1
|
Elancheziyan M, Lee S, Yoon TH, Singh M, Lee D, Won K. Disposable electrochemical sensors based on reduced graphene oxide/polyaniline/poly(alizarin red S)-modified integrated carbon electrodes for the detection of ciprofloxacin in milk. Mikrochim Acta 2024; 191:507. [PMID: 39098931 DOI: 10.1007/s00604-024-06578-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
An electrochemical sensor based on an electroactive nanocomposite was designed for the first time consisting of electrochemically reduced graphene oxide (ERGO), polyaniline (PANI), and poly(alizarin red S) (PARS) for ciprofloxacin (CIPF) detection. The ERGO/PANI/PARS-modified screen-printed carbon electrode (SPCE) was constructed through a three-step electrochemical protocol and characterized using FTIR, UV-visible spectroscopy, FESEM, CV, LSV, and EIS. The new electrochemical CIPF sensor demonstrated a low detection limit of 0.0021 μM, a broad linear range of 0.01 to 69.8 μM, a high sensitivity of 5.09 μA/μM/cm2, and reasonable selectivity and reproducibility. Moreover, the ERGO/PANI/PARS/SPCE was successfully utilized to determine CIPF in milk with good recoveries and relative standard deviation (< 5%), which were close to those with HPLC analysis.
Collapse
Affiliation(s)
- Mari Elancheziyan
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Sooyeon Lee
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Tae Hyun Yoon
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Manisha Singh
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Dogyeong Lee
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Keehoon Won
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea.
| |
Collapse
|
2
|
Innovations in the synthesis of graphene nanostructures for bio and gas sensors. BIOMATERIALS ADVANCES 2023; 145:213234. [PMID: 36502548 DOI: 10.1016/j.bioadv.2022.213234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Sensors play a significant role in modern technologies and devices used in industries, hospitals, healthcare, nanotechnology, astronomy, and meteorology. Sensors based upon nanostructured materials have gained special attention due to their high sensitivity, precision accuracy, and feasibility. This review discusses the fabrication of graphene-based biosensors and gas sensors, which have highly efficient performance. Significant developments in the synthesis routes to fabricate graphene-based materials with improved structural and surface properties have boosted their utilization in sensing applications. The higher surface area, better conductivity, tunable structure, and atom-thick morphology of these hybrid materials have made them highly desirable for the fabrication of flexible and stable sensors. Many publications have reported various modification approaches to improve the selectivity of these materials. In the current work, a compact and informative review focusing on the most recent developments in graphene-based biosensors and gas sensors has been designed and delivered. The research community has provided a complete critical analysis of the most robust case studies from the latest fabrication routes to the most complex challenges. Some significant ideas and solutions have been proposed to overcome the limitations regarding the field of biosensors and hazardous gas sensors.
Collapse
|
3
|
Zhou F, Wang J, Tang Y, Liu S, Du Y, Jing W, Li Y, Hai L, Li W, Gao F. Investigation on the surface morphologies of reduced graphene oxide coating on the interfacial characteristics and electro-catalytic capacity of enzymatic glucose sensors. NANOTECHNOLOGY 2022; 34:015501. [PMID: 36191554 DOI: 10.1088/1361-6528/ac96fb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
In this study, reduced graphene oxide (rGO) were subject to ultrasonic treatment to acquire varied morphologies, and the enzymatic glucose sensors were constructed by coating the rGO onto indium tin oxide electrodes and physically linking glucose oxidase to the rGO coatings. The effects of the surface morphologies of the rGO coatings on the interfacial characteristics and the electro-catalytic capacity of the enzymatic glucose sensors were systematically investigated. It turns out that, the rGO coating with a rough surface is more hydrophilic, and exhibits uniform glucose oxidase adsorption and higher electron migration rate at the solid/liquid interface between the analytical liquid and the working electrode. As a result, the corresponding glucose sensor shows excellent electro-catalytic capacity towards glucose with a broader linear range of 0-10.0 mM, a higher sensitivity of 38.9μA·mM-1·cm-2, and a lower detection limit of 0.1μM (signal-to-noise ratio of 3). Additionally, the as-prepared glucose sensor exhibits excellent accuracy for detecting actual blood samples as well as superior resistance to interference from other substances (such as L-phenylalanine, urea, ascorbic acid, uric acid, NaCl, and KCl). These results establish the theoretical and experimental foundation for the application of rGO coating in the field of biosensors.
Collapse
Affiliation(s)
- Fan Zhou
- Key Lab of Manufacturing Equipment of Shaanxi Province, School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, People's Republic of China
| | - Jiyuan Wang
- Key Lab of Manufacturing Equipment of Shaanxi Province, School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, People's Republic of China
| | - Yimei Tang
- Department of Endocrinology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, People's Republic of China
| | - Shu Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yanrui Du
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Weixuan Jing
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yan Li
- Key Lab of Manufacturing Equipment of Shaanxi Province, School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, People's Republic of China
| | - Lixin Hai
- Key Lab of Manufacturing Equipment of Shaanxi Province, School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, People's Republic of China
| | - Wenqiang Li
- Key Lab of Manufacturing Equipment of Shaanxi Province, School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, People's Republic of China
| | - Feng Gao
- Key Lab of Manufacturing Equipment of Shaanxi Province, School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, People's Republic of China
| |
Collapse
|
4
|
Speranza G. Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:967. [PMID: 33918769 PMCID: PMC8069879 DOI: 10.3390/nano11040967] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Recent advances in nanomaterial design and synthesis has resulted in robust sensing systems that display superior analytical performance. The use of nanomaterials within sensors has accelerated new routes and opportunities for the detection of analytes or target molecules. Among others, carbon-based sensors have reported biocompatibility, better sensitivity, better selectivity and lower limits of detection to reveal a wide range of organic and inorganic molecules. Carbon nanomaterials are among the most extensively studied materials because of their unique properties spanning from the high specific surface area, high carrier mobility, high electrical conductivity, flexibility, and optical transparency fostering their use in sensing applications. In this paper, a comprehensive review has been made to cover recent developments in the field of carbon-based nanomaterials for sensing applications. The review describes nanomaterials like fullerenes, carbon onions, carbon quantum dots, nanodiamonds, carbon nanotubes, and graphene. Synthesis of these nanostructures has been discussed along with their functionalization methods. The recent application of all these nanomaterials in sensing applications has been highlighted for the principal applicative field and the future prospects and possibilities have been outlined.
Collapse
Affiliation(s)
- Giorgio Speranza
- CMM—FBK, v. Sommarive 18, 38123 Trento, Italy;
- IFN—CNR, CSMFO Lab., via alla Cascata 56/C Povo, 38123 Trento, Italy
- Department of Industrial Engineering, University of Trento, v. Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
5
|
Lv C, Li S, Liu L, Zhu X, Yang X. Enhanced Electrochemical Characteristics of the Glucose Oxidase Bioelectrode Constructed by Carboxyl-Functionalized Mesoporous Carbon. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3365. [PMID: 32545838 PMCID: PMC7349592 DOI: 10.3390/s20123365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 01/04/2023]
Abstract
This research revealed the effect of carboxyl-functionalization on the mesoporous carbon (MC)-fixed glucose oxidase (GOx) for promoting the properties of bioelectrodes. It showed that the oxidation time, temperature and concentration, can significantly affect MC carboxylation. The condition of 2 M ammonium persulfate, 50 °C and 24 h was applied in the study for the successful addition of carboxyl groups to MC, analyzed by FTIR. The nitrogen adsorption isotherms, and X-ray diffraction analysis showed that the carboxylation process slightly changed the physical properties of MC and that the specific surface area and pore size were all well-maintained in MC-COOH. Electrochemical characteristics analysis showed that Nafion/GOx/MC-COOH presented better electrocatalytic activity with greater peak current intensity (1.13-fold of oxidation peak current and 4.98-fold of reduction peak current) compared to Nafion/GOx/MC. Anodic charge-transfer coefficients (α) of GOx/MC-COOH increased to 0.77, implying the favored anodic reaction. Furthermore, the GOx immobilization and enzyme activity in MC-COOH increased 140.72% and 252.74%, leading to the enhanced electroactive GOx surface coverage of Nafion/GOx/MC-COOH electrode (22.92% higher, 1.29 × 10-8 mol cm-2) than the control electrode. Results showed that carboxyl functionalization could increase the amount and activity of immobilized GOx, thereby improving the electrode properties.
Collapse
Affiliation(s)
- Chuhan Lv
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (S.L.); (L.L.); (X.Z.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (S.L.); (L.L.); (X.Z.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Liangxu Liu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (S.L.); (L.L.); (X.Z.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Xingyu Zhu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (S.L.); (L.L.); (X.Z.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (S.L.); (L.L.); (X.Z.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
6
|
Cui M, Ren J, Wen X, Li N, Xing Y, Zhang C, Han Y, Ji X. Electrochemical Detection of Superoxide Anion Released by Living Cells by Manganese(III) Tetraphenyl Porphine as Superoxide Dismutase Mimic. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-0006-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Ning YN, Xiao BL, Niu NN, Moosavi-Movahedi AA, Hong J. Glucose Oxidase Immobilized on a Functional Polymer Modified Glassy Carbon Electrode and Its Molecule Recognition of Glucose. Polymers (Basel) 2019; 11:E115. [PMID: 30960099 PMCID: PMC6401679 DOI: 10.3390/polym11010115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 11/25/2022] Open
Abstract
In the present study, a glucose oxidase (GluOx) direct electron transfer was realized on an aminated polyethylene glycol (mPEG), carboxylic acid functionalized multi-walled carbon nanotubes (fMWCNTs), and ionic liquid (IL) composite functional polymer modified glassy carbon electrode (GCE). The amino groups in PEG, carboxyl groups in multi-walled carbon nanotubes, and IL may have a better synergistic effect, thus more effectively adjust the hydrophobicity, stability, conductivity, and biocompatibility of the composite functional polymer film. The composite polymer membranes were characterized by cyclic voltammetry (CV), ultraviolet-visible (UV-Vis) spectrophotometer, fluorescence spectroscopy, electrochemical impedance spectroscopy (EIS), and transmission electron microscopy (TEM), respectively. In 50 mM, pH 7.0 phosphate buffer solution, the formal potential and heterogeneous electron transfer constant (ks) of GluOx on the composite functional polymer modified GCE were -0.27 V and 6.5 s-1, respectively. The modified electrode could recognize and detect glucose linearly in the range of 20 to 950 μM with a detection limit of 0.2 μM. The apparent Michaelis-Menten constant (Kmapp) of the modified electrode was 143 μM. The IL/mPEG-fMWCNTs functional polymer could preserve the conformational structure and catalytic activity of GluOx and lead to high sensitivity, stability, and selectivity of the biosensors for glucose recognition and detection.
Collapse
Affiliation(s)
- Yan-Na Ning
- School of Life Sciences, Henan University, JinMing Road, Kaifeng 475000, China.
| | - Bao-Lin Xiao
- School of Life Sciences, Henan University, JinMing Road, Kaifeng 475000, China.
| | - Nan-Nan Niu
- School of Life Sciences, Henan University, JinMing Road, Kaifeng 475000, China.
| | - Ali Akbar Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Enquelab Avenue, Tehran 1417614418, Iran.
| | - Jun Hong
- School of Life Sciences, Henan University, JinMing Road, Kaifeng 475000, China.
| |
Collapse
|
8
|
Krishnan SK, Singh E, Singh P, Meyyappan M, Nalwa HS. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv 2019; 9:8778-8881. [PMID: 35517682 PMCID: PMC9062009 DOI: 10.1039/c8ra09577a] [Citation(s) in RCA: 289] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022] Open
Abstract
Biosensors with high sensitivity, selectivity and a low limit of detection, reaching nano/picomolar concentrations of biomolecules, are important to the medical sciences and healthcare industry for evaluating physiological and metabolic parameters.
Collapse
Affiliation(s)
- Siva Kumar Krishnan
- CONACYT-Instituto de Física
- Benemérita Universidad Autónoma de Puebla
- Puebla 72570
- Mexico
| | - Eric Singh
- Department of Computer Science
- Stanford University
- Stanford
- USA
| | - Pragya Singh
- Department of Electrical Engineering and Computer Science
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Meyya Meyyappan
- Center for Nanotechnology
- NASA Ames Research Center
- Moffett Field
- Mountain View
- USA
| | | |
Collapse
|
9
|
Synergistical accumulation for electrochemical sensing of 1-hydroxypyrene on electroreduced graphene oxide electrode. Talanta 2019; 192:387-394. [PMID: 30348407 DOI: 10.1016/j.talanta.2018.08.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/03/2018] [Accepted: 08/12/2018] [Indexed: 12/27/2022]
|
10
|
Lee SW, Kang TH, Lee SK, Lee KY, Yi H. Hydrodynamic Layer-by-Layer Assembly of Transferable Enzymatic Conductive Nanonetworks for Enzyme-Sticker-Based Contact Printing of Electrochemical Biosensors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36267-36274. [PMID: 30259729 DOI: 10.1021/acsami.8b13070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Realizing high-performance electrochemical biosensors in a simple contact-printing-based approach significantly increases the applicability of integrated flexible biosensors. Herein, an enzyme-sticker-based approach that enables flexible and multielectrochemical sensors via simple contact-transfer printing is reported. The enzyme sticker consists of an enzymatic conductive network film and a polymeric support. The enzyme-incorporated nanostructured conductive network showing an efficient electrical coupling was assembled via the hydrodynamic layer-by-layer assembly of redox enzymes, polyelectrolytes, single-walled carbon nanotubes, and a biological glue material, M13 phage. The enzymatic conductive network on a polymeric membrane support was facilely wet contact-transfer printed onto integrated electrode systems by exploiting varying degrees of hydrophilicity displayed by the enzymatic electronic film, polymeric support, and receiving electrodes of the sensor system. The glucose sensors fabricated using the enzyme sticker detected glucose at a concentration of as low as 35 μM and showed high selectivity and stability. Furthermore, a flexible dual-sensor array capable of detecting both glucose and lactate was demonstrated using the versatile enzyme sticker concept. This work presents a new route toward assembling and integrating hybrid nanomaterials with efficient electrochemical coupling for high-performance biosensors and health-monitoring devices as well as for emerging bioelectronics and electrochemical devices.
Collapse
Affiliation(s)
- Seung-Woo Lee
- Department of Fine Chemistry , Seoul National University of Science and Technology , Seoul 01811 , Republic of Korea
- Post-Silicon Semiconductor Institute , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | - Tae-Hyung Kang
- Post-Silicon Semiconductor Institute , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | - Sung Ku Lee
- Department of Fine Chemistry , Seoul National University of Science and Technology , Seoul 01811 , Republic of Korea
| | - Ki-Young Lee
- Post-Silicon Semiconductor Institute , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | - Hyunjung Yi
- Post-Silicon Semiconductor Institute , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| |
Collapse
|
11
|
Guo T, Gao J, Qin X, Zhang X, Xue H. A Novel Glucose Biosensor Based on Hierarchically Porous Block Copolymer Film. Polymers (Basel) 2018; 10:E723. [PMID: 30960648 PMCID: PMC6403682 DOI: 10.3390/polym10070723] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 11/16/2022] Open
Abstract
Enzymatic biosensors are widely used in clinical diagnostics, and electrode materials are essential for both the efficient immobilization of enzyme and the fast electron transfer between the active sites of enzyme and electrode surface. Electrode materials with a hierarchically porous structure can not only increase the specific surface area but also promote the electron transfer, facilitating the catalysis reaction. Block copolymer is a good candidate for preparation of film with a hierarchically porous structure due to its unique characteristics of self-assembly and phase separation. In the current work, hierarchically porous block copolymer film containing both micropores and nanopores was prepared by spinodal decomposition induced phase separation. The resultant copolymer film was adopted as the electrode material to immobilize glucose oxidase (GOx) for construction of an enzyme biosensor. Scanning electron microscopy (SEM), contact angle (CA) measurements, and Fourier-transform infrared (FTIR) and electrochemical impendence spectroscopy (EIS) were adopted to investigate the microstructure of the as-developed biosensor. Results demonstrated that the hierarchically porous block copolymer film offered a favorable and biocompatible microenvironment for proteins. These as-prepared glucose biosensors possessed a wide linear range (10⁻4500 μM), a low detection limit (0.05 μM), quick response (2 s), excellent stability, and selectivity. This work demonstrates that hierarchically porous block copolymer film is a good matrix candidate for the immobilization of the enzyme and provides a potential electrode material to construct novel biosensors with excellent performance.
Collapse
Affiliation(s)
- Teng Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Xiang Qin
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Xu Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China. -
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
12
|
Lu L. Recent advances in synthesis of three-dimensional porous graphene and its applications in construction of electrochemical (bio)sensors for small biomolecules detection. Biosens Bioelectron 2018; 110:180-192. [DOI: 10.1016/j.bios.2018.03.060] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/11/2018] [Accepted: 03/27/2018] [Indexed: 01/04/2023]
|
13
|
Baig N, Saleh TA. Electrodes modified with 3D graphene composites: a review on methods for preparation, properties and sensing applications. Mikrochim Acta 2018; 185:283. [DOI: 10.1007/s00604-018-2809-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/14/2018] [Indexed: 12/12/2022]
|
14
|
Manoj D, Theyagarajan K, Saravanakumar D, Senthilkumar S, Thenmozhi K. Aldehyde functionalized ionic liquid on electrochemically reduced graphene oxide as a versatile platform for covalent immobilization of biomolecules and biosensing. Biosens Bioelectron 2018; 103:104-112. [DOI: 10.1016/j.bios.2017.12.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 02/03/2023]
|
15
|
Zhang Y, Huang B, Yu F, Yuan Q, Gu M, Ji J, Zhang Y, Li Y. 3D nitrogen-doped graphite foam@Prussian blue: an electrochemical sensing platform for highly sensitive determination of H2O2 and glucose. Mikrochim Acta 2018; 185:86. [DOI: 10.1007/s00604-017-2631-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/22/2017] [Indexed: 11/24/2022]
|
16
|
Porous carbon and Prussian blue composite: A highly sensitive electrochemical platform for glucose biosensing. SENSING AND BIO-SENSING RESEARCH 2017. [DOI: 10.1016/j.sbsr.2017.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
17
|
Shi L, Li Y, Rong X, Wang Y, Ding S. Facile fabrication of a novel 3D graphene framework/Bi nanoparticle film for ultrasensitive electrochemical assays of heavy metal ions. Anal Chim Acta 2017; 968:21-29. [DOI: 10.1016/j.aca.2017.03.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/24/2017] [Accepted: 03/01/2017] [Indexed: 12/12/2022]
|
18
|
Mediator enhanced glucose detection using organic–inorganic hybrid supramolecular assembly on gold electrodes. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
|
20
|
Rezaeinasab M, Benvidi A, Tezerjani MD, Jahanbani S, Kianfar AH, Sedighipoor M. An Electrochemical Sensor Based on Ni(II) Complex and Multi Wall Carbon Nano Tubes Platform for Determination of Glucose in Real Samples. ELECTROANAL 2016. [DOI: 10.1002/elan.201600162] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Ali Benvidi
- Department of Chemistry, Faculty of Science; Yazd University; Yazd Iran
| | | | | | - Ali Hossein Kianfar
- Department of Chemistry, Faculty of Science; Isfahan University of Technology; Isfahan Iran
| | - Maryam Sedighipoor
- Department of Chemistry, Faculty of Science; Isfahan University of Technology; Isfahan Iran
| |
Collapse
|
21
|
Electrochemistry and electrocatalysis of myoglobin immobilized in sulfonated graphene oxide and Nafion films. Anal Biochem 2016; 502:43-49. [DOI: 10.1016/j.ab.2016.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 11/23/2022]
|
22
|
Synergetic accumulation and simultaneous determination of naphthol isomers on electrochemically reduced graphene oxide modified electrode. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Zhang H, Gao Q, Li H. A novel photoelectrochemical hydrogen peroxide sensor based on nickel(II)-potassium hexacyanoferrate-graphene hybrid materials modified n-silicon electrode. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3156-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
24
|
Zhang Y, Shen J, Li H, Wang L, Cao D, Feng X, Liu Y, Ma Y, Wang L. Recent Progress on Graphene-based Electrochemical Biosensors. CHEM REC 2015; 16:273-94. [DOI: 10.1002/tcr.201500236] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Indexed: 01/25/2023]
Affiliation(s)
- Yu Zhang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials; National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM); 9 Wenyuan Road Nanjing 210023 P. R. China
| | - Jingjing Shen
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials; National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM); 9 Wenyuan Road Nanjing 210023 P. R. China
| | - Huihua Li
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials; National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM); 9 Wenyuan Road Nanjing 210023 P. R. China
| | - Linlin Wang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials; National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM); 9 Wenyuan Road Nanjing 210023 P. R. China
| | - Dashun Cao
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials; National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM); 9 Wenyuan Road Nanjing 210023 P. R. China
| | - Xiaomiao Feng
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials; National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM); 9 Wenyuan Road Nanjing 210023 P. R. China
| | - Yuge Liu
- The South Subtropical Crops Research Institute Chinese Academy of Tropical Agricultural Science; Zhanjiang 524091 P. R. China
| | - Yanwen Ma
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials; National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM); 9 Wenyuan Road Nanjing 210023 P. R. China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials; National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM); 9 Wenyuan Road Nanjing 210023 P. R. China
| |
Collapse
|
25
|
Ambolikar AS, Guin SK, Kasar U, Kamat J. Electrochemistry of actinide on electrochemically reduced graphene oxide: Electrocatalysis of Np(VI)O22+/Np(V)O2+ in nitric acid solution. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.10.094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
In-situ fabrication of well-distributed gold nanocubes on thiol graphene as a third-generation biosensor for ultrasensitive glucose detection. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.06.123] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
27
|
Zhou X, Tan B, Zheng X, Kong D, Li Q. Interfacial electron transfer of glucose oxidase on poly(glutamic acid)-modified glassy carbon electrode and glucose sensing. Anal Biochem 2015; 489:9-16. [PMID: 26278169 DOI: 10.1016/j.ab.2015.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/06/2015] [Accepted: 08/06/2015] [Indexed: 11/24/2022]
Abstract
The interfacial electron transfer of glucose oxidase (GOx) on a poly(glutamic acid)-modified glassy carbon electrode (PGA/GCE) was investigated. The redox peaks measured for GOx and flavin adenine dinucleotide (FAD) are similar, and the anodic peak of GOx does not increase in the presence of glucose in a mediator-free solution. These indicate that the electroactivity of GOx is not the direct electron transfer (DET) between GOx and PGA/GCE and that the observed electroactivity of GOx is ascribed to free FAD that is released from GOx. However, efficient electron transfer occurred if an appropriate mediator was placed in solution, suggesting that GOx is active. The PGA/GCE-based biosensor showed wide linear response in the range of 0.5-5.5 mM with a low detection limit of 0.12 mM and high sensitivity and selectivity for measuring glucose.
Collapse
Affiliation(s)
- Xuechou Zhou
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Bingcan Tan
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinyu Zheng
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dexian Kong
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qinglu Li
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Laboratory of Animal Pharmaceuticals of Fujian Province, Fuzhou 350002, China.
| |
Collapse
|
28
|
A sensitive glucose biosensor based on Ag@C core-shell matrix. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 49:579-587. [PMID: 25686986 DOI: 10.1016/j.msec.2015.01.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/30/2014] [Accepted: 01/17/2015] [Indexed: 12/12/2022]
Abstract
Nano-Ag particles were coated with colloidal carbon (Ag@C) to improve its biocompatibility and chemical stability for the preparation of biosensor. The core-shell structure was evidenced by transmission electron microscope (TEM) and the Fourier transfer infrared (FTIR) spectra revealed that the carbon shell is rich of function groups such as -OH and -COOH. The as-prepared Ag@C core-shell structure can offer favorable microenvironment for immobilizing glucose oxidase and the direct electrochemistry process of glucose oxidase (GOD) at Ag@C modified glassy carbon electrode (GCE) was realized. The modified electrode exhibited good response to glucose. Under optimum experimental conditions the biosensor linearly responded to glucose concentration in the range of 0.05-2.5mM, with a detection limit of 0.02mM (S/N=3). The apparent Michaelis-Menten constant (KM(app)) of the biosensor is calculated to be 1.7mM, suggesting high enzymatic activity and affinity toward glucose. In addition, the GOD-Ag@C/Nafion/GCE shows good reproducibility and long-term stability. These results suggested that core-shell structured Ag@C is an ideal matrix for the immobilization of the redox enzymes and further the construction of the sensitive enzyme biosensor.
Collapse
|
29
|
Baghayeri M. Glucose sensing by a glassy carbon electrode modified with glucose oxidase and a magnetic polymeric nanocomposite. RSC Adv 2015. [DOI: 10.1039/c4ra15888a] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glucose sensing by using of glucose oxidase and a biocompatible poly(p-phenylenediamine)-based nanocomposite.
Collapse
Affiliation(s)
- Mehdi Baghayeri
- Department of Chemistry
- Faculty of Science
- Hakim Sabzevari University
- Sabzevar
- Iran
| |
Collapse
|
30
|
Synthesis and utilisation of graphene for fabrication of electrochemical sensors. Talanta 2015; 131:424-43. [DOI: 10.1016/j.talanta.2014.07.019] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 01/19/2023]
|
31
|
Liu L, Gou Y, Gao X, Zhang P, Chen W, Feng S, Hu F, Li Y. Electrochemically reduced graphene oxide-based electrochemical sensor for the sensitive determination of ferulic acid in A. sinensis and biological samples. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:227-33. [DOI: 10.1016/j.msec.2014.05.045] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/13/2014] [Accepted: 05/18/2014] [Indexed: 11/30/2022]
|
32
|
Qian L, Lu L. Three dimensional porous graphene–chitosan composites from ice-induced assembly for direct electron transfer and electrocatalysis of glucose oxidase. RSC Adv 2014. [DOI: 10.1039/c4ra07707e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
Yan L, Bo X, Zhang Y, Guo L. Facile green synthesis of nitrogen-doped porous carbon and its use for electrocatalysis towards nitrobenzene and hydrazine. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.06.076] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Chen L, Feng M, Zhan H. Fundamental electrochemistry of three-dimensional graphene aerogels. RSC Adv 2014. [DOI: 10.1039/c4ra04088k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
35
|
Wen D, Herrmann AK, Borchardt L, Simon F, Liu W, Kaskel S, Eychmüller A. Controlling the growth of palladium aerogels with high-performance toward bioelectrocatalytic oxidation of glucose. J Am Chem Soc 2014; 136:2727-30. [PMID: 24475875 DOI: 10.1021/ja412062e] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report the controllable synthesis of Pd aerogels with high surface area and porosity by destabilizing colloidal solutions of Pd nanoparticles with variable concentrations of calcium ions. Enzyme electrodes based on Pd aerogels co-immobilized with glucose oxidase show high activity toward glucose oxidation and are promising materials for applications in bioelectronics.
Collapse
Affiliation(s)
- Dan Wen
- Physical Chemistry, TU Dresden , Bergstrasse 66b, 01062 Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Baghayeri M, Veisi H, Veisi H, Maleki B, Karimi-Maleh H, Beitollahi H. Multi-walled carbon nanotubes decorated with palladium nanoparticles as a novel platform for electrocatalytic sensing applications. RSC Adv 2014. [DOI: 10.1039/c4ra08536a] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sensitive detection of glucose using a glassy carbon electrode modified with glucose oxidase and multi-walled carbon nanotubes decorated with palladium nanoparticles.
Collapse
Affiliation(s)
- Mehdi Baghayeri
- Department of Chemistry
- Faculty of Science
- Hakim Sabzevari University
- Sabzevar, Iran
| | - Hojat Veisi
- Department of Chemistry
- Payame Noor University
- 19395-4697 Tehran, Iran
| | - Hamed Veisi
- Student Research Committee
- Shiraz University of Medical Sciences
- Shiraz, Iran
| | - Behrooz Maleki
- Department of Chemistry
- Faculty of Science
- Hakim Sabzevari University
- Sabzevar, Iran
| | - Hassan Karimi-Maleh
- Department of Chemistry
- Graduate University of Advanced Technology
- Kerman, Iran
| | - Hadi Beitollahi
- Environment Department
- Institute of Science and High Technology and Environmental Sciences
- Graduate University of Advanced Technology
- Kerman, Iran
| |
Collapse
|
37
|
A glucose biosensor based on direct electron transfer of glucose oxidase immobilized onto glassy carbon electrode modified with nitrophenyl diazonium salt. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.08.176] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|