AA, DA, and UA, thereby verifying the simultaneous detection of the three analytes. Benefiting from its tailorable properties, the Pd/MCHS nanocomposite provides a large surface area, rapid electron transfer ability, good catalytic activity, and high conductivity with good electrochemical behavior for the determination of AA, DA, and UA. Under optimized conditions, the Pd/MCHS/GCE sensor exhibited a linear response in the concentration ranges of 300-9000, 2-50, and 20-500 µM for AA, DA, and UA, respectively. The corresponding limit of detection (LOD) values were determined to be 51.03, 0.14, and 4.96 µM, respectively. Moreover, the Pd/MCHS/GCE sensor demonstrated outstanding selectivity, reproducibility, and stability. The recovery percentages of AA, DA, and UA in real samples, including a vitamin C tablet, DA injection, and human urine, range from 99.8-110.9%, 99.04-100.45%, and 98.80-100.49%, respectively. Overall, the proposed sensor can serve as a useful reference for the construction of a high-performance electrochemical sensing platform.
Collapse
Affiliation(s)
- Wanqing Zhang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China (J.W.)
| | - Xijiao Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China (J.W.)
| | - Xiaoxue Liu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China (J.W.)
| | - Kaixuan Song
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China (J.W.)
| | - Haiyang Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China (J.W.)
| | - Jichao Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China (J.W.)
| | - Renlong Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China (J.W.)
| | - Shanqin Liu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China (J.W.)
| | - Zhikun Peng
- China Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Li J, Wang Y, Li R, Lu B, Yuan Y, Gao H, Song S, Zhou S, Zang J. Amorphous Carbon Film with Self‐modified Carbon Nanoparticles Synthesized by Low Temperature Carbonization of Phenolic Resin for Simultaneous Sensing of Dopamine and Uric Acid. ELECTROANAL 2021. [DOI: 10.1002/elan.202100182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jilong Li
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering Yanshan University Qinhuangdao 066004 PR China
| | - Yanhui Wang
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering Yanshan University Qinhuangdao 066004 PR China
| | - Rushuo Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 PR China
| | - Bowen Lu
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering Yanshan University Qinhuangdao 066004 PR China
| | - Yungang Yuan
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering Yanshan University Qinhuangdao 066004 PR China
| | - Hongwei Gao
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering Yanshan University Qinhuangdao 066004 PR China
| | - Shiwei Song
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering Yanshan University Qinhuangdao 066004 PR China
| | - Shuyu Zhou
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering Yanshan University Qinhuangdao 066004 PR China
| | - Jianbing Zang
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering Yanshan University Qinhuangdao 066004 PR China
| |
Collapse
|
3
|
Catalytic and photocatalytic effects of TiO2 nanoparticles on electrooxidation of common antioxidants on carbon paste. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Kamal Eddin FB, Wing Fen Y. Recent Advances in Electrochemical and Optical Sensing of Dopamine. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1039. [PMID: 32075167 PMCID: PMC7071053 DOI: 10.3390/s20041039] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
Nowadays, several neurological disorders and neurocrine tumours are associated with dopamine (DA) concentrations in various biological fluids. Highly accurate and ultrasensitive detection of DA levels in different biological samples in real-time can change and improve the quality of a patient's life in addition to reducing the treatment cost. Therefore, the design and development of diagnostic tool for in vivo and in vitro monitoring of DA is of considerable clinical and pharmacological importance. In recent decades, a large number of techniques have been established for DA detection, including chromatography coupled to mass spectrometry, spectroscopic approaches, and electrochemical (EC) methods. These methods are effective, but most of them still have some drawbacks such as consuming time, effort, and money. Added to that, sometimes they need complex procedures to obtain good sensitivity and suffer from low selectivity due to interference from other biological species such as uric acid (UA) and ascorbic acid (AA). Advanced materials can offer remarkable opportunities to overcome drawbacks in conventional DA sensors. This review aims to explain challenges related to DA detection using different techniques, and to summarize and highlight recent advancements in materials used and approaches applied for several sensor surface modification for the monitoring of DA. Also, it focuses on the analytical features of the EC and optical-based sensing techniques available.
Collapse
Affiliation(s)
- Faten Bashar Kamal Eddin
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Yap Wing Fen
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| |
Collapse
|
5
|
Yang S, Zhao J, Tricard S, Yu L, Fang J. A sensitive and selective electrochemical sensor based on N, P-Doped molybdenum Carbide@Carbon/Prussian blue/graphite felt composite electrode for the detection of dopamine. Anal Chim Acta 2020; 1094:80-89. [DOI: 10.1016/j.aca.2019.09.077] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/21/2019] [Accepted: 09/27/2019] [Indexed: 01/08/2023]
|
6
|
Manivel P, Thamilselvan A, Rajagopal V, Nesakumar N, Suryanarayanan V. Enhanced Electrocatalytic Activity of Ni‐CNT Nanocomposites for Simultaneous Determination of Epinephrine and Dopamine. ELECTROANAL 2019. [DOI: 10.1002/elan.201900201] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Perumal Manivel
- Electroorganic DivisionCSIR-Central Electrochemical Research Institute Karaikudi- 630003 India
| | - Annadurai Thamilselvan
- Electroorganic DivisionCSIR-Central Electrochemical Research Institute Karaikudi- 630003 India
| | - Venkatachalam Rajagopal
- Electroorganic DivisionCSIR-Central Electrochemical Research Institute Karaikudi- 630003 India
| | - Noel Nesakumar
- School of Chemical and BiotechnologySASTRA Deemed University Thanjavur – 613 401 India
| | - Vembu Suryanarayanan
- Electroorganic DivisionCSIR-Central Electrochemical Research Institute Karaikudi- 630003 India
| |
Collapse
|
7
|
Matsoso BJ, Mutuma BK, Billing C, Ranganathan K, Lerotholi T, Jones G, Coville NJ. The effect of N-configurations on selective detection of dopamine in the presence of uric and ascorbic acids using surfactant-free N-graphene modified ITO electrodes. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Srinivas C, Sudharsan M, Reddy GRK, Kumar PS, Amali AJ, Suresh D. Co/Co-N@Nanoporous Carbon Derived from ZIF-67: A Highly Sensitive and Selective Electrochemical Dopamine Sensor. ELECTROANAL 2018. [DOI: 10.1002/elan.201800391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chandrasekaran Srinivas
- Department of Chemistry, School of Chemical and Biotechnology; SASTRA Deemed University, Thanjavur; Tamil Nadu 613 401 India
| | - Murugesan Sudharsan
- Department of Chemistry, School of Chemical and Biotechnology; SASTRA Deemed University, Thanjavur; Tamil Nadu 613 401 India
| | - G. Rajendra Kumar Reddy
- Department of Chemistry, School of Chemical and Biotechnology; SASTRA Deemed University, Thanjavur; Tamil Nadu 613 401 India
| | - P. Suresh Kumar
- Department of Chemistry, School of Chemical and Biotechnology; SASTRA Deemed University, Thanjavur; Tamil Nadu 613 401 India
| | - Arlin Jose Amali
- Centre for Green Chemistry Processes; Madurai Kamaraj University; Madurai 625 021 India
| | - D. Suresh
- Department of Chemistry, School of Chemical and Biotechnology; SASTRA Deemed University, Thanjavur; Tamil Nadu 613 401 India
| |
Collapse
|
9
|
Zhang J, Xu L, Zhou B, Zhu Y, Jiang X. The pristine graphene produced by liquid exfoliation of graphite in mixed solvent and its application to determination of dopamine. J Colloid Interface Sci 2018; 513:279-286. [DOI: 10.1016/j.jcis.2017.11.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 11/12/2017] [Indexed: 10/18/2022]
|
10
|
Manjunatha JGG. A novel poly (glycine) biosensor towards the detection of indigo carmine: A voltammetric study. J Food Drug Anal 2018; 26:292-299. [PMID: 29389566 PMCID: PMC9332645 DOI: 10.1016/j.jfda.2017.05.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 11/11/2022] Open
Abstract
The electrochemical behavior of indigo carmine (IC) at poly (glycine) modified carbon paste electrode (PGMCPE) was investigated by cyclic and differential pulse voltammetry. The oxidation peak of IC was observed in phosphate buffer of pH 6.5. The influence of different pH, scan rate, and concentration were analyzed. The probable reaction mechanism involved in the oxidation of IC was also proposed. Results showed that PGMCPE a remarkable electrocatalytic activity for the oxidation of IC under optimal conditions. The electrocatalytic response of the sensor was proportional to the IC concentration in the range of (2 × 10−6–1 × 10−5 M) and (1.5 × 10−5–6 × 10−5 M) with a limit of detection 11 × 10−8 M and limit of quantification 3.6 × 10−7 M. The modified electrode demonstrated many advantages such as simple preparation, high sensitivity, low detection of limit, excellent catalytic activity, short response time, and remarkable antifouling property toward IC and its oxidation product.
Collapse
|
11
|
Fabrication and characterization of poly 2-napthol orange film modified electrode and its application to selective detection of dopamine. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3604-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Functionalised carbon nano spheres modified electrode for simultaneous determination of dopamine and uric acid. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.01.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Özcan A, İlkbaş S, Atılır Özcan A. Development of a disposable and low-cost electrochemical sensor for dopamine detection based on poly(pyrrole-3-carboxylic acid)-modified electrochemically over-oxidized pencil graphite electrode. Talanta 2017; 165:489-495. [PMID: 28153287 DOI: 10.1016/j.talanta.2017.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 12/26/2022]
Abstract
In this study, preparation of a single-use electrochemical sensor for the selective and sensitive determination of dopamine (DOP) was investigated by electrochemical polymerization of pyrrole-3-carboxylic acid on electrochemically over-oxidized pencil graphite electrode (p(P3CA)/EOPGE). Cyclic voltammetry measurements of Fe(CN)64-/3- indicated that the electrochemically over-oxidized PGE (EOPGE) showed superior electron transfer characteristics according to bare PGE. The ionized carboxyl groups found in the structure of poly(pyrrole-3-carboxylic acid) (p(P3CA)) showed high affinity towards positively charged DOP. The combination of the advantages of EOPGE and p(P3CA) in p(P3CA)/EOPGE led to a synergistic effect on the electrochemical oxidation of DOP. The effects of experimental variables on the voltammetric performance of the p(P3CA)/EOPGE were examined by preparing the electrodes at different conditions. The p(P3CA)/EOPGE showed high selectivity towards DOP by discriminating its oxidation potential from the common interfering substances such as ascorbic and uric acids. The p(P3CA)/EOPGE showed linear responses in the electrochemical oxidation of DOP between the concentration values of 0.025µM and 7.5µM. Detection limit was determined as 0.0025µM according to signal to noise ratio (S/N: 3). Analytical application of p(P3CA)/EOPGE was successfully tested in the determination of DOP in blood serum and pharmaceutical samples.
Collapse
Affiliation(s)
- Ali Özcan
- Anadolu University, Faculty of Science, Department of Chemistry, 26470 Eskisehir, Turkey.
| | - Salih İlkbaş
- Anadolu University, Faculty of Science, Department of Chemistry, 26470 Eskisehir, Turkey
| | - Ayça Atılır Özcan
- Anadolu University, Faculty of Science, Department of Chemistry, 26470 Eskisehir, Turkey
| |
Collapse
|
14
|
Yan F, Su B. Tailoring Molecular Permeability of Nanochannel-Micelle Membranes for Electrochemical Analysis of Antioxidants in Fruit Juices without Sample Treatment. Anal Chem 2016; 88:11001-11006. [DOI: 10.1021/acs.analchem.6b02823] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Fei Yan
- Institute of Analytical Chemistry,
Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Bin Su
- Institute of Analytical Chemistry,
Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
15
|
Ribeiro JA, Fernandes PM, Pereira CM, Silva F. Electrochemical sensors and biosensors for determination of catecholamine neurotransmitters: A review. Talanta 2016; 160:653-679. [DOI: 10.1016/j.talanta.2016.06.066] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 01/03/2023]
|
16
|
Xu H, Xiao J, Yan L, Zhu L, Liu B. An electrochemical sensor for selective detection of dopamine based on nickel tetrasulfonated phthalocyanine functionalized nitrogen-doped graphene nanocomposites. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.04.032] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Sakthinathan S, Lee HF, Chen SM, Tamizhdurai P. Electrocatalytic oxidation of dopamine based on non-covalent functionalization of manganese tetraphenylporphyrin/reduced graphene oxide nanocomposite. J Colloid Interface Sci 2016; 468:120-127. [DOI: 10.1016/j.jcis.2016.01.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 10/22/2022]
|
18
|
Cincotto FH, Canevari TC, Campos AM, Landers R, Machado SAS. Simultaneous determination of epinephrine and dopamine by electrochemical reduction on the hybrid material SiO₂/graphene oxide decorated with Ag nanoparticles. Analyst 2015; 139:4634-40. [PMID: 25050410 DOI: 10.1039/c4an00580e] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper describes the synthesis, characterization and applications of a new hybrid material composed of mesoporous silica (SiO2) modified with graphene oxide (GO), SiO2/GO, obtained by the sol-gel process using HF as the catalyst. The hybrid material, SiO2/GO, was decorated with silver nanoparticles (AgNPs) with a size of less than 20 nanometres, prepared directly on the surface of the material using N,N-dimethylformamide (DMF) as the reducing agent. The resulting material was designated as AgNP/SiO2/GO. The Ag/SiO2/GO material was characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and high-resolution transmission electron microscopy (HR-TEM). A glassy carbon electrode modified with AgNP/SiO2/GO was used in the development of a sensitive electrochemical sensor for the simultaneous determination of epinephrine and dopamine employing electrocatalytic reduction using squarewave voltammetry. Well-defined and separate reduction peaks were observed in PBS buffer at pH 7. No significant interference was seen for primarily biological interferents such as uric acid and ascorbic acid in the detection of dopamine and epinephrine. Our study demonstrated that the resultant AgNP/SiO2/GO-modified electrode is highly sensitive for the simultaneous determination of dopamine and epinephrine, with the limits of detection being 0.26 and 0.27 μmol L(-1), respectively. The AgNP/SiO2/GO-modified electrode is highly selective and can be used to detect dopamine and epinephrine in a human urine sample.
Collapse
Affiliation(s)
- Fernando H Cincotto
- Institute of Chemistry, State University of São Paulo, PO Box 780, 13560-970 São Carlos, SP, Brazil.
| | | | | | | | | |
Collapse
|
19
|
Highly Sensitive and Selective Detection of Dopamine at Poly(chromotrope 2B)-Modified Glassy Carbon Electrode in the Presence of Uric Acid and Ascorbic Acid. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.05.062] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Electrochemical droplet-based microfluidics using chip-based carbon paste electrodes for high-throughput analysis in pharmaceutical applications. Anal Chim Acta 2015; 883:45-54. [DOI: 10.1016/j.aca.2015.03.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 02/10/2015] [Accepted: 03/04/2015] [Indexed: 11/27/2022]
|
21
|
Wang L, Xu H, Song Y, Luo J, Wei W, Xu S, Cai X. Highly sensitive detection of quantal dopamine secretion from pheochromocytoma cells using neural microelectrode array electrodeposited with polypyrrole graphene. ACS APPLIED MATERIALS & INTERFACES 2015; 7:7619-7626. [PMID: 25804204 DOI: 10.1021/acsami.5b00035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
For the measurement of events of dopamine (DA) release as well as the coordinating neurotransmission in the nerve system, a neural microelectrode array (nMEA) electrodeposited directionally with polypyrrole graphene (PG) nanocomposites was fabricated. The deposited graphene significantly increased the surface area of working electrode, which led to the nMEA (with diameter of 20 μm) with excellent selectivity and sensitivity to DA. Furthermore, PG film modification exhibited low detection limit (4 nM, S/N = 3.21), high sensitivity, and good linearity in the presence of ascorbic acid (e.g., 13933.12 μA mM(-1) cm(-2) in the range of 0.8-10 μM). In particular, the nMEA combined with the patch-clamp system was used to detect quantized DA release from pheochromocytoma cells under 100 mM K(+) stimulation. The nMEA that integrates 60 microelectrodes is novel for detecting a large number of samples simultaneously, which has potential for neural communication research.
Collapse
Affiliation(s)
- Li Wang
- †State Key Laboratory of Transducer Technology, Institute of Electronics Chinese Academy of Sciences, Beijing 100190, China
- ‡University of Chinese Academy of Sciences, Beijing 100190, China
| | - Huiren Xu
- †State Key Laboratory of Transducer Technology, Institute of Electronics Chinese Academy of Sciences, Beijing 100190, China
- ‡University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yilin Song
- †State Key Laboratory of Transducer Technology, Institute of Electronics Chinese Academy of Sciences, Beijing 100190, China
| | - Jinping Luo
- †State Key Laboratory of Transducer Technology, Institute of Electronics Chinese Academy of Sciences, Beijing 100190, China
| | - Wenjing Wei
- †State Key Laboratory of Transducer Technology, Institute of Electronics Chinese Academy of Sciences, Beijing 100190, China
- ‡University of Chinese Academy of Sciences, Beijing 100190, China
| | - Shengwei Xu
- †State Key Laboratory of Transducer Technology, Institute of Electronics Chinese Academy of Sciences, Beijing 100190, China
| | - Xinxia Cai
- †State Key Laboratory of Transducer Technology, Institute of Electronics Chinese Academy of Sciences, Beijing 100190, China
- ‡University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
22
|
Determination of ascorbic acid, dopamine, and uric acid by a novel electrochemical sensor based on pristine graphene. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.02.116] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Fei X, Luo J, Liu R, Liu J, Liu X, Chen M. Multiwalled carbon nanotubes noncovalently functionalized by electro-active amphiphilic copolymer micelles for selective dopamine detection. RSC Adv 2015. [DOI: 10.1039/c4ra16923a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have synthesized an electro-active amphiphilic copolymer with carbazole side chains via free radical polymerization using 7-(4-vinylbenzyloxy)-4-methyl coumarin and 9-(4-vinylbenzyl)-9H-carbazole as the monomers.
Collapse
Affiliation(s)
- Xiaoma Fei
- Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Jing Luo
- Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Ren Liu
- Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Jingcheng Liu
- Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Xiaoya Liu
- Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Mingqing Chen
- Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| |
Collapse
|
24
|
Kutluay A, Aslanoglu M. An electrochemical sensor prepared by sonochemical one-pot synthesis of multi-walled carbon nanotube-supported cobalt nanoparticles for the simultaneous determination of paracetamol and dopamine. Anal Chim Acta 2014; 839:59-66. [DOI: 10.1016/j.aca.2014.05.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 04/28/2014] [Accepted: 05/09/2014] [Indexed: 11/16/2022]
|
25
|
Liu C, Zhang J, Yifeng E, Yue J, Chen L, Li D. One-pot synthesis of graphene–chitosan nanocomposite modified carbon paste electrode for selective determination of dopamine. ELECTRON J BIOTECHN 2014. [DOI: 10.1016/j.ejbt.2014.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
26
|
Ramírez-Silva MT, Palomar-Pardavé M, Corona-Avendaño S, Romero-Romo M, Alarcón-Angeles G. Guest-host complex formed between ascorbic acid and β-cyclodextrin immobilized on the surface of an electrode. Molecules 2014; 19:5952-64. [PMID: 24818575 PMCID: PMC6270920 DOI: 10.3390/molecules19055952] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 12/28/2022] Open
Abstract
This work deals with the formation of supramolecular complexes between ascorbic acid (AA), the guest, and β-cyclodextrin (β-CD), the host, that was first potentiodynamically immobilized on the surface of a carbon paste electrode (CPE) throughout the formation of a β-CD-based conducting polymer (poly-β-CD). With the bare CPE and the β-CD-modified CPE, an electrochemical study was performed to understand the effect of such surface modification on the electrochemical response of the AA. From this study it was shown that on the modified-CPE, the AA was surface-immobilized through formation of an inclusion complex with β-CD, which provoked the adsorption of AA in such a way that this stage became the limiting step for the electrochemical oxidation of AA. Moreover, from the analysis of the experimental voltammetric plots recorded during AA oxidation on the CPE/poly-β-CD electrode surfaces, the Gibbs' standard free energy of the inclusion complex formed by the oxidation product of AA and β-CD has been determined for the first time, ∆G0inclus = -36.4 kJ/mol.
Collapse
Affiliation(s)
- María Teresa Ramírez-Silva
- Departamento de Química, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco #186, Col. Vicentina, Mexico D.F. C.P. 09340, Mexico; E-Mail:
| | - Manuel Palomar-Pardavé
- Departamento de Materiales, Universidad Autónoma Metropolitana Azcapotzalco, Av. San Pablo #180, Col. Reynosa-Tamaulipas, Mexico D.F. C.P. 02200, Mexico; E-Mails: (S.C.-A.); (M.R.-R.)
| | - Silvia Corona-Avendaño
- Departamento de Materiales, Universidad Autónoma Metropolitana Azcapotzalco, Av. San Pablo #180, Col. Reynosa-Tamaulipas, Mexico D.F. C.P. 02200, Mexico; E-Mails: (S.C.-A.); (M.R.-R.)
| | - Mario Romero-Romo
- Departamento de Materiales, Universidad Autónoma Metropolitana Azcapotzalco, Av. San Pablo #180, Col. Reynosa-Tamaulipas, Mexico D.F. C.P. 02200, Mexico; E-Mails: (S.C.-A.); (M.R.-R.)
| | - Georgina Alarcón-Angeles
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Delegación Coyoacán, Mexico D.F. C.P. 04960, Mexico; E-Mail:
| |
Collapse
|
27
|
Manjunatha JG, Deraman M, Basri NH, Nor NSM, Talib IA, Ataollahi N. Sodium dodecyl sulfate modified carbon nanotubes paste electrode as a novel sensor for the simultaneous determination of dopamine, ascorbic acid, and uric acid. CR CHIM 2014. [DOI: 10.1016/j.crci.2013.09.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Fabregat G, Estrany F, Casas MT, Alemán C, Armelin E. Detection of Dopamine Using Chemically Synthesized Multilayered Hollow Microspheres. J Phys Chem B 2014; 118:4702-9. [DOI: 10.1021/jp500959j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Georgina Fabregat
- Departament
d’Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain
- Center
for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, 08028 Barcelona, Spain
| | - Francesc Estrany
- Departament
d’Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain
- Center
for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, 08028 Barcelona, Spain
| | - Maria Teresa Casas
- Departament
d’Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain
| | - Carlos Alemán
- Departament
d’Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain
- Center
for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, 08028 Barcelona, Spain
| | - Elaine Armelin
- Departament
d’Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain
- Center
for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, 08028 Barcelona, Spain
| |
Collapse
|
29
|
Mary Nancy T, Anithakumary V, Kumara Swamy B. Solar graphene modified glassy carbon electrode for the voltammetric resolution and detection of dopamine, ascorbic acid and uric acid. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Palomar-Pardavé M, Corona-Avendaño S, Romero-Romo M, Alarcón-Angeles G, Merkoçi A, T. Ramírez-Silva M. Supramolecular interaction of dopamine with β-cyclodextrin: An experimental and theoretical electrochemical study. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Mazloum-Ardakani M, Abolhasani M, Mirjalili BF, Sheikh-Mohseni MA, Dehghani-Firouzabadi A, Khoshroo A. Electrocatalysis of dopamine in the presence of uric acid and folic acid on modified carbon nanotube paste electrode. CHINESE JOURNAL OF CATALYSIS 2014. [DOI: 10.1016/s1872-2067(12)60734-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Aldana-González J, Palomar-Pardavé M, Corona-Avendaño S, Montes de Oca M, Ramírez-Silva M, Romero-Romo M. Gold nanoparticles modified-ITO electrode for the selective electrochemical quantification of dopamine in the presence of uric and ascorbic acids. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.07.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Pretreated/Carbon paste electrode based voltammetric sensors for the detection of dopamine in presence of ascorbic acid and uric acid. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.05.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Canevari TC, Raymundo-Pereira PA, Landers R, Benvenutti EV, Machado SAS. Sol-gel thin-film based mesoporous silica and carbon nanotubes for the determination of dopamine, uric acid and paracetamol in urine. Talanta 2013; 116:726-35. [PMID: 24148467 DOI: 10.1016/j.talanta.2013.07.044] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/17/2013] [Accepted: 07/19/2013] [Indexed: 12/25/2022]
Abstract
This work describes the preparation, characterization and application of a hybrid material composed of disordered mesoporous silica (SiO2) modified with multiwalled carbon nanotubes (MWCNTs), obtained by the sol-gel process using HF as the catalyst. This hybrid material was characterized by N2 adsorption-desorption isotherms, X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission microscopy (HR-TEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). This new hybrid material was used for the construction of a thin film on a glassy carbon electrode. The modified electrode using this material was designated SiO2/MWCNT/GCE. The electrocatalytic properties of the electrode toward dopamine, uric acid and paracetamol oxidation were studied by differential pulse voltammetry. Well-defined and separated oxidation peaks were observed in phosphate buffer solution at pH 7.0, in contrast with the ill-defined peaks observed with unmodified glassy carbon electrodes. The electrode had high sensitivity for the determination of dopamine, uric acid and paracetamol, with the limits of detection obtained using statistical methods, at 0.014, 0.068 and 0.098 µmol L(-1), respectively. The electrode presented some important advantages, including enhanced physical rigidity, surface renewability by polishing and high sensitivity, allowing the simultaneous determination of these three analytes in a human urine sample.
Collapse
Affiliation(s)
- Thiago C Canevari
- Institute of Chemistry, State University of São Paulo, PO Box 780, 13560-970 São Carlos, SP, Brazil.
| | | | | | | | | |
Collapse
|
35
|
Hong S, Lee LYS, So MH, Wong KY. A Dopamine Electrochemical Sensor Based on Molecularly Imprinted Poly(acrylamidophenylboronic acid) Film. ELECTROANAL 2013. [DOI: 10.1002/elan.201200631] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|