1
|
Ghanbari MH, Biesalski M, Friedrich O, Etzold BJM. Screen printed 3D microfluidic paper-based and modifier-free electroanalytical device for clozapine sensing. Analyst 2024; 149:5411-5422. [PMID: 39377284 DOI: 10.1039/d4an01136h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The increasing demand in healthcare for accessible and cost-effective analytical tools is driving the development of reliable platforms to the customization of therapy according to individual patient drug serum levels, e.g. of anti-psychotics in schizophrenia. A modifier-free microfluidic paper-based electroanalytical device (μPED) holds promise as a portable, sensitive, and affordable solution. While many studies focus on the working electrode catalysts, improvements by engineering aspects e.g. of the electrode arrangement are less reported. In our study, we demonstrate the enhanced capabilities of the 3D electrode layout of μPED compared to 2D μPED arrangements. We especially show that screen printing can be employed to prepare 3D μPEDs. We conducted a comparison of different 2D and 3D electrode arrangements utilizing cyclic voltammetry in [Fe(CN)6]3-/4-, along with square-wave voltammetry for clozapine (CLZ) sensing. Our findings reveal that the utilization of the 3D μPED leads to an increase in both the electrochemically active surface area and the electron transfer rate. Consequently, this enhancement contributes to improve sensitivity in the CLZ sensing. The 3D μPED clearly outperforms the 2D μPED arrangement in terms of signal strength. With the 3D μPED under the optimized conditions, a linear dose-response for a concentration range from 7.0 to 100 μM was achieved. The limit of detection and sensitivity was determined to be 1.47 μM and 1.69 μA μM-1 cm-2, respectively. This evaluation is conducted in the context of detection and determination of CLZ in a human blood serum sample. These findings underscore the potential of the 3D μPED for future applications in pharmacokinetic analyses and clinical tests to personalize the management of schizophrenia.
Collapse
Affiliation(s)
- Mohammad Hossein Ghanbari
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Power-To-X Technologies, 90762 Fürth, Germany.
- Technische Universität Darmstadt, Ernst-Berl-Institute for Technical Chemistry and Macromolecular Science, Peter-Grünberg-Straße 8, 64287, Darmstadt, Germany
| | - Markus Biesalski
- Technische Universität Darmstadt, Ernst-Berl-Institute for Technical Chemistry and Macromolecular Science, Peter-Grünberg-Straße 8, 64287, Darmstadt, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Paul-Gordan-Str. 3, 91052, Erlangen, Germany
| | - Bastian J M Etzold
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Power-To-X Technologies, 90762 Fürth, Germany.
- Technische Universität Darmstadt, Ernst-Berl-Institute for Technical Chemistry and Macromolecular Science, Peter-Grünberg-Straße 8, 64287, Darmstadt, Germany
| |
Collapse
|
2
|
Harmankaya S, Deveci HA, Harmankaya A, Gül FH, Atar N, Yola ML. Thiram Determination in Milk Samples by Surface Plasmon Resonance Based on Molecularly Imprinted Polymers and Sulphur-Doped Titanium Dioxide. BIOSENSORS 2024; 14:329. [PMID: 39056605 PMCID: PMC11275002 DOI: 10.3390/bios14070329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
In this work, a new surface plasmon resonance (SPR) sensor based on sulphur-doped titanium dioxide (S-TiO2) nanostructures and molecularly imprinted polymer (MIP) was presented for thiram (THI) determination in milk samples. Firstly, the S-TiO2 nanomaterial with a high product yield was prepared by using a facile sol-gel hydrolysis technique with a high product yield. After that, UV polymerization was carried out for the preparation of the THI-imprinted SPR chip based on S-TiO2 using a mixture including ethylene glycol dimethacrylate (EGDMA) as the cross-linker, N,N'-azobisisobutyronitrile (AIBN) as the initiator, and methacryloylamidoglutamicacid (MAGA) as the monomer. The reliability of the sensor preparation procedure has been successfully proven by characterization studies of the prepared nanomaterials and SPR chip surfaces through spectroscopic, microscopic, and electrochemical methods. As a result, the prepared SPR sensor showed linearity in the range of 1.0 × 10-9-1.0 × 10-7 M with a detection limit (LOD) of 3.3 × 10-10 M in the real samples, and a sensor technique for THI determination with high sensitivity, repeatability, and selectivity can be included in the literature.
Collapse
Affiliation(s)
- Sezen Harmankaya
- Department of Food Processing, Kars Vocational School, Kafkas University, Kars 36000, Turkey;
| | - Hacı Ahmet Deveci
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gaziantep University, Gaziantep 27000, Turkey;
| | - Ahmet Harmankaya
- Department of Chemistry, Faculty of Science and Literature, Kafkas University, Kars 36000, Turkey;
| | - Fatma Hazan Gül
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Mersin University, Mersin 33343, Turkey;
| | - Necip Atar
- Department of Chemical Engineering, Faculty of Engineering, Pamukkale University, Denizli 20160, Turkey;
| | - Mehmet Lütfi Yola
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep 27000, Turkey
| |
Collapse
|
3
|
Yu Z, Tang J, Gao Y, Wu D, Chen S, Zeng Y, Tang D, Liu X. Domain-Limited Sub-Nanometer Co Nanoclusters in Defective Nitrogen Doped Carbon Structures for Non-Invasive Drug Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309264. [PMID: 38010948 DOI: 10.1002/smll.202309264] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/07/2023] [Indexed: 11/29/2023]
Abstract
In this work, sub-nanometer Co clusters anchored on porous nitrogen-doped carbon (C─N─Co NCs) are successfully prepared by high-temperature annealing and pre-fabricated template strategies for non-invasive sensing of clozapine (CLZ) as an efficient substrate adsorption and electrocatalyst. The introduction of Co sub-nanoclusters (Co NCs) provides enhanced electrochemical performance and better substrate adsorption potential compared to porous and nitrogen-doped carbon structures. Combined with ab initio calculations, it is found that the favorable CLZ catalytic performance with C─N─Co NCs is mainly attributed to possessing a more stable CLZ adsorption structure and lower conversion barriers of CLZ to oxidized state CLZ. An electrochemical sensor for CLZ detection is conceptualized with a wide operating range and high sensitivity, with monitoring capabilities validated in a variety of body fluid environments. Based on the developed CLZ sensing system, the CLZ correlation between blood and saliva and the accuracy of the sensor are investigated by the gold standard method and the rat model of drug administration, paving the way for non-invasive drug monitoring. This work provides new insights into the development of efficient electrocatalysts to enable drug therapy and administration monitoring in personalized healthcare systems.
Collapse
Affiliation(s)
- Zhichao Yu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Juan Tang
- Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Yuan Gao
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Di Wu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Shuyun Chen
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
| |
Collapse
|
4
|
Senel M. Electrochemistry Test Strip as Platform for In Situ Detection of Blood Levels of Antipsychotic Clozapine in Finger-Pricked Sample Volume. BIOSENSORS 2023; 13:346. [PMID: 36979558 PMCID: PMC10046326 DOI: 10.3390/bios13030346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
With the increasing number of patients suffering from Parkinson's disease, the importance of measuring drug levels in patient body fluids has increased exponentially, particularly for the drug clozapine. There is a growing demand for real-time analysis of biofluids on a single low-cost platform in ultra-low fluid volumes with robustness. This study aims to measure the level of clozapine (Clz) with a portable potentiostat using a practical approach. For this purpose, we developed an inexpensive, portable platform via electrochemistry on a commercial glucose test strip (CTS). CTSs were first modified by removing the enzyme mixture from the surface of the sensing zone, which was followed by modification with Multi walled carbon nanotube (MWCNT) and Nafion. The electrochemical characteristics of CTS electrodes were investigated using cyclic voltammetry (CV) and differential voltammetry (DPV) techniques. The designed sensor displayed decent linear range, detection limit, reproducibility, and reusability results. A linear dynamic range of 0.1-5 μM clozapine was observed under optimized conditions with a good sensitivity (1.295 μA/μM) and detection limit (83 nM). Furthermore, the designed sensing electrode was used to measure the amount of Clz in real samples.
Collapse
Affiliation(s)
- Mehmet Senel
- Department of Biochemistry, Faculty of Pharmacy, Biruni University, Istanbul 34010, Turkey
| |
Collapse
|
5
|
Application of nickel-doped graphene nanotubes to modified GCE as a sensitive electrochemical sensor for the antipsychotic drug clozapine in spiked human blood serum samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-023-02745-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AbstractClozapine (CLZ) is one of the most vital medications for managing schizophrenia, and the timely measurement of CLZ levels has been recognized as an obstacle to the wider use of CLZ. Herein, for the first time, nickel-doped graphene nanotubes (Ni@GRNT) were used to construct an electrochemical CLZ sensor by drop coating Ni@GRNT suspension on a glassy carbon electrode. The Ni@GRNT was synthesized and characterized using X‐ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The electrochemical behavior and influence of different physicochemical factors of sensing electrodes were investigated by using cyclic voltammetry, EIS technique, and differential pulse voltammetry techniques. Also, the catalytic rate constant (kcat) and the transfer coefficient (α) were calculated. The modified electrode illustrated satisfactory linear range, detection limit (LOD), reusability, and reproducibility results. At optimal experimental conditions, measurements can be performed at a broad linear dynamic range of 0.3 nmol L−1–60.0 μmol L−1 CLZ and with a LOD of 0.1 nmol L−1. The sensitivity value was estimated to be 3.06 μA µmol L−1 cm−2. Ultimately, this platform was successfully used for CLZ sensing in spiked human blood serum and tablet samples with an accuracy of > 93%.
Graphical abstract
Collapse
|
6
|
Xie J, Zhang L, Liu Z, Ling G, Zhang P. Application of electrochemical sensors based on nanomaterials modifiers in the determination of antipsychotics. Colloids Surf B Biointerfaces 2022; 214:112442. [PMID: 35278857 DOI: 10.1016/j.colsurfb.2022.112442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 01/08/2023]
Abstract
At present, the content of antipsychotics in samples is always analyzed by traditional detection methods, including mass spectrometry (MS), spectrophotometry, fluorescence, capillary electrophoresis (CE). However, conventional methods are cumbersome and complex, require a large sample volume, many pre-processing steps, long analysis cycles, expensive instruments, and need well-trained detection capabilities personnel. In addition, patients with schizophrenia require frequent and painful blood collection procedures, which adds additional treatment costs and time burdens. In view of these factors, electrochemical methods have become the most promising candidate technology for timely analysis due to their low cost, simple operation, excellent sensitivity and specificity. As we all know, nanomaterials play an extremely important role in electrochemical sensing applications. As the sensor modifiers, nanomaterials enable electrochemical analysis to overcome the time-consuming and labor-intensive shortcomings of traditional detection methods, and greatly reduce the research cost. Nanomaterials modified electrodes can be used as sensors to determine the concentration of antipsychotics in organisms quickly and accurately, which is a bright spot in the application of nanomaterials. The combination of different nanomaterials can even form a nanocomposite with a synergistic effect. This paper firstly reviews the application of nanomaterials-modified sensors on the basis of research in the past ten years, reviews the use of nanomaterial-modified sensors to quickly and accurately determine the concentration of antipsychotics in biological samples, and demonstrates a new idea of using nanomaterials sensors for drug monitoring and determination. At the end of this review, a brief overview is given of the limitations and the future prospects of nanomaterial sensors for the determination of antipsychotics concentrations.
Collapse
Affiliation(s)
- Jiao Xie
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Lijing Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Zhiling Liu
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
7
|
Wang K, Yang L, Huang H, Lv N, Liu J, Liu Y. Nanochannel Array on Electrochemically Polarized Screen Printed Carbon Electrode for Rapid and Sensitive Electrochemical Determination of Clozapine in Human Whole Blood. Molecules 2022; 27:2739. [PMID: 35566087 PMCID: PMC9101977 DOI: 10.3390/molecules27092739] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
Rapid and highly sensitive determination of clozapine (CLZ), a psychotropic drug for the treatment of refractory schizophrenia, in patients is of great significance to reduce the risk of disease recurrence. However, direct electroanalysis of CLZ in human whole blood remains a great challenge owing to the remarkable fouling that occurs in a complex matrix. In this work, a miniaturized, integrated, disposable electrochemical sensing platform based on the integration of nanochannel arrays on the surface of screen-printed carbon electrodes (SPCE) is demonstrated. The device achieves high determination sensitivity while also offering the electrode anti-fouling and anti-interference capabilities. To enhance the electrochemical performance of SPCE, simple electrochemical polarization including anodic oxidation and cathodic reduction is applied to pretreat SPCE. The electrochemically polarized SPCE (p-SPCE) exhibits an enhanced electrochemical peak signal toward CLZ compared with bare SPCE. An electrochemically assisted self-assembly method (EASA) is utilized to conveniently electrodeposit a vertically ordered mesoporous silica nanomembrane film (VMSF) on the p-SPCE, which could further enrich CLZ through electrostatic interactions. Owing to the dual signal amplification based on the p-SPCE and VMSF nanochannels, the developed VMSF/SPCE sensor enables determination of CLZ in the range from 50 nM to 20 μM with a low limit of detection (LOD) of 28 nM (S/N = 3). Combined with the excellent anti-fouling and anti-interference abilities of VMSF, direct and sensitive determination of CLZ in human blood is also achieved.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China;
| | - Luoxing Yang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Huili Huang
- Department of Psychiatry, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou 310018, China;
| | - Ning Lv
- Department of Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310018, China;
| | - Jiyang Liu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Youshi Liu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China;
| |
Collapse
|
8
|
Caruncho-Pérez S, Prado-Comesaña AM, Arellano M, Pazos M, Ángeles Sanromán M, González-Romero E. Methodology for decentralized analysis: detection, quantification and in situ monitoring of pharmaceutical formulations removal by electro-Fenton. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Arham Z, Kurniawan K. Electrode modifier performance of TiO2 incorporated carbon quantum dots nanocomposites on Fe(CN)3−6/Fe(CN)4−6 electrochemical system. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-0980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Development and characterization of electrochemical sensors based on carbon modified with TiO2 nanoparticles. HEMIJSKA INDUSTRIJA 2022. [DOI: 10.2298/hemind220105013m] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of this study is the development and characterization of a
carbon-based electrochemical sensor, modified with TiO2 nanoparticles for
potential application in electroanalytical techniques. The influence of
binder and modifier contents on morphological, physicochemical and
electrochemical characteristics of the electrode material was investigated
in order to determine the optimal ratio of the carbon
material/binder/modifier. Carbon pastes were prepared from mixtures
containing graphite powder, TiO2 nanoparticles and liquid hydrocarbons.
Scanning electron microscopy showed that the electrode material becomes more
compact with the addition and the increase in the binder material content,
while increasing the proportion of TiO2 nanoparticles did not have any
significant effect on the material morphology showing fairly homogeneous
nanoparticle distribution in the graphite electrode material. The test
results indicate that the modified carbon paste with 40 vol.% paraffin oil
(PO) and 6-8 wt.% TiO2 nanoparticles is characterized by the lowest value of
specific resistance. By applying cyclic voltammetry, the most pronounced
degree of reversibility was obtained in relation to the standard reversible
redox system ([Fe (CN)]-3/-4) for the electrode material with 30-40 vol.% PO
and 8-10 wt.% TiO2 nanoparticles. Characterization of the electrode material
based on carbon modified with TiO2 nanoparticles indicated that the optimal
composition contains 40 vol.% PO and 6-8 wt.% TiO2 nanoparticles, which is
important for application in electroanalytical techniques.
Collapse
|
11
|
Saylakcı R, Incebay H. An electrochemical platform of tannic acid and carbon nanotubes for the sensitive determination of the antipsychotic medication clozapine in pharmaceutical and biological samples. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Sabeti M, Ensafi AA, Rezaei B. Polydopamine‐modified MWCNTs‐glassy Carbon Electrode, a Selective Electrochemical Morphine Sensor. ELECTROANAL 2021. [DOI: 10.1002/elan.202100158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- M. Sabeti
- Department of Chemistry Isfahan University of Technology Isfahan 84156–83111 Iran
| | - Ali A. Ensafi
- Department of Chemistry Isfahan University of Technology Isfahan 84156–83111 Iran
| | - B. Rezaei
- Department of Chemistry Isfahan University of Technology Isfahan 84156–83111 Iran
| |
Collapse
|
13
|
Senel M, Durmus Z, Alachkar A. Measurement of the Antipsychotic Clozapine Using Reduced Graphene Oxide Nanocomposites‐Au/Pd/Pt Electrodes. ELECTROANAL 2021. [DOI: 10.1002/elan.202060538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Mehmet Senel
- Department of Pharmaceutical Sciences University of California Irvine CA 92697-4625 United States
| | - Zehra Durmus
- Centre for Innovation Competence SiLi-nano Martin Luther University Halle-Wittenberg 06120 Halle (Salle) Germany
| | - Amal Alachkar
- Department of Pharmaceutical Sciences University of California Irvine CA 92697-4625 United States
| |
Collapse
|
14
|
Senel M, Alachkar A. Lab-in-a-pencil graphite: A 3D-printed microfluidic sensing platform for real-time measurement of antipsychotic clozapine level. LAB ON A CHIP 2021; 21:405-411. [PMID: 33331378 DOI: 10.1039/d0lc00970a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel lab-in-a-pencil graphite microfluidic sensing electrode (μFSE) was fabricated for real-time flow injection measurement of the antipsychotic drug clozapine (Clz). A simple, low-cost, and reusable μFSE was obtained by using 3D printing of a microfluidic chamber integrated with a flat pencil graphite without the need to utilize complex technologies. The μFSE has tubular geometry with 800 μm diameter, where the solution continuously flows in the holes of flat pencil graphite electrodes. Under optimized conditions, this device offers fast and effective Clz detection with good analytical features. A linear calibration curve in the range of 0.5 to 10 μM Clz was obtained with good sensitivity (0.01275 μA μM-1) and detection limit (24 nM). Finally, we demonstrate the applicability of our lab-fabricated microfluidic electrochemical device by monitoring Clz in serum samples at low concentrations.
Collapse
Affiliation(s)
- Mehmet Senel
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA 92697-4625, USA.
| | | |
Collapse
|
15
|
Bacil RP, de O. Marcondes Filho EA, de A. Dias K, Portes MC, de Araujo WR, Oliveira-Silva D, dos Santos AA, Serrano SH. The chemical interaction between the neurotransmitter dopamine and the antipsychotic drugs olanzapine and quetiapine. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Veerakumar P, Manavalan S, Chen SM, Pandikumar A, Lin KC. Ultrafine Bi-Sn nanoparticles decorated on carbon aerogels for electrochemical simultaneous determination of dopamine (neurotransmitter) and clozapine (antipsychotic drug). NANOSCALE 2020; 12:22217-22233. [PMID: 33141140 DOI: 10.1039/d0nr06028c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This present study describes the synthesis of ultrafine Bi-Sn nanoparticles decorated on carbon aerogels (Bi-Sn NP/CAG) as a nanocomposite for the electrochemical simultaneous determination of dopamine (DA) and clozapine (CLZ). The typical characterization techniques, such as XRD, Raman, BET, FT-IR, TGA, XPS, and FE-SEM/TEM, showed useful insights into the crystal phase and morphology of Bi-Sn NP/CAG. Integrated Bi-Sn NP/CAG built into a cost-effective screen printed carbon electrode (SPCE) offers a high electrochemical surface area (ECSA) compared to unmodified, Bi-Sn, and CAG/SPCEs, such that it favourably allowed the binding of DA and CLZ molecules onto the surface at the Bi-Sn/CAG, which was demonstrated by cyclic and differential pulse voltammetry techniques. As a result, the DA and CLZ sensing exhibited low detection limits (DL, 4.6 and 97.6 nM (S/N = 3)), and sensitivity (3.402 and 0.4 μA μM-1 cm-2) over a wide linear range (0.02-97.59 and 0.5-2092 μM), respectively. To go a step further, the Bi-Sn NP/CAG/SPCE was applied for the simultaneous determination of DA and CLZ which featured lower DL (23.1 and 31.3 nM (S/N = 3)), and sensitivity (0.4979 and 0.04 μA μM-1 cm-2) over a wide linear range (2-182 and 10-910 μM), respectively. The selectivity for DA and CLZ in the presence of a 10-fold concentration of their potentially interfering active species was demonstrated. Finally, this sensing methodology enables the rapid electrochemical determination of the amount of DA and CLZ in a rat brain region serum sample with successful recovery outcomes.
Collapse
Affiliation(s)
- Pitchaimani Veerakumar
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
17
|
Promsuwan K, Kanatharana P, Thavarungkul P, Limbut W. Subnanomolar detection of promethazine abuse using a gold nanoparticle-graphene nanoplatelet-modified electrode. Mikrochim Acta 2020; 187:646. [PMID: 33165663 DOI: 10.1007/s00604-020-04616-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022]
Abstract
A simple, sensitive, and effective adsorptive stripping voltammetric sensor for the detection of trace-level promethazine was created based on a gold nanoparticle-graphene nanoplatelet-modified glassy carbon electrode (AuNP-GrNP/GCE). AuNP-GrNP nanocomposites were synthesized using an electroless deposition process, and the morphology was characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The electrochemical behavior and detection of promethazine at the AuNP-GrNP/GCE were investigated utilizing cyclic voltammetry and adsorptive stripping voltammetry. The AuNP-GrNP/GCE showed outstanding synergistic electrochemical activity for promethazine oxidation, a highly active surface area, great adsorptivity, and outstanding catalytic properties. The electrolyte pH, amount of AuNP-GrNP nanocomposite, preconcentration potential (vs. Ag/AgCl), and time were optimized to obtain a high performance electrochemical sensor. Under optimal conditions, the proposed sensor displayed two linear concentration ranges from 1.0 nmol L-1 to 1.0 μmol L-1 and from 1.0 to 10 μmol L-1. The limits of detection and quantitation were 0.40 and 1.4 nmol L-1, respectively. This sensor displayed high sensitivity, a capability for rapid analysis, and excellent repeatability and reproducibility. The developed sensor was effective and practical for promethazine detection in biological fluids and forensic samples, and the obtained results exhibited excellent agreement with the results obtained using the method described in the British Pharmacopoeia. Graphical abstract.
Collapse
Affiliation(s)
- Kiattisak Promsuwan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand. .,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand. .,Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.
| |
Collapse
|
18
|
Rahman H, Haque SM, Siddiqui MR. A Comprehensive Review on Importance and Quantitation of Atypical Antipsychotic Drugs and their Active Metabolites in Commercial Dosage Forms. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412915666190328214323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Schizophrenia is a severe mental illness that affects more than twenty-one
million people throughout the world. Schizophrenia also causes early death. Schizophrenia and other
related psychotic ailments are controlled by the prescription of antipsychotic drugs, which act by blocking
certain chemical receptors in the brain and thus relieves the symptoms of psychotic disorder. These
drugs are present in the different dosage forms in the market and provided in a certain amount as per the
need of the patients.
Objective:
Since such medications treat mental disorders, it is very important to have a perfect and accurate
dose so that the risk factor is not affected by a higher or lower dose, which is not sufficient for
the treatment. For accurate assay of these kinds of drugs, different analytical methods were developed
ranging from older spectrophotometric techniques to latest hyphenated methods.
Results:
The current review highlights the role of different analytical techniques that were employed in
the determination and identification of antipsychotic drugs and their metabolites. Techniques such as
spectrophotometry, fluorimetry, liquid chromatography, liquid chromatography-mass spectrometry, gas
chromatography, and gas chromatography-mass spectrometry employed in the method development of
such antipsychotic drugs were reported in the review. Different metabolites, identified using the hyphenated
techniques, were also mentioned in the review. The synthesis pathways of few of the metabolites
were mentioned.
Conclusion:
The review summarizes the analyses of different antipsychotic drugs and their metabolites.
A brief introduction of illnesses and their symptoms and possible medications were highlighted. Synthesis
pathways of the associated metabolites were also mentioned.
Collapse
Affiliation(s)
- Habibur Rahman
- Department of General Studies, Jubail Industrial College, P.O. Box No. 10099, Zip Code–31961, Jubail, Saudi Arabia
| | - S.K. Manirul Haque
- Department of Chemical & Process Engineering Technology, Jubail Industrial College, P.O. Box No 10099, Zip Code- 31961, Jubail, Saudi Arabia
| | - Masoom Raza Siddiqui
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
19
|
The use of micro carbon pencil lead electrode for sensitive HPLC-ED analysis of selected antipsychotic drugs. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
Wang Y, Guo Y, Lu J, Sun Y, Yu X, Gopinath SCB, Lakshmipriya T, Wu YS, Wang C. Nanodetection of Head and Neck Cancer on Titanium Oxide Sensing Surface. NANOSCALE RESEARCH LETTERS 2020; 15:33. [PMID: 32016709 PMCID: PMC6997316 DOI: 10.1186/s11671-020-3262-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/20/2020] [Indexed: 05/27/2023]
Abstract
Head and neck cancer is a heterogeneous disease, originating in the squamous cells lining the larynx (voice box), mouth, pharynx (throat), nasal cavity and salivary glands. Head and neck cancer diagnosis at the later stage is greatly influencing the survival rate of the patient. It makes a mandatory situation to identify this cancer at the earlier stages of development with a suitable biomarker. Squamous cell carcinoma antigen (SCC-Ag) is a circulating serum tumour biomarker, and the elevated level has been found in the head and neck cancer patients and highly correlated with the tumour volume. The present research was carried out to detect and quantify the level of SCC-Ag on titanium oxide (TiO2)-modified interdigitated electrode sensor (IDE) by SCC-Ag antibody. The detection of SCC-Ag was found at the level of 100 fM, while it was improved to 10 fM when the antibody was conjugated with gold nanostar, representing a 10-fold improvement. Interestingly, this enhancement in sensitivity is 1000-folds higher than other substrates. Moreover, the specificity analysis was carried out using two different control proteins and noticed that the antibody only recognised SCC-Ag, indicating the specific detection on IDE-TiO2 sensing surface.
Collapse
Affiliation(s)
- Yu Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081 Heilongjiang China
| | - Yan Guo
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081 Heilongjiang China
| | - Jianguang Lu
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081 Heilongjiang China
| | - Yanan Sun
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081 Heilongjiang China
| | - Xiaoguang Yu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150081 Heilongjiang China
| | - Subash C. B. Gopinath
- School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis Malaysia
| | - Thangavel Lakshmipriya
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis Malaysia
| | - Yuan Seng Wu
- Department of Biochemistry, Faculty of Medicine and Biomedical Sciences, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom, Selangor Malaysia
| | - Chao Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081 Heilongjiang China
| |
Collapse
|
21
|
Electrochemical determination of the antipsychotic medication clozapine by a carbon paste electrode modified with a nanostructure prepared from titania nanoparticles and copper oxide. Mikrochim Acta 2019; 186:698. [DOI: 10.1007/s00604-019-3760-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
|
22
|
Lotfi S, Veisi H. Electrochemical determination of clonazepam drug based on glassy carbon electrode modified with Fe3O4/R-SH/Pd nanocomposite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109754. [DOI: 10.1016/j.msec.2019.109754] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/22/2019] [Accepted: 05/14/2019] [Indexed: 10/26/2022]
|
23
|
Abstract
Introduction:Schizophrenia is seizures accompanied by severe psychotic symptoms, and a steady state of continuation in the form of periods of stagnation. Antipsychotics are now the basis of treatment for schizophrenia and there is no other molecule that is antipsychotic priority in treatment. Antipsychotics can be classified into two groups; dopamine receptor antagonists such as promazine, fluphenazine etc. and serotonin-dopamine antagonists including risperidone, olanzapine, ziprasidone, aripiprazole etc.Materials and Methods:Electrochemical methods have been used for the determination of antipsychotic agent just as used in the determination of many drug agents. Nearly all of the antipsychotics are electroactive and can be analyzed by electrochemical methods. Electroanalytical methods offer generally high sensitivity, are compatible with modern techniques, have low cost, low requirements, and compact design. Among the most commonly used types, there are cyclic voltammetry, differential pulse voltammetry, square wave voltammetry and linear sweep voltammetry.Conclusion:The aim of this review is to evaluate the main line and the advantages and uses of electroanalytical methods that employed for the determination of antipsychotic medication agents used in schizophrenia. Moreover, applications of the methods to pharmaceutical analysis of Antipsychotics upto- date is also summarized in a table.
Collapse
Affiliation(s)
- Leyla Karadurmus
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Duru Kır
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
24
|
Abstract
Background:
Qualitative and quantitative analysis of atypical antipsychotic drugs used for
the treatment of schizophrenia, depression, anxiety, and bipolar disorder obtaining satisfactory results
can be ensured by voltammetric techniques. The aim of this review is to present the application of voltammetric
techniques developed for the determination of the atypical antipsychotic drugs, which are
amisulpride, aripiprazole, clozapine, olanzapine, quetiapine fumarate, risperidone, sertindole, and ziprasidone,
in pharmaceutical dosage forms and biological samples.
Methods:
Studies in the literature published between 2004 and 2017 based on the voltammetric determination
of atypical antipsychotic drugs were gathered using scientific databases. The results obtained
from these studies were combined and interpreted.
Results:
oltammetric techniques applied for the sensitive determination of trace amounts of the selected
atypical antipsychotic drugs in their pharmaceutical dosage forms and biological fluids were
compared. The best analysis conditions were obtained after the optimization of some parameters such as
buffer type, pH, and scan rate. For diffusion controlled electrode processes, it was observed that differential
pulse and square wave voltammetry methods were generally used for the sensitive quantitative
determination of the drugs, whereas stripping methods were used for the adsorption controlled electrode
processes. Detection limits were between 1.53×10-3 µM for clozapine and 0.97 µM for risperidone.
Conclusion:
The electrodes used in the studies showed high selectivity, sensitivity, and good accuracy
with precision. The developed methods were also applied to pharmaceutical preparations of the drugs
and biological fluids with satisfactory results, without any interference from inactive excipients.
Collapse
Affiliation(s)
- Dilek Kul
- Faculty of Pharmacy, Department of Analytical Chemistry, Karadeniz Technical University, 61080, Ortahisar, Trabzon, Turkey
| |
Collapse
|
25
|
High performance cypermethrin pesticide detection using anatase TiO2-carbon paste nanocomposites electrode. Microchem J 2019. [DOI: 10.1016/j.microc.2018.11.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Lotfi S, Veisi H. Synthesis and characterization of novel nanocomposite (MWCNTs/CC-SH/Au) and its use as a modifier for construction of a sensitive sensor for determination of low concentration of levothyroxine in real samples. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2018.12.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Nickel oxide nanoparticles decorated graphene quantum dot as an effective electrode modifier for electrocatalytic oxidation and analysis of clozapine. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-3982-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Kilic T, Brunner V, Audoly L, Carrara S. A novel psychoanalytical approach: An electrochemical ligand-binding assay to screen antipsychotics. Biosens Bioelectron 2018; 100:139-147. [DOI: 10.1016/j.bios.2017.08.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/21/2017] [Accepted: 08/28/2017] [Indexed: 10/19/2022]
|
29
|
Nano molar detection of acyclovir, an antiviral drug at nanoclay modified carbon paste electrode. SENSING AND BIO-SENSING RESEARCH 2017. [DOI: 10.1016/j.sbsr.2017.04.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
30
|
Tian Y, Feng J, Bu Y, Wang X, Luo C, Sun M. In-situ hydrothermal synthesis of titanium dioxide nanorods on titanium wire for solid-phase microextraction of polycyclic aromatic hydrocarbons. Anal Bioanal Chem 2017; 409:4071-4078. [DOI: 10.1007/s00216-017-0353-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/25/2017] [Accepted: 03/30/2017] [Indexed: 01/03/2023]
|
31
|
Modified Carbon Paste Electrode In2S3/CPE Nanoparticles for Electrochemical Determination of Oxalic Acid by Cyclic Voltammetry. J CLUST SCI 2016. [DOI: 10.1007/s10876-016-1102-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Recent trends in electrochemical sensors for multianalyte detection – A review. Talanta 2016; 161:894-916. [DOI: 10.1016/j.talanta.2016.08.084] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 01/21/2023]
|
33
|
Kim E, Liu Y, Ben-Yoav H, Winkler TE, Yan K, Shi X, Shen J, Kelly DL, Ghodssi R, Bentley WE, Payne GF. Fusing Sensor Paradigms to Acquire Chemical Information: An Integrative Role for Smart Biopolymeric Hydrogels. Adv Healthc Mater 2016; 5:2595-2616. [PMID: 27616350 PMCID: PMC5485850 DOI: 10.1002/adhm.201600516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/26/2016] [Indexed: 12/14/2022]
Abstract
The Information Age transformed our lives but it has had surprisingly little impact on the way chemical information (e.g., from our biological world) is acquired, analyzed and communicated. Sensor systems are poised to change this situation by providing rapid access to chemical information. This access will be enabled by technological advances from various fields: biology enables the synthesis, design and discovery of molecular recognition elements as well as the generation of cell-based signal processors; physics and chemistry are providing nano-components that facilitate the transmission and transduction of signals rich with chemical information; microfabrication is yielding sensors capable of receiving these signals through various modalities; and signal processing analysis enhances the extraction of chemical information. The authors contend that integral to the development of functional sensor systems will be materials that (i) enable the integrative and hierarchical assembly of various sensing components (for chemical recognition and signal transduction) and (ii) facilitate meaningful communication across modalities. It is suggested that stimuli-responsive self-assembling biopolymers can perform such integrative functions, and redox provides modality-spanning communication capabilities. Recent progress toward the development of electrochemical sensors to manage schizophrenia is used to illustrate the opportunities and challenges for enlisting sensors for chemical information processing.
Collapse
Affiliation(s)
- Eunkyoung Kim
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Yi Liu
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Hadar Ben-Yoav
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Thomas E Winkler
- Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Kun Yan
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China
| | - Jana Shen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Deanna L Kelly
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, 21228, USA
| | - Reza Ghodssi
- Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA
| | - William E Bentley
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Gregory F Payne
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA.
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
34
|
Rezaeinasab M, Benvidi A, Tezerjani MD, Jahanbani S, Kianfar AH, Sedighipoor M. An Electrochemical Sensor Based on Ni(II) Complex and Multi Wall Carbon Nano Tubes Platform for Determination of Glucose in Real Samples. ELECTROANAL 2016. [DOI: 10.1002/elan.201600162] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Ali Benvidi
- Department of Chemistry, Faculty of Science; Yazd University; Yazd Iran
| | | | | | - Ali Hossein Kianfar
- Department of Chemistry, Faculty of Science; Isfahan University of Technology; Isfahan Iran
| | - Maryam Sedighipoor
- Department of Chemistry, Faculty of Science; Isfahan University of Technology; Isfahan Iran
| |
Collapse
|
35
|
Kinetics study and electrochemical synthesis of arylsulfinic acid derivatives of clozapine in green media. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Rouhollahi A, Kouchaki M, Seidi S. Electrically stimulated liquid phase microextraction combined with differential pulse voltammetry: a new and efficient design for in situ determination of clozapine from complicated matrices. RSC Adv 2016. [DOI: 10.1039/c5ra25157e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Electromembrane extraction combined with differential pulse voltammetry for in situ determination of clozapine from complicated matrices.
Collapse
Affiliation(s)
- Ahmad Rouhollahi
- Department of Analytical Chemistry
- Faculty of Chemistry
- K. N. Toosi University of Technology
- Tehran
- Iran
| | - Masoomeh Kouchaki
- Department of Analytical Chemistry
- Faculty of Chemistry
- K. N. Toosi University of Technology
- Tehran
- Iran
| | - Shahram Seidi
- Department of Analytical Chemistry
- Faculty of Chemistry
- K. N. Toosi University of Technology
- Tehran
- Iran
| |
Collapse
|
37
|
Mao A, Li H, Cai Z, Hu X. Determination of mercury using a glassy carbon electrode modified with nano TiO2 and multi-walled carbon nanotubes composites dispersed in a novel cationic surfactant. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.04.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
|
39
|
Chocron SE, Weisberger BM, Ben-Yoav H, Winkler TE, Kim E, Kelly DL, Payne GF, Ghodssi R. Multidimensional mapping method using an arrayed sensing system for cross-reactivity screening. PLoS One 2015; 10:e0116310. [PMID: 25789880 PMCID: PMC4366158 DOI: 10.1371/journal.pone.0116310] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/21/2014] [Indexed: 11/18/2022] Open
Abstract
When measuring chemical information in biological fluids, challenges of cross-reactivity arise, especially in sensing applications where no biological recognition elements exist. An understanding of the cross-reactions involved in these complex matrices is necessary to guide the design of appropriate sensing systems. This work presents a methodology for investigating cross-reactions in complex fluids. First, a systematic screening of matrix components is demonstrated in buffer-based solutions. Second, to account for the effect of the simultaneous presence of these species in complex samples, the responses of buffer-based simulated mixtures of these species were characterized using an arrayed sensing system. We demonstrate that the sensor array, consisting of electrochemical sensors with varying input parameters, generated differential responses that provide synergistic information of sample. By mapping the sensing array response onto multidimensional heat maps, characteristic signatures were compared across sensors in the array and across different matrices. Lastly, the arrayed sensing system was applied to complex biological samples to discern and match characteristic signatures between the simulated mixtures and the complex sample responses. As an example, this methodology was applied to screen interfering species relevant to the application of schizophrenia management. Specifically, blood serum measurement of antipsychotic clozapine and antioxidant species can provide useful information regarding therapeutic efficacy and psychiatric symptoms. This work proposes an investigational tool that can guide multi-analyte sensor design, chemometric modeling and biomarker discovery.
Collapse
Affiliation(s)
- Sheryl E. Chocron
- MEMS Sensors and Actuators Laboratory (MSAL), University of Maryland, College Park, Maryland, United States of America
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States of America
| | - Bryce M. Weisberger
- MEMS Sensors and Actuators Laboratory (MSAL), University of Maryland, College Park, Maryland, United States of America
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States of America
| | - Hadar Ben-Yoav
- MEMS Sensors and Actuators Laboratory (MSAL), University of Maryland, College Park, Maryland, United States of America
- Department of Electrical and Computer Engineering, Institute for Systems Research, University of Maryland, College Park, Maryland, United States of America
| | - Thomas E. Winkler
- MEMS Sensors and Actuators Laboratory (MSAL), University of Maryland, College Park, Maryland, United States of America
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States of America
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, United States of America
| | - Deanna L. Kelly
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Gregory F. Payne
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States of America
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, United States of America
| | - Reza Ghodssi
- MEMS Sensors and Actuators Laboratory (MSAL), University of Maryland, College Park, Maryland, United States of America
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States of America
- Department of Electrical and Computer Engineering, Institute for Systems Research, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
40
|
Winkler TE, Ben-Yoav H, Chocron SE, Kim E, Kelly DL, Payne GF, Ghodssi R. Electrochemical study of the catechol-modified chitosan system for clozapine treatment monitoring. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:14686-14693. [PMID: 25383917 DOI: 10.1021/la503529k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This work presents a thorough electrochemical and reliability analysis of a sensing scheme for the antipsychotic clozapine. We have previously demonstrated a novel detection approach for this redox-active drug, highly effective in schizophrenia treatment, based on a catechol-modified chitosan film. The biomaterial film enables amplification of the oxidative current generated by clozapine through redox cycling. Here, we study critical electrochemical and material aspects of the redox cycling system to overcome barriers in point-of-care monitoring in complex biological samples. Specifically, we explore the electrochemical parameter space, showing that enhanced sensing performance depends on the presence of a reducing mediator as well as the electrochemical technique applied. These factors account for up to 1.75-fold and 2.47-fold signal enhancement, respectively. Looking at potential interferents, we illustrate that the redox cycling system allows for differentiation between selected redox-active species, clozapine's structurally largely analogous metabolite norclozapine as well as the representative catecholamine dopamine. Furthermore, we investigate material stability and fouling with reuse as well as storage. We find no evidence of film fouling due to clozapine; slow overall biomaterial degradation with successive use accounts for a 2.2% absolute signal loss and can be controlled for. Storage of the redox cycling system appears feasible over weeks when kept in solution with only 0.26%/day clozapine signal degradation, while ambient air exposure of three or more days reduces performance by 58%. This study not only advances our understanding of the catechol-modified chitosan system, but also further establishes the viability of applying it toward sensing clozapine in a clinical setting. Such point-of-care monitoring will allow for broader use of clozapine by increasing convenience to patients as well as medical professionals, thus improving the lives of people affected by schizophrenia through personalized medicine.
Collapse
Affiliation(s)
- Thomas E Winkler
- MEMS Sensors and Actuators Laboratory (MSAL), Institute for Systems Research, Department of Electrical and Computer Engineering, ‡Fischell Department of Bioengineering, and §Institute for Bioscience and Biotechnology Research, University of Maryland , College Park, Maryland 20742, United States
| | | | | | | | | | | | | |
Collapse
|
41
|
Zhang J, Shao X, Yue J, Li D, Chen Z. Preparation of ractopamine-tetraphenylborate complexed nanoparticles used as sensors to rapidly determine ractopamine residues in pork. NANOSCALE RESEARCH LETTERS 2014; 9:639. [PMID: 25489290 PMCID: PMC4256977 DOI: 10.1186/1556-276x-9-639] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
In this work, we reported a simple, fast, and sensitive determination of ractopamine (RAC) residues in pork by using novel ractopamine-tetraphenylborate complexed nanoparticles (RT NPs) as sensors. The prepared RT NPs exhibited a fast response time of 10 s, a wide linear range from 0.1 to 1.0 × 10(-7) mol/L, and a very low detection limit of 7.4 × 10(-8) mol/L. The prepared sensor also presents a high selectivity for ractopamine under different pH conditions ranged from 2.85 to 7.18. These results reveal that the fabricated RT NPs can be used as efficient electrochemical sensors to determine ractopamine in animal productions.
Collapse
Affiliation(s)
- Jing Zhang
- College of Pharmacy, Liaoning Medical University, Jinzhou 121001, People’s Republic of China
| | - Xintian Shao
- College of Pharmacy, Liaoning Medical University, Jinzhou 121001, People’s Republic of China
| | - Jingli Yue
- College of Pharmacy, Liaoning Medical University, Jinzhou 121001, People’s Republic of China
| | - Donghui Li
- College of Pharmacy, Liaoning Medical University, Jinzhou 121001, People’s Republic of China
| | - Zhenhua Chen
- College of Pharmacy, Liaoning Medical University, Jinzhou 121001, People’s Republic of China
| |
Collapse
|
42
|
Omrani A, Rostami AA, Emamgholizadeh A. Electrocatalytically active nanocomposite carbon paste electrode modified with SiO2/poly (P-phenylendiamine) core/shell nanoparticles: application toward electro-oxidation of hydrazine. J Solid State Electrochem 2014. [DOI: 10.1007/s10008-014-2632-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Shahrokhian S, Azimzadeh M, Hosseini P. Modification of a glassy carbon electrode with a bilayer of multiwalled carbon nanotube/benzene disulfonate-doped polypyrrole: application to sensitive voltammetric determination of olanzapine. RSC Adv 2014. [DOI: 10.1039/c4ra04584j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
44
|
Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS. Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Mikrochim Acta 2014; 182:1-41. [PMID: 25568497 PMCID: PMC4281370 DOI: 10.1007/s00604-014-1308-4] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 06/06/2014] [Indexed: 11/27/2022]
Abstract
Nanomaterial-modified detection systems represent a chief driver towards the adoption of electrochemical methods, since nanomaterials enable functional tunability, ability to self-assemble, and novel electrical, optical and catalytic properties that emerge at this scale. This results in tremendous gains in terms of sensitivity, selectivity and versatility. We review the electrochemical methods and mechanisms that may be applied to the detection of neurological drugs. We focus on understanding how specific nano-sized modifiers may be applied to influence the electron transfer event to result in gains in sensitivity, selectivity and versatility of the detection system. This critical review is structured on the basis of the Anatomical Therapeutic Chemical (ATC) Classification System, specifically ATC Code N (neurotransmitters). Specific sections are dedicated to the widely used electrodes based on the carbon materials, supporting electrolytes, and on electrochemical detection paradigms for neurological drugs and neurotransmitters within the groups referred to as ATC codes N01 to N07. We finally discuss emerging trends and future challenges such as the development of strategies for simultaneous detection of multiple targets with high spatial and temporal resolutions, the integration of microfluidic strategies for selective and localized analyte pre-concentration, the real-time monitoring of neurotransmitter secretions from active cell cultures under electro- and chemotactic cues, aptamer-based biosensors, and the miniaturization of the sensing system for detection in small sample volumes and for enabling cost savings due to manufacturing scale-up. The Electronic Supporting Material (ESM) includes review articles dealing with the review topic in last 40 years, as well as key properties of the analytes, viz., pKa values, half-life of drugs and their electrochemical mechanisms. The ESM also defines analytical figures of merit of the drugs and neurotransmitters. The article contains 198 references in the main manuscript and 207 references in the Electronic Supporting Material. Figureᅟ
Collapse
Affiliation(s)
- Bankim J. Sanghavi
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904 USA
| | - Otto S. Wolfbeis
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, 93040 Germany
| | - Thomas Hirsch
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, 93040 Germany
| | - Nathan S. Swami
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904 USA
| |
Collapse
|
45
|
Ben-Yoav H, Winkler TE, Kim E, Chocron SE, Kelly DL, Payne GF, Ghodssi R. Redox cycling-based amplifying electrochemical sensor for in situ clozapine antipsychotic treatment monitoring. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.03.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
46
|
Mazloum-Ardakani M, Hosseinzadeh L, Khoshroo A, Naeimi H, Moradian M. Simultaneous Determination of Isoproterenol, Acetaminophen and Folic Acid Using a Novel Nanostructure-Based Electrochemical Sensor. ELECTROANAL 2013. [DOI: 10.1002/elan.201300401] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
47
|
An electrochemical sensor based on titanium oxide–carbon nanotubes nanocomposite for simultaneous determination of hydroquinone and catechol. RESEARCH ON CHEMICAL INTERMEDIATES 2013. [DOI: 10.1007/s11164-013-1420-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Solid-phase microextraction of phthalate esters from aqueous media by electrophoretically deposited TiO2 nanoparticles on a stainless steel fiber. J Chromatogr A 2013; 1283:1-8. [DOI: 10.1016/j.chroma.2013.01.092] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 01/20/2013] [Accepted: 01/21/2013] [Indexed: 12/30/2022]
|