1
|
Tejwani A, Sonkar U, Shrivas K, Tandey K, Karbhal I, Deb MK, Pervez S. Differential pulse voltametric detection of dopamine using polyaniline-functionalized graphene oxide/silica nanocomposite for point-of-care diagnostics. RSC Adv 2025; 15:15870-15878. [PMID: 40370845 PMCID: PMC12076068 DOI: 10.1039/d5ra00714c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025] Open
Abstract
In this study, a novel composite material, GO/SiO2@PANI, was synthesized and employed as an electrochemical sensor for the detection of dopamine in urine using differential pulse voltammetry (DPV). This work introduced a first-time combination of graphene oxide (GO) with silicon dioxide (SiO2) and the conducting polymer polyaniline (PANI) to improve dopamine detection. The composite material was synthesized using an in situ polymerization process, ensuring uniform integration of GO/SiO2 with PANI. The GO/SiO2@PANI-modified glassy carbon electrode (GCE) demonstrated a notable electrocatalytic activity for dopamine detection using DPV and CV. The performance of the sensor was evaluated across a range of dopamine concentrations, showing a linear detection range between 2 and 12 μM with a detection limit of 1.7 μM and relative standard deviation of 2.5%. The material's performance was attributed to the combined effects of graphene's surface area, PANI's conducting properties, and the structural integrity provided by SiO2 nanoparticles (NPs). Additionally, the sensor's robustness and high selectivity were confirmed through tests with synthetic urine samples, where dopamine concentrations were detected with high accuracy. This work provides a promising avenue for the development of low-cost and efficient dopamine sensors for clinical applications.
Collapse
Affiliation(s)
- Ankita Tejwani
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur CG 492010 India
| | - Urvashi Sonkar
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur CG 492010 India
| | - Kamlesh Shrivas
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur CG 492010 India
| | - Khushali Tandey
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur CG 492010 India
| | - Indrapal Karbhal
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur CG 492010 India
| | - Manas Kanti Deb
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur CG 492010 India
| | - Shamsh Pervez
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur CG 492010 India
| |
Collapse
|
2
|
Prasad GV, Reddy TM, Narayana AL, Hussain OM, Gopal TV, Shaikshavali P. Construction of the Embedded Li4Ti5O12-MWCNTs Nanocomposite Electrode for Diverse Applications in Electrochemical Sensing and Rechargeable Battery. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02584-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
3
|
Electrochemical Synthesis of Polymelamine/Gold Nanoparticle Modified Carbon Paste Electrode as Voltammetric Sensor of Dopamine. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Baig N, Kawde AN, Elgamouz A, Morsy M, Abdelfattah AM, Othaman R. Graphene nanosheet-sandwiched platinum nanoparticles deposited on a graphite pencil electrode as an ultrasensitive sensor for dopamine. RSC Adv 2022; 12:2057-2067. [PMID: 35425276 PMCID: PMC8979215 DOI: 10.1039/d1ra08464j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/30/2021] [Indexed: 01/22/2023] Open
Abstract
An ultra-sensitive sensor of dopamine is introduced. The sensor is constructed by encapsulating platinum nanoparticles (PtNPs) between reduced graphene oxide (GR) nanosheets. The sandwiched PtNPs between GR layers acted as a spacer to prevent aggregation and provided a fine connection between the GR nanosheets to provide fast charge transfer. This specific orientation of the GR nanosheets and PtNPs on the graphite pencil electrode (GPE) substantially improved the electrocatalytic activity of the sensor. The synthesized graphene oxide and the fabricated sensor were comprehensively characterized by Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, field emission-scanning electron microscopy (FE-SEM), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and square wave voltammetry (SWV). The value of the charge transfer coefficient (α), apparent heterogeneous electron transfer rate constant (k s), and electroactive surface area for dopamine were found to be about 0.57, 8.99 s-1, and 0.81 cm2, respectively. The developed sensor is highly sensitive towards dopamine, and the detection limit is 9.0 nM. The sensor response is linear for dopamine concentration from 0.06 to 20 μM (R 2 = 0.9991). The behavior of the sensor for dopamine in the presence of a high concentration of l(+) Ascorbic acid and other potential interferents was satisfactory. High recovery percentage between 90% and 105% in the human urine sample, good reproducibility, and facile fabrication of the electrode make it a good candidate for dopamine sensing.
Collapse
Affiliation(s)
- Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Abdel-Nasser Kawde
- Department of Chemistry, College of Sciences, University of Sharjah P. O. Box 27272 United Arab Emirates
| | - Abdelaziz Elgamouz
- Department of Chemistry, College of Sciences, University of Sharjah P. O. Box 27272 United Arab Emirates
| | - Mohamed Morsy
- Chemistry Department, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Ahmed Mohsen Abdelfattah
- Department of Architecture, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Rizafizah Othaman
- Polymer Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia Bangi Selangor 43600 Malaysia
| |
Collapse
|
5
|
Nair J.S A, S S, Sandhya KY. Picomolar level electrochemical detection of hydroquinone, catechol and resorcinol simultaneously using a MoS 2 nano-flower decorated graphene. Analyst 2022; 147:2966-2979. [DOI: 10.1039/d2an00531j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Graphene-Molybdenum disulphide nanocomposite was developed for the simultaneous electrochemical detection of dihydroxy benzene isomers attributed to the structural aspects.
Collapse
Affiliation(s)
- Arya Nair J.S
- Department of Chemistry, Indian Institute of Space Science and Technology, Valiyamala, Thiruvananthapuram 695-547, Kerala, India
| | - Saisree. S
- Department of Chemistry, Indian Institute of Space Science and Technology, Valiyamala, Thiruvananthapuram 695-547, Kerala, India
| | - K. Y. Sandhya
- Department of Chemistry, Indian Institute of Space Science and Technology, Valiyamala, Thiruvananthapuram 695-547, Kerala, India
| |
Collapse
|
6
|
Shahdost-Fard F, Bigdeli A, Hormozi-Nezhad MR. A Smartphone-Based Fluorescent Electronic Tongue for Tracing Dopaminergic Agents in Human Urine. ACS Chem Neurosci 2021; 12:3157-3166. [PMID: 34382769 DOI: 10.1021/acschemneuro.1c00160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The importance of tracing dopaminergic agents in the progression assessment of Parkinson's disease has boosted the demand for fast, sensitive, and real-time multi-analyte detection. Herein, visual and fingerprint fluorimetric patterns have been created by an optical sensor array to simultaneously detect and discriminate among levodopa, carbidopa, benserazide, and entacapone, as important dopaminergic agents. A dual emissive nanoprobe consisting of red quantum dots and blue carbon dots with an overall pink emission has been fabricated to provide unique emission patterns in the presence of the target analytes. The sensor elements in the array come from it's differential response in the absence and presence of cetyltrimethylammonium bromide under alkaline conditions. A smartphone camera was used to take photos from the solutions in the wells. Distinct changes in the spectral profiles along with vivid and concentration-dependent color variations led to visual discrimination of dopaminergic agents in a broad concentration range. The results of linear discriminant analysis revealed great discrimination accuracies. Different concentrations of the target analytes were excellently recognized in human urine. The high sensitivity of the array, which is a bonus to rapid, on-site, and visual discrimination of dopaminergic agents, holds great promise for routine analysis of real-world clinical samples.
Collapse
Affiliation(s)
- Faezeh Shahdost-Fard
- Department of Chemistry, Sharif University of Technology, 11155-9516, Tehran, Iran
- Department of Chemistry, Faculty of Sciences, Ilam University, 69315-516, Ilam, Iran
| | - Arafeh Bigdeli
- Department of Chemistry, Sharif University of Technology, 11155-9516, Tehran, Iran
| | - Mohammad Reza Hormozi-Nezhad
- Department of Chemistry, Sharif University of Technology, 11155-9516, Tehran, Iran
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 14588-89694, Tehran, Iran
| |
Collapse
|
7
|
Venkataprasad G, Reddy TM, Narayana AL, Hussain OM, Gopal TV, Shaikshavali P. Synthesis and characterization of a bi-functionalized lithium cobalt iron oxide/graphene nano-architectured composite material for electrochemical sensing of dopamine and as cathode in lithium-ion battery. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02801-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Lu Q, Chen L, Meng Q, Jiang Y, Xie L. A biomolecule chiral interface base on BSA for electrochemical recognition of amine enantiomers. Chirality 2021; 33:385-396. [PMID: 33938037 DOI: 10.1002/chir.23314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/17/2021] [Accepted: 04/08/2021] [Indexed: 11/07/2022]
Abstract
A composite chiral interface (BSA-MB-MWCNTs) was prepared from bovine serum albumin (BSA), methylene blue (MB), and multi-walled carbon nanotubes (MWCNTs) for chiral recognition of amine enantiomers (1S, 2S)-N,N'-dimethyl-1,2-cyclohexanediamine and (1R, 2R)-N,N'-dimethyl-1,2-cyclohexanediamine. The BSA-based composite was characterized by field emission scanning electron microscopy (FESEM) and ultraviolet-visible spectroscopy (UV-Vis). The electrochemical responses towards the two enantiomers were analyzed via cyclic voltammetry (CV), electrochemical AC impedance method (EIS), and differential-pulse voltammetry (DPV). The experimental results showed that the combination of MWCNTs and BSA could effectively improve the overall identification efficiency, and the peak current displayed by the S-enantiomer is larger, indicating that the prepared chiral surface has stronger interaction with the R-enantiomer. Under optimized condition, the current value of the oxidation peak of the chiral modified electrode showed a good linear relationship towards the amine concentration in the range of 5.0 × 10-3 to 5.0 × 10-5 mmol·L-1 . The proposed electrochemical chiral interface is easy to handle and provides a promising electrochemical sensing platform that can be used to identify chiral amine enantiomers.
Collapse
Affiliation(s)
- Qiuna Lu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Lei Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Qi Meng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Yan Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Licheng Xie
- Changzhou University Huaide College, Jingjiang, China
| |
Collapse
|
9
|
Naghian E, Shahdost-Fard F, Najafi M, Manafi MR, Torkian L, Rahimi-Nasrabadi M. Voltammetric measurement of entacapone in the presence of other medicines against Parkinson's disease by a screen-printed electrode modified with sulfur-tin oxide nanoparticles. Mikrochim Acta 2021; 188:92. [PMID: 33608774 DOI: 10.1007/s00604-021-04733-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 01/27/2021] [Indexed: 11/27/2022]
Abstract
A screen-printed electrode (SPE) is described modified with sulfur-tin oxide nanoparticles (S@SnO2NP) for the determination of entacapone (ENT) in the presence of other medicines against Parkinson's disease (PD). The S@SnO2NP was synthesized through the hydrothermal method and used in the modification of the SPE. The smart utilization of the S@SnO2NP and the SPE provided excellent properties such as high surface area and current density amplification by embedding an efficient sensing interface for highly selective electrochemical measurement. Under optimized experimental conditions, the anodic peak current related to the ENT oxidation onto the sensor surface at 0.46 V presented a linear response towards different ENT concentration sin the range 100 nM to 75 μM. The limit of detection (LOD) and electrochemical sensitivity were estimated to be 0.010 μM and 2.27 μA·μM-1·cm-2, respectively. The applicability of the sensor was evaluated during ENT determination in the presence of other conventional medicines againts, including levodopa (LD), carbidopa (CD), and pramipexole (PPX). The results of the analysis of human urine and pharmaceutical formulation as real samples using the developed sensor were in good agreement withre sults of high-performance liquid chromatography (HPLC) as a standard method. These findings demonstrated that the strategy based on the SPE is a cost-effective platform creating a promising candidate for practical determination of ENT in routine clinical testing.Graphical abstract.
Collapse
Affiliation(s)
- Ebrahim Naghian
- Department of Chemistry, South Tehran Branch Islamic Azad University, Tehran, Iran
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Mostafa Najafi
- Department of Chemistry, Faculty of Science, Imam Hossein University, Tehran, Iran.
| | - Mohammad Reza Manafi
- Department of Chemistry, South Tehran Branch Islamic Azad University, Tehran, Iran
| | - Leila Torkian
- Department of Chemistry, South Tehran Branch Islamic Azad University, Tehran, Iran
| | - Mehdi Rahimi-Nasrabadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
- Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Minta D, Moyseowicz A, Gryglewicz S, Gryglewicz G. A Promising Electrochemical Platform for Dopamine and Uric Acid Detection Based on a Polyaniline/Iron Oxide-Tin Oxide/Reduced Graphene Oxide Ternary Composite. Molecules 2020; 25:molecules25245869. [PMID: 33322578 PMCID: PMC7763624 DOI: 10.3390/molecules25245869] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 02/04/2023] Open
Abstract
A ternary polyaniline/Fe2O3-SnO2/reduced graphene oxide (PFSG) nanocomposite was prepared using a simple two-step hydrothermal treatment. The composite was applied as a glassy carbon electrode modifier (GCE) to enhance dopamine (DA) and uric acid (UA) detection. The ternary PFSG composite was compared with its binary precursor Fe2O3-SnO2/reduced graphene oxide (FSG). The influence of the modified GCE electrodes on their performance as a sensing platform was determined. GCE/PFSG showed better sensing parameters than GCE/FSG due to the introduction of polyaniline (PANI), increasing the electrocatalytic properties of the electrode towards the detected analytes. GCE/PFSG enabled the detection of low concentrations of DA (0.076 µM) and UA (1.6 µM). The peak potential separation between DA and UA was very good (180 mV). Moreover, the DA oxidation peak was unaffected even if the concentration of UA was ten times higher. The fabricated sensor showed excellent performance in the simultaneous detection with DA and UA limits of detection: LODDA = 0.15 µM and LODUA = 6.4 µM, and outstanding long-term stability towards DA and UA, holding 100% and 90% of their initial signals respectively, after one month of use.
Collapse
Affiliation(s)
- Daria Minta
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Gdańska 7/9, 50-344 Wrocław, Poland; (D.M.); (A.M.)
| | - Adam Moyseowicz
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Gdańska 7/9, 50-344 Wrocław, Poland; (D.M.); (A.M.)
| | - Stanisław Gryglewicz
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 42, 50-344 Wrocław, Poland;
| | - Grażyna Gryglewicz
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Gdańska 7/9, 50-344 Wrocław, Poland; (D.M.); (A.M.)
- Correspondence: ; Tel.: +48-71-320-6398; Fax: +48-71-320-6506
| |
Collapse
|
11
|
Cheng H, Liu J, Sun Y, Zhou T, Yang Q, Zhang S, Zhang X, Li G, Sun W. A fungus-derived biomass porous carbon-MnO 2 nanocomposite-modified electrode for the voltammetric determination of rutin. RSC Adv 2020; 10:42340-42348. [PMID: 35516740 PMCID: PMC9057972 DOI: 10.1039/d0ra05739h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/03/2020] [Indexed: 11/21/2022] Open
Abstract
In this study, we designed a simple procedure for the synthesis of fungus-derived biomass porous carbon (FBPC), which was further used to prepare a MnO2@FBPC composite by a hydrothermal method. The MnO2@FBPC nanocomposite showed a porous structure, large specific surface area, and high conductivity, and was modified on the carbon ionic liquid electrode (CILE) to obtain a working electrode for the sensitive voltammetric determination of rutin. The electrochemical response of rutin was studied via cyclic voltammetry with electrochemical parameters calculated. Under the optimal conditions, the linear range for the rutin analysis was obtained by the differential pulse voltammetry from 0.008 to 700.0 μmol L-1 with the detection limit of 2.67 nmol L-1 (3σ). This MnO2@FBPC/CILE was applied to directly detect the rutin concentration in drug and human urine samples with satisfactory results.
Collapse
Affiliation(s)
- Hui Cheng
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 P. R. China .,Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science of Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Juan Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science of Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Yunxiu Sun
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science of Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Ting Zhou
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 P. R. China
| | - Qiuyue Yang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 P. R. China
| | - Shuyao Zhang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 P. R. China
| | - Xiaoping Zhang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 P. R. China
| | - Guangjiu Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science of Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 P. R. China
| |
Collapse
|
12
|
Zhu L, Li X, Deng Y, Zou R, Shao B, Yan L, Ruan C, Sun W. Construction and electrochemical behavior of hemoglobin sensor based on ZnO doped carbon nanofiber modified electrode. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-02088-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Ko M, Mendecki L, Eagleton AM, Durbin CG, Stolz RM, Meng Z, Mirica KA. Employing Conductive Metal-Organic Frameworks for Voltammetric Detection of Neurochemicals. J Am Chem Soc 2020; 142:11717-11733. [PMID: 32155057 DOI: 10.1021/jacs.9b13402] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This paper describes the first implementation of an array of two-dimensional (2D) layered conductive metal-organic frameworks (MOFs) as drop-casted film electrodes that facilitate voltammetric detection of redox active neurochemicals in a multianalyte solution. The device configuration comprises a glassy carbon electrode modified with a film of conductive MOF (M3HXTP2; M = Ni, Cu; and X = NH, 2,3,6,7,10,11-hexaiminotriphenylene (HITP) or O, 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP)). The utility of 2D MOFs in voltammetric sensing is measured by the detection of ascorbic acid (AA), dopamine (DA), uric acid (UA), and serotonin (5-HT) in 0.1 M PBS (pH = 7.4). In particular, Ni3HHTP2 MOFs demonstrated nanomolar detection limits of 63 ± 11 nM for DA and 40 ± 17 nM for 5-HT through a wide concentration range (40 nM-200 μM). The applicability in biologically relevant detection was further demonstrated in simulated urine using Ni3HHTP2 MOFs for the detection of 5-HT with a nanomolar detection limit of 63 ± 11 nM for 5-HT through a wide concentration range (63 nM-200 μM) in the presence of a constant background of DA. The implementation of conductive MOFs in voltammetric detection holds promise for further development of highly modular, sensitive, selective, and stable electroanalytical devices.
Collapse
Affiliation(s)
- Michael Ko
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Lukasz Mendecki
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Aileen M Eagleton
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Claudia G Durbin
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Robert M Stolz
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Zheng Meng
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
14
|
Sensor based on redox conjugated poly(para-phenylene) for the simultaneous detection of dopamine, ascorbic acid, and uric acid in human serum sample. Anal Bioanal Chem 2020; 412:4433-4446. [DOI: 10.1007/s00216-020-02686-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 11/26/2022]
|
15
|
Xu Y, Gao T, Liang Y, Xiao D. Intercalation Lithium Cobalt Oxide for the Facile Fabrication of a Sensitive Dopamine Sensor. ChemElectroChem 2020. [DOI: 10.1002/celc.202000099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yanxue Xu
- College of Chemical EngineeringSichuan University Chengdu 610065 P. R. China
| | - Taotao Gao
- College of Chemical EngineeringSichuan University Chengdu 610065 P. R. China
| | - Yaming Liang
- College of Chemical EngineeringSichuan University Chengdu 610065 P. R. China
| | - Dan Xiao
- College of Chemical EngineeringSichuan University Chengdu 610065 P. R. China
| |
Collapse
|
16
|
Kamal Eddin FB, Wing Fen Y. Recent Advances in Electrochemical and Optical Sensing of Dopamine. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1039. [PMID: 32075167 PMCID: PMC7071053 DOI: 10.3390/s20041039] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
Nowadays, several neurological disorders and neurocrine tumours are associated with dopamine (DA) concentrations in various biological fluids. Highly accurate and ultrasensitive detection of DA levels in different biological samples in real-time can change and improve the quality of a patient's life in addition to reducing the treatment cost. Therefore, the design and development of diagnostic tool for in vivo and in vitro monitoring of DA is of considerable clinical and pharmacological importance. In recent decades, a large number of techniques have been established for DA detection, including chromatography coupled to mass spectrometry, spectroscopic approaches, and electrochemical (EC) methods. These methods are effective, but most of them still have some drawbacks such as consuming time, effort, and money. Added to that, sometimes they need complex procedures to obtain good sensitivity and suffer from low selectivity due to interference from other biological species such as uric acid (UA) and ascorbic acid (AA). Advanced materials can offer remarkable opportunities to overcome drawbacks in conventional DA sensors. This review aims to explain challenges related to DA detection using different techniques, and to summarize and highlight recent advancements in materials used and approaches applied for several sensor surface modification for the monitoring of DA. Also, it focuses on the analytical features of the EC and optical-based sensing techniques available.
Collapse
Affiliation(s)
- Faten Bashar Kamal Eddin
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Yap Wing Fen
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| |
Collapse
|
17
|
Li J, Shen H, Yu S, Zhang G, Ren C, Hu X, Yang Z. Synthesis of a manganese dioxide nanorod-anchored graphene oxide composite for highly sensitive electrochemical sensing of dopamine. Analyst 2020; 145:3283-3288. [DOI: 10.1039/d0an00348d] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel manganese dioxide nanorod-anchored graphene oxide (MnO2 NRs/GO) composite was synthesized by a simple hydrothermal method for the development of a highly sensitive electrochemical sensor for dopamine.
Collapse
Affiliation(s)
- Juan Li
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P.R. China
| | - Huifang Shen
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P.R. China
| | - Suhua Yu
- Guangling College
- Yangzhou University
- Yangzhou 225002
- P.R. China
| | - Geshan Zhang
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Chuanli Ren
- Clinical Medical College
- Yangzhou University
- Yangzhou
- P.R. China
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P.R. China
| | - Zhanjun Yang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P.R. China
| |
Collapse
|
18
|
The Influence of Hydrogen on the Indications of the Electrochemical Carbon Monoxide Sensors. SUSTAINABILITY 2019. [DOI: 10.3390/su12010014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article examines electrochemical carbon monoxide (CO) sensors used as mobile devices by rescue and firefighting units in Poland. The conducted research indicates that the presence of chlorine (Cl2), ammonia (NH3), hydrogen sulfide (H2S), hydrogen chloride (HCl), hydrogen cyanide (HCN), nitrogen (IV) oxide (NO2), and sulfur (IV) oxide (SO2) in the atmosphere does not affect the functioning of the electrochemical CO sensor. In the case of this sensor, there was a significant cross effect in relation to hydrogen (H2). It was found that the time and manner of using the sensor affects the behavior in relation to H2. Such a relationship was not recorded for CO. Measurements in a mixture of CO and H2 confirm the effect of hydrogen on the changes taking place inside the sensor. Independently of the ratio of H2 to CO, readings of CO were flawed. All analyses showed a significant difference between the electrochemical CO sensor readings and the expected values. Only in experiments with a 1:3 mixture of CO and H2 was the relative error less than 15%. The relative error in the analyzed concentration range for a sensor with an additional compensation electrode ranged from 7% to 38%; for a sensor without this electrode, it ranged from 23% to 55%. It was ascertained that in the cases of measurements for tests carried out at higher concentrations of H2 in relation to CO, a sensor with an additional electrode is significantly better (more accurate) than a sensor without such an electrode. Differences at the significance level p = 0.01 for measurements made in the CO:H2 mixture at a ratio of 1:3 were ascertained.
Collapse
|
19
|
Electrochemistry of myoglobin on graphene–SnO2 nanocomposite modified electrode and its electrocatalysis. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
20
|
Simultaneous electrochemical detection of ascorbic acid and dopamine on Cu2O/CuO/electrochemically reduced graphene oxide (CuxO/ERGO)-nanocomposite-modified electrode. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104157] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Mosammam MK, Ganjali MR, Habibi-Kool-Gheshlaghi M, Faridbod F. Electroanalysis of Catecholamine Drugs using Graphene Modified Electrodes. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180917113206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background:
Catecholamine drugs are a family of electroactive pharmaceutics, which are
widely analyzed through electrochemical methods. However, for low level online determination and
monitoring of these compounds, which is very important for clinical and biological studies, modified
electrodes having high signal to noise ratios are needed. Numerous materials including nanomaterials
have been widely used as electrode modifies for these families during the years. Among them, graphene
and its family, due to their remarkable properties in electrochemistry, were extensively used in
modification of electrochemical sensors.
Objective:
In this review, working electrodes which have been modified with graphene and its derivatives
and applied for electroanalyses of some important catecholamine drugs are considered.
Collapse
Affiliation(s)
- Mahya Karami Mosammam
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mona Habibi-Kool-Gheshlaghi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Farnoush Faridbod
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
22
|
Abdel Hameed R. Tin oxide species as promotive additives to Ni-P/C electrocatalysts for ethanol electro-oxidation in NaOH solution. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Alam MK, Rahman MM, Rahman MM, Kim D, Asiri AM, Khan FA. In-situ synthesis of gold nanocrystals anchored graphene oxide and its application in biosensor and chemical sensor. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.01.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Kumar KK, Devendiran M, Kalaivani RA, Narayanan SS. Enhanced electrochemical sensing of dopamine in the presence of AA and UA using a curcumin functionalized gold nanoparticle modified electrode. NEW J CHEM 2019. [DOI: 10.1039/c9nj04398e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In the present study, a electrochemical sensor for the determination of dopamine was developed with green synthesised gold nanoparticles using curcumin as a reducing and, functionalizing agent.
Collapse
Affiliation(s)
- K. Krishna Kumar
- Department of Analytical Chemistry
- School of Chemical Science
- University of Madras
- Chennai
- India
| | - M. Devendiran
- Central Instrumentation Laboratory (CIL)
- Department of Chemistry
- School of Basic Science
- Vels Institute of Science, Technology and Advanced Studies (VISTAS)
- Chennai
| | - R. A. Kalaivani
- Central Instrumentation Laboratory (CIL)
- Department of Chemistry
- School of Basic Science
- Vels Institute of Science, Technology and Advanced Studies (VISTAS)
- Chennai
| | - S. Sriman Narayanan
- Department of Analytical Chemistry
- School of Chemical Science
- University of Madras
- Chennai
- India
| |
Collapse
|
25
|
Biosynthesis of Copper Oxide (CuO) Nanowires and Their Use for the Electrochemical Sensing of Dopamine. NANOMATERIALS 2018; 8:nano8100823. [PMID: 30322069 PMCID: PMC6215139 DOI: 10.3390/nano8100823] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 11/17/2022]
Abstract
A facile one-step, eco-friendly, and cost-effective approach for the formation of copper oxide (CuO) nanowires by a green method using saponin-rich Sapindus mukorossi fruit extract (SMFE). The physio-chemical characteristics of the synthesized CuO nanowires have been characterized by X-ray Diffractometry (XRD), X-ray Photoelectron Spectroscopy (XPS), FT-IR (Fourier Transform Infrared Spectroscopy, FE-SEM (Scanning Electron Microscopy), and High-Resolution Transmission Electron Microscopy (HR-TEM). Further, the electrocatalytic activity of the CuO nanowires synthesized with SMFE has been investigated, and they have been used as dopamine (DA) sensors. Because of their unique properties, the CuO nanowires/GCE exhibited remarkable electrochemical response for the detection of DA with enhanced current response. The anodic current demonstrated that the CuO nanowires/GCE linearly detects the concentration of DA over the range of 0.1 µM to 0.105 mM of DA with a regression co-efficient of 0.9960. The obtained results illustrated that the synthesized CuO nanowires can easily stimulate the electron transfer reaction between DA and the nanowires modified electrode with the improvement of the conductivity and stability of the electrode. This remarkable electrocatalytic property of CuO nanowires makes it a unique electrochemical sensor for the detection of DA. Furthermore, the sensor is free from the interference of ascorbic acid, uric acid, and other interfering species. Moreover, the anti-interference performance also showed that the CuO nanowires/GCE could be employed for the determination of DA in real samples with good selectivity and sensitivity.
Collapse
|
26
|
Naghian E, Najafi M. Carbon paste electrodes modified with SnO2/CuS, SnO2/SnS and Cu@SnO2/SnS nanocomposites as voltammetric sensors for paracetamol and hydroquinone. Mikrochim Acta 2018; 185:406. [DOI: 10.1007/s00604-018-2948-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/02/2018] [Indexed: 11/25/2022]
|
27
|
Mihrican Muti, Melike Cantopcu. Nanosensing Platform for the Electrochemical Determination of Dopamine. JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1134/s1061934818080075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Veera Manohara Reddy Y, Sravani B, Agarwal S, Gupta VK, Madhavi G. Electrochemical sensor for detection of uric acid in the presence of ascorbic acid and dopamine using the poly(DPA)/SiO 2 @Fe 3 O 4 modified carbon paste electrode. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.04.059] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
$$\mathrm{NiFe}_{2}\mathrm{O}_{4 }$$ NiFe 2 O 4 nanoparticles-decorated activated carbon nanocomposite based electrochemical sensor for selective detection of dopamine in presence of uric acid and ascorbic acid. J CHEM SCI 2018. [DOI: 10.1007/s12039-017-1413-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Soundappan T, Haddad K, Kavadiya S, Raliya R, Biswas P. Crumpled graphene oxide decorated SnO2 nanocolumns for the electrochemical detection of free chlorine. APPLIED NANOSCIENCE 2017. [DOI: 10.1007/s13204-017-0603-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Sangamithirai D, Munusamy S, Narayanan V, Stephen A. A strategy to promote the electroactive platform adopting poly(o-anisidine)-silver nanocomposites probed for the voltammetric detection of NADH and dopamine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:425-437. [PMID: 28866184 DOI: 10.1016/j.msec.2017.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/26/2017] [Accepted: 06/16/2017] [Indexed: 10/19/2022]
Abstract
A study on the voltammetric detection of NADH (β-nicotinamide adenine dinucleotide), Dopamine (DA) and their simultaneous determination is presented in this work. The electrochemical sensor was fabricated with the hybrid nanocomposites of poly(o-anisidine) and silver nanoparticles prepared by simple and cost-effective insitu chemical oxidative polymerization technique. The nanocomposites were synthesized with different (w/w) ratios of o-anisidine and silver by increasing the amount of o-anisidine in each, by keeping silver at a fixed quantity. The XRD patterns revealed the semi-crystalline nature of poly(o-anisidine) and the face centered cubic structure of silver. The presence of silver in its metallic state and the formation of nanocomposite were established by XPS analysis. Raman studies suggested the presence of site-selective interaction between poly(o-anisidine) and silver. HRTEM studies revealed the formation of polymer matrix type nanocomposite with the embedment of silver nanoparticles. The sensing performance of the materials were studied via cyclic voltammetry, differential pulse voltammetry and chronoamperometry techniques. Fabricated sensor with 3:1 (w/w) ratio of poly(o-anisidine) and silver exhibited good catalytic activity towards the detection of NADH and DA in terms of potential and current response, when compared to others. Several important electrochemical parameters regulating the performance of the sensor have been evaluated. Under the optimum condition, differential pulse voltammetry method exhibited the linear response in the range of 0.03 to 900μM and 5 to 270μM with a low detection limit of 0.006μM and 0.052μM for NADH and DA, respectively. The modified electrodes exhibited good sensitivity, stability, reproducibility and selectivity with well-separated oxidation peaks for NADH and DA in the simultaneous determination of their binary mixture. The analytical performance of the nanocomposite as an electrochemical sensor was also established for the determination of NADH in human urine and water samples and DA in pharmaceutical dopamine injections with satisfactory coverage.
Collapse
Affiliation(s)
- D Sangamithirai
- Materials Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600025, India
| | - S Munusamy
- Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - V Narayanan
- Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - A Stephen
- Materials Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600025, India.
| |
Collapse
|
32
|
Asif SAB, Khan SB, Asiri AM. Assessment of graphene oxide/MgAl oxide nanocomposite as a non-enzymatic sensor for electrochemical quantification of hydrogen peroxide. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2016.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Phytic acid/graphene oxide nanocomposites modified electrode for electrochemical sensing of dopamine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:1086-1089. [DOI: 10.1016/j.msec.2016.11.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 02/03/2023]
|
34
|
Jing S, Zheng H, Zhao L, Qu L, Yu L. A sensitive sodium dodecyl sulfonate functionalized graphene hybrid SnO 2 nanoparticles composite modified glassy carbon electrode for detecting daphnetin. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
One-step in situ hydrothermal preparation of graphene–SnO2 nanohybrid for superior dopamine detection. J APPL ELECTROCHEM 2016. [DOI: 10.1007/s10800-016-1001-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Yang GH, Yan ZX, Wang HQ, Wu XM, He ZQ, Li QY, Huang YG, Li ZS. Controlled synthesis of expanded mesocarbon microbeads (EMCMB) by H2SO4-HNO3-CrO3 oxidation for superior lithium-storage application. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.05.201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Electrochemical detection of Cu 2+ using graphene–SnS nanocomposite modified electrode. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
38
|
Wang L, Xu SW, Xu HR, Song YL, Liu JT, Luo JP, Cai XX. Spatio-temporally resolved measurement of quantal exocytosis from single cells using microelectrode array modified with poly l-lysine and poly dopamine. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Zhang Y, Zhang M, Wei Q, Gao Y, Guo L, Al-Ghanim KA, Mahboob S, Zhang X. An Easily Fabricated Electrochemical Sensor Based on a Graphene-Modified Glassy Carbon Electrode for Determination of Octopamine and Tyramine. SENSORS 2016; 16:s16040535. [PMID: 27089341 PMCID: PMC4851049 DOI: 10.3390/s16040535] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 11/16/2022]
Abstract
A simple electrochemical sensor has been developed for highly sensitive detection of octopamine and tyramine by electrodepositing reduced graphene oxide (ERGO) nanosheets onto the surface of a glassy carbon electrode (GCE). The electrocatalytic oxidation of octopamine and tyramine is individually investigated at the surface of the ERGO modified glassy carbon electrode (ERGO/GCE) by using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Several essential factors including the deposition cycle of reduced graphene oxide nanosheets and the pH of the running buffer were investigated in order to determine the optimum conditions. Furthermore, the sensor was applied to the quantification of octopamine and tyramine by DPV in the concentration ranges from 0.5 to 40 μM and 0.1 to 25 μM, respectively. In addition, the limits of detection of octopamine and tyramine were calculated to be 0.1 μM and 0.03 μM (S/N = 3), respectively. The sensor showed good reproducibility, selectivity and stability. Finally, the sensor successfully detected octopamine and tyramine in commercially available beer with satisfactory recovery ranges which were 98.5%–104.7% and 102.2%–103.1%, respectively. These results indicate the ERGO/GCE based sensor is suitable for the detection of octopamine and tyramine.
Collapse
Affiliation(s)
- Yang Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology, Beijing 100083, China.
| | - Meiqin Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology, Beijing 100083, China.
| | - Qianhui Wei
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology, Beijing 100083, China.
| | - Yongjie Gao
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology, Beijing 100083, China.
| | - Lijuan Guo
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology, Beijing 100083, China.
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, P. O. Box 2455, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Shahid Mahboob
- Department of Zoology, College of Science, P. O. Box 2455, King Saud University, Riyadh 11451, Saudi Arabia.
- Department of Zoology, Government College University, Fsisalabad 38000, Pakistan.
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology, Beijing 100083, China.
| |
Collapse
|
40
|
Electrochemical determination of carbamazepin in the presence of paracetamol using a carbon ionic liquid paste electrode modified with a three-dimensional graphene/MWCNT hybrid composite film. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2015.12.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Rahi A, Karimian K, Heli H. Nanostructured materials in electroanalysis of pharmaceuticals. Anal Biochem 2016; 497:39-47. [PMID: 26751130 DOI: 10.1016/j.ab.2015.12.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/24/2015] [Accepted: 12/28/2015] [Indexed: 01/21/2023]
Abstract
Basic strategies and recent developments for the enhancement of the sensory performance of nanostructures in the electroanalysis of pharmaceuticals are reviewed. A discussion of the properties of nanostructures and their application as modified electrodes for drug assays is presented. The electrocatalytic effect of nanostructured materials and their application in determining low levels of drugs in pharmaceutical forms and biofluids are discussed.
Collapse
Affiliation(s)
- A Rahi
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - K Karimian
- Andisheh Pharma Sciences R&D Inc., Yousefabad, Jahanarar Avenue, Tehran, Iran
| | - H Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Nanomedicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
42
|
Yu Z, Li H, Zhang X, Liu N, Zhang X. NiO/graphene nanocomposite for determination of H2O2 with a low detection limit. Talanta 2015; 144:1-5. [DOI: 10.1016/j.talanta.2015.05.070] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 10/23/2022]
|
43
|
Peng S, Song S, Liu L, Kuang H, Xu C. Rapid enzyme-linked immunosorbent assay and immunochromatographic strip for detecting ribavirin in chicken muscles. FOOD AGR IMMUNOL 2015. [DOI: 10.1080/09540105.2015.1104657] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
44
|
Thirumalraj B, Palanisamy S, Chen SM, Sayee Kannan R. Alumina Polished Glassy Carbon Electrode as a Simple Electrode for Lower Potential Electrochemical Detection of Dopamine in its Sub-micromolar Level. ELECTROANAL 2015. [DOI: 10.1002/elan.201500446] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Nurzulaikha R, Lim H, Harrison I, Lim S, Pandikumar A, Huang N, Lim S, Thien G, Yusoff N, Ibrahim I. Graphene/SnO 2 nanocomposite-modified electrode for electrochemical detection of dopamine. SENSING AND BIO-SENSING RESEARCH 2015. [DOI: 10.1016/j.sbsr.2015.06.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
46
|
Ma HF, Chen TT, Luo Y, Kong FY, Fan DH, Fang HL, Wang W. Electrochemical determination of dopamine using octahedral SnO2 nanocrystals bound to reduced graphene oxide nanosheets. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1521-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
47
|
Wang Y, Ge H, Ye G, Chen H, Hu X. Carbon functionalized metal organic framework/Nafion composites as novel electrode materials for ultrasensitive determination of dopamine. J Mater Chem B 2015; 3:3747-3753. [PMID: 32262849 DOI: 10.1039/c4tb01869a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon functionalized metal organic frameworks (C/Al-MIL-53-(OH)2) were successfully prepared for the first time by a solvothermal technique and characterized by Fourier transform infrared spectroscopy, X-ray diffraction spectrometry, and scanning electron microscopy. This composite was coated with a Nafion film so as to form a Nafion/C/Al-MIL-53-(OH)2 modified glassy carbon electrode. The modified electrode was then used as a novel electrocatalyst for dopamine (DA) oxidation in phosphate buffer solution. Due to the synergistic effects of the different materials, including the high conductivity of carbon, the large surface area of Al-MIL-53-(OH)2, and the film-forming ability of a cation-exchange polymer, the modified electrode exhibited a remarkable enhancement effect on voltammetric response of DA. Under the optimal conditions, the response peak currents had a linear relationship with the DA concentration in the range from 3.0 × 10-8 to 1.0 × 10-5 mol L-1. The limits of detection and quantitation for DA were found to be 0.8 × 10-8 mol L-1 and 2.6 × 10-8 mol L-1, respectively. The analytical utilities of the proposed biosensor were achieved by analyzing the content of DA in biological fluids.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | | | | | | | | |
Collapse
|
48
|
Hydrothermal synthesis of Fe2O3/graphene nanocomposite for selective determination of ascorbic acid in the presence of uric acid. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.01.131] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Zhao P, Hao J. 2,6-Diaminopyridine-imprinted polymer and its potency to hair-dye assay using graphene/ionic liquid electrochemical sensor. Biosens Bioelectron 2015; 64:277-84. [DOI: 10.1016/j.bios.2014.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/31/2014] [Accepted: 09/04/2014] [Indexed: 02/08/2023]
|
50
|
Sheng G, Xu G, Xu S, Wang S, Luo X. Cost-effective preparation and sensing application of conducting polymer PEDOT/ionic liquid nanocomposite with excellent electrochemical properties. RSC Adv 2015. [DOI: 10.1039/c4ra15755a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A stable and porous nanocomposite of PEDOT/IL with excellent electrocatalytic activity was prepared through a cost-effective electrochemical strategy.
Collapse
Affiliation(s)
- Ge Sheng
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Guiyun Xu
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Shenghao Xu
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Shiying Wang
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Xiliang Luo
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| |
Collapse
|