1
|
Anupriya ES, Chen R, Kalski D, Palmer J, Shen M. Dual-channel nano-carbon-liquid/liquid junction electrodes for multi-modal analysis: redox-active (dopamine) and non-redox-active (acetylcholine). Analyst 2025; 150:414-424. [PMID: 39688537 DOI: 10.1039/d4an01153h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
We present here a dual-channel nanoelectrode to detect both redox-active and non-redox-active analytes. The dual-channel nanoelectrode was developed from theta nanopipette. We developed one channel of the theta nanopipette to be a carbon nanoelectrode and the other channel to be a nano interface between two immiscible electrolyte solutions (nanoITIES) electrode, producing a nano-carbon-ITIES platform. The carbon nanoelectrode channel was developed by carbon deposition via pyrolysis followed by focused ion beam milling to measure redox-active analytes. The nanoITIES electrode channel was developed to detect non-redox-active analytes. The nano-carbon-ITIES electrodes were characterized using electrochemistry, scanning electron microscopy and transmission electron microscopy. Dopamine (a redox-active analyte) and acetylcholine (a non-redox-active analyte) were measured on the dual-channel nano-carbon-ITIES platform using the carbon nanoelectrode and the nanoITIES electrode, respectively. Using cyclic voltammetry, the diffusion-limited current of dopamine and acetylcholine detection on the nano-carbon-ITIES electrode increased linearly with increasing their concentrations. Using chronoamperometry (current versus time), we showed that the nano-carbon-ITIES electrode detected acetylcholine and dopamine at the same time. The introduced first-ever dual-functional nano-carbon-ITIES electrodes expand the current literature in multi-channel electrodes for multi-purpose analysis, which is an emerging area of research. Developing the analytical capability for the simultaneous detection of acetylcholine and dopamine is a critical step towards understanding diseases and disorders where both dopamine and acetylcholine are involved.
Collapse
Affiliation(s)
- Edappalil Satheesan Anupriya
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois
| | - Ran Chen
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
| | - Daniel Kalski
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
| | - Jordynn Palmer
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
| | - Mei Shen
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois
| |
Collapse
|
2
|
Ribeiro JA, Silva AF, Girault HH, Pereira CM. Electroanalytical applications of ITIES - A review. Talanta 2024; 280:126729. [PMID: 39180876 DOI: 10.1016/j.talanta.2024.126729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Over the last decades, the interface between two immiscible electrolyte solutions (ITIES) attracted considerable attention of the scientific community due to their vast applications, such as extraction, catalysis, partition studies and sensing. The aim of this Review is to highlight the potential of electrochemistry at the ITIES for analytical purposes, focusing on ITIES-based sensors for detection and quantification of chemically and biologically relevant (bio)molecules. We start by addressing the evolution of ITIES in terms of number of publications over the years along with an overview of their main applications (Chapter 1). Then, we provide a general historical perspective about pioneer voltammetric studies at water/oil systems (Chapter 2). After that, we discuss the most impacting improvements on ITIES sensing systems from both perspectives, set-up design (interface stabilization and miniaturization, selection of the organic solvent, etc.) and optimization of experimental conditions to improve selectivity and sensitivity (Chapter 3). In Chapter 4, we discuss the analytical applications of ITIES for electrochemical sensing of several types of analytes, including drugs, pesticides, proteins, among others. Finally, we highlight the present achievements of ITIES as analytical tool and provide future challenges and perspectives for this technology (Chapter 5).
Collapse
Affiliation(s)
- José A Ribeiro
- CIQUP/Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, Porto, 4169-007, Portugal.
| | - A Fernando Silva
- CIQUP/Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, Porto, 4169-007, Portugal
| | - H H Girault
- Institut des Sciences et Ingénierie Chimiques (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland
| | - Carlos M Pereira
- CIQUP/Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, Porto, 4169-007, Portugal.
| |
Collapse
|
3
|
Huang SH, Parandhaman M, Farnia S, Kim J, Amemiya S. Nanoelectrochemistry at liquid/liquid interfaces for analytical, biological, and material applications. Chem Commun (Camb) 2023; 59:9575-9590. [PMID: 37458703 PMCID: PMC10416082 DOI: 10.1039/d3cc01982a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Herein, we feature our recent efforts toward the development and application of nanoelectrochemistry at liquid/liquid interfaces, which are also known as interfaces between two immiscible electrolyte solutions (ITIES). Nanopipets, nanopores, and nanoemulsions are developed to create the nanoscale ITIES for the quantitative electrochemical measurement of ion transfer, electron transfer, and molecular transport across the interface. The nanoscale ITIES serves as an electrochemical nanosensor to enable the selective detection of various ions and molecules as well as high-resolution chemical imaging based on scanning electrochemical microscopy. The powerful nanoelectroanalytical methods will be useful for biological and material applications as illustrated by in situ studies of solid-state nanopores, nuclear pore complexes, living bacteria, and advanced nanoemulsions. These studies provide unprecedented insights into the chemical reactivity of important biological and material systems even at the single nanostructure level.
Collapse
Affiliation(s)
- Siao-Han Huang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | | | - Solaleh Farnia
- Department of Chemistry, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Jiyeon Kim
- Department of Chemistry, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
4
|
Nakao K, Noda K, Hashimoto H, Nakagawa M, Nishimi T, Ohira A, Sato Y, Kato D, Kamata T, Niwa O, Kunitake M. Electrochemistry in bicontinuous microemulsions derived from two immiscible electrolyte solutions for a membrane-free redox flow battery. J Colloid Interface Sci 2023; 641:348-358. [PMID: 36940591 DOI: 10.1016/j.jcis.2023.03.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
HYPOTHESES Bicontinuous microemulsions (BMEs) have attracted attention as unique heterogeneous mixture for electrochemistry. An interface between two immiscible electrolyte solutions (ITIES) is an electrochemical system that straddles the interface between a saline and an organic solvent with a lipophilic electrolyte. Although most BMEs have been reported with nonpolar oils, such as toluene and fatty acids, it should be possible to construct a sponge-like three-dimensionally expanded ITIES comprising a BME phase. EXPERIMENTS Dichloromethane (DCM)-water microemulsions stabilized by a surfactant were investigated in terms of the concentrations of co-surfactants and hydrophilic/lipophilic salts. A Winsor III microemulsion three-layer system, consisting of an upper saline phase, a middle BME phase, and a lower DCM phase, was prepared, and electrochemistry was conducted in each phase. FINDINGS We found the conditions for ITIES-BME phases. Regardless of where the three electrodes were placed in the macroscopically heterogeneous three-layer system, electrochemistry was possible, as in a homogeneous electrolyte solution. This indicates that the anodic and cathodic reactions can be divided into two immiscible solution phases. A redox flow battery comprising a three-layer system with a BME as the middle phase was demonstrated, paving the way for applications such as electrolysis synthesis and secondary batteries.
Collapse
Affiliation(s)
- Kodai Nakao
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan; Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Koji Noda
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Hinako Hashimoto
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Mayuki Nakagawa
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Taisei Nishimi
- Japan Technological Research Association of Artificial Photosynthetic Chemical Process (ARPChem), Room 422, Bldg. 12, Faculty of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Akihiro Ohira
- Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yukari Sato
- Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Dai Kato
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Tomoyuki Kamata
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Osamu Niwa
- Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji, Fukaya, Saitama 369-0293, Japan
| | - Masashi Kunitake
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan; Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| |
Collapse
|
5
|
Reznicek J, Bednarik V, Filip J. PERCHLORATE SENSING – CAN ELECTROCHEMISTRY MEET THE SENSITIVITY OF STANDARD METHODS? Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
6
|
Sciurti E, Biscaglia F, Prontera C, Giampetruzzi L, Blasi L, Francioso L. Nanoelectrodes for Intracellular and Intercellular electrochemical detection: working principles, fabrication techniques and applications. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Jetmore HD, Anupriya ES, Cress TJ, Shen M. Interface between Two Immiscible Electrolyte Solutions Electrodes for Chemical Analysis. Anal Chem 2022; 94:16519-16527. [DOI: 10.1021/acs.analchem.2c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Henry David Jetmore
- University of Illinois at Urbana−Champaign, Urbana, Illinois61801, United States
| | | | - Tanner Joe Cress
- University of Illinois at Urbana−Champaign, Urbana, Illinois61801, United States
| | - Mei Shen
- University of Illinois at Urbana−Champaign, Urbana, Illinois61801, United States
| |
Collapse
|
8
|
Ion-transfer electrochemistry at arrays of nanoscale interfaces between two immiscible electrolyte solutions arranged in hexagonal format. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Jetmore HD, Milton CB, Anupriya ES, Chen R, Xu K, Shen M. Detection of Acetylcholine at Nanoscale NPOE/Water Liquid/Liquid Interface Electrodes. Anal Chem 2021; 93:16535-16542. [PMID: 34846864 DOI: 10.1021/acs.analchem.1c03711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interface between two immiscible electrolyte solutions (ITIES) has become a very powerful analytical platform for sensing a diverse range of chemicals (e.g., metal ions and neurotransmitters) with the advantage of being able to detect non-redox electroactive species. The ITIES is formed between organic and aqueous phases. Organic solvent identity is crucial to the detection characteristics of the ITIES [half-wave transfer potential (E1/2), potential window range, limit of detection, transfer coefficient (α), standard heterogeneous ion-transfer rate constant (k0), etc.]. Here, we demonstrated, for the first time at the nanoscale, the detection characteristics of the NPOE/water ITIES. Linear detection of the diffusion-limited current at different concentrations of acetylcholine (ACh) was demonstrated with cyclic voltammetry (CV) and i-t amperometry. The E1/2 of ACh transfer at the NPOE/water nanoITIES was -0.342 ± 0.009 V versus the E1/2 of tetrabutylammonium (TBA+). The limit of detection of ACh at the NPOE/water nanoITIES was 37.1 ± 1.5 μM for an electrode with a radius of ∼127 nm. We also determined the ion-transfer kinetics parameters, α and k0, of TBA+ at the NPOE/water nanoITIES by fitting theoretical cyclic voltammograms to experimental voltammograms. This work lays the basis for future cellular studies using ACh detection at the nanoscale and for studies to detect other analytes. The NPOE/water ITIES offers a potential window distinct from that of the 1,2-dichloroethane (DCE)/water ITIES. This unique potential window would offer the ability to detect analytes that are not easily detected at the DCE/water ITIES.
Collapse
Affiliation(s)
- Henry D Jetmore
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Conrad B Milton
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | | | - Ran Chen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kerui Xu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mei Shen
- The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Izadyar A, Van MN, Rodriguez KA, Seok I, Hood EE. A bienzymatic amperometric glucose biosensor based on using a novel recombinant Mn peroxidase from corn and glucose oxidase with a Nafion membrane. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Du X, Zhai J, Li X, Zhang Y, Li N, Xie X. Hydrogel-Based Optical Ion Sensors: Principles and Challenges for Point-of-Care Testing and Environmental Monitoring. ACS Sens 2021; 6:1990-2001. [PMID: 34044533 DOI: 10.1021/acssensors.1c00756] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydrogel is a unique family of biocompatible materials with growing applications in chemical and biological sensors. During the past few decades, various hydrogel-based optical ion sensors have been developed aiming at point-of-care testing and environmental monitoring. In this Perspective, we provide an overview of the research field including topics such as photonic crystals, DNAzyme cross-linked hydrogels, ionophore-based ion sensing hydrogels, and fluoroionophore-based optodes. As the different sensing principles are summarized, each strategy offers its advantages and limitations. In a nutshell, developing optical ion sensing hydrogels is still in the early stage with many opportunities lying ahead, especially with challenges in selectivity, assay time, detection limit, and usability.
Collapse
Affiliation(s)
- Xinfeng Du
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jingying Zhai
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaoang Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yupu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Niping Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaojiang Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
12
|
Amemiya S. Nanoelectrochemical Study of Molecular Transport through the Nuclear Pore Complex. CHEM REC 2021; 21:1430-1441. [PMID: 33502100 PMCID: PMC8217113 DOI: 10.1002/tcr.202000175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/10/2022]
Abstract
The nuclear pore complex (NPC) is the proteinaceous nanopore that solely mediates the transport of both small molecules and macromolecules between the nucleus and cytoplasm of a eukaryotic cell to regulate gene expression. In this personal account, we introduce recent progress in our nanoelectrochemical study of molecular transport through the NPC. Our work represents the importance of chemistry in understanding and controlling of NPC-mediated molecular transport to enable the efficient and safe delivery of genetic therapeutics into the nucleus, thereby fundamentally contributing to human health. Specifically, we employ nanoscale scanning electrochemical microscopy to test our hypothesis that the nanopore of the NPC is divided by transport barriers concentrically into peripheral and central routes to efficiently mediate the bimodal traffic of protein transport and RNA export, respectively, through cooperative hydrophobic and electrostatic interactions.
Collapse
Affiliation(s)
- Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, 15260, PA
| |
Collapse
|
13
|
Liu Y, Du J, Wang M, Zhang J, Liu C, Li X. Recent Progress in Quantitatively Monitoring Vesicular Neurotransmitter Release and Storage With Micro/Nanoelectrodes. Front Chem 2021; 8:591311. [PMID: 33505953 PMCID: PMC7831278 DOI: 10.3389/fchem.2020.591311] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/20/2020] [Indexed: 01/31/2023] Open
Abstract
Exocytosis is one of the essential steps for chemical signal transmission between neurons. In this process, vesicles dock and fuse with the plasma membrane and release the stored neurotransmitters through fusion pores into the extracellular space, and all of these steps are governed with various molecules, such as proteins, ions, and even lipids. Quantitatively monitoring vesicular neurotransmitter release in exocytosis and initial neurotransmitter storage in individual vesicles is significant for the study of chemical signal transmission of the central nervous system (CNS) and neurological diseases. Electrochemistry with micro/nanoelectrodes exhibits great spatial-temporal resolution and high sensitivity. It can be used to examine the exocytotic kinetics from the aspect of neurotransmitters and quantify the neurotransmitter storage in individual vesicles. In this review, we first introduce the recent advances of single-cell amperometry (SCA) and the nanoscale interface between two immiscible electrolyte solutions (nanoITIES), which can monitor the quantity and release the kinetics of electrochemically and non-electrochemically active neurotransmitters, respectively. Then, the development and application of the vesicle impact electrochemical cytometry (VIEC) and intracellular vesicle impact electrochemical cytometry (IVIEC) and their combination with other advanced techniques can further explain the mechanism of neurotransmitter storage in vesicles before exocytosis. It has been proved that these electrochemical techniques have great potential in the field of neuroscience.
Collapse
Affiliation(s)
| | | | | | | | - Chunlan Liu
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xianchan Li
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
14
|
Chen R, Xu K, Shen M. Avocado oil, coconut oil, walnut oil as true oil phase for ion transfer at nanoscale liquid/liquid interfaces. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Detection of zwitterion at an electrified liquid-liquid interface: A chemical equilibrium perspective. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Lindner E, Guzinski M, Pendley B, Chaum E. Plasticized PVC Membrane Modified Electrodes: Voltammetry of Highly Hydrophobic Compounds. MEMBRANES 2020; 10:E202. [PMID: 32867276 PMCID: PMC7558981 DOI: 10.3390/membranes10090202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/30/2022]
Abstract
In the last 50 years, plasticized polyvinyl chloride (PVC) membranes have gained unique importance in chemical sensor development. Originally, these membranes separated two solutions in conventional ion-selective electrodes. Later, the same membranes were applied over a variety of supporting electrodes and used in both potentiometric and voltammetric measurements of ions and electrically charged molecules. The focus of this paper is to demonstrate the utility of the plasticized PVC membrane modified working electrode for the voltammetric measurement of highly lipophilic molecules. The plasticized PVC membrane prevents electrode fouling, extends the detection limit of the voltammetric methods to sub-micromolar concentrations, and minimizes interference by electrochemically active hydrophilic analytes.
Collapse
Affiliation(s)
- Ernő Lindner
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN 38152, USA;
| | - Marcin Guzinski
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.G.); (E.C.)
| | - Bradford Pendley
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN 38152, USA;
| | - Edward Chaum
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.G.); (E.C.)
| |
Collapse
|
17
|
Terry Weatherly CK, Glasscott MW, Dick JE. Voltammetric Analysis of Redox Reactions and Ion Transfer in Water Microdroplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8231-8239. [PMID: 32559107 DOI: 10.1021/acs.langmuir.0c01332] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report a set of voltammetric experiments for studying redox reactions and ion transfer in water microdroplets emulsified in 1,2-dichloroethane (DCE). The electrochemistry of microdroplets (rdrop ∼ 700 nm) loaded with either ferrocyanide ([Fe(CN)6]4-) or ferricyanide ([Fe(CN)6]3-), chosen due to their hydrophilic nature, was tracked using cyclic voltammetry. These heterogeneous reactions necessitated ion transfer at the droplet interface to maintain charge balance in the two liquid phases during oxidation or reduction, which was facilitated by the tetrabutylammonium perchlorate ([TBA][ClO4]) salt in the DCE phase. Experiments were performed with (1) a single macrodroplet (10-7 L) on a macroelectrode (r ∼ 1.5 mm), (2) millions of microdroplets (10-15 L) adsorbed on to a macroelectrode (r ∼ 1.5 mm), and (3) at the single microdroplet level via observing individual microdroplet collisions at an ultramicroelectrode (r ∼ 5 μm). We demonstrate that when millions of microdroplets are adsorbed onto a macroelectrode, there are two surprising observations: (1) the half-wave potential (E1/2) for the [Fe(CN)6]3-/4- redox couple shifts by +100 mV, which is shown to depend on the number of droplets on the electrode surface. (2) The reduction of [Fe(CN)6]3-, which is assisted by the transfer of TBA+ into the water droplet, displays two waves in the voltammogram. This dual-wave behavior can be explained by the formation of TBAxK3-xFe(CN)6, which is soluble in DCE. Additionally, we demonstrate that the adsorption of microdroplets onto an electrode surface offers significant amplification (×103) of the water/oil/electrode three-phase boundary when compared to the adsorption of larger macrodroplets, permitting a rigorous evaluation of heterogeneous chemistry at this distinct interface. In combination, these experiments provide new energetic and mechanistic insights for droplet systems, as well as reactivity differences between microscale and bulk multiphase systems.
Collapse
Affiliation(s)
| | - Matthew W Glasscott
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jeffrey E Dick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
18
|
Chen R, Alanis K, Welle TM, Shen M. Nanoelectrochemistry in the study of single-cell signaling. Anal Bioanal Chem 2020; 412:6121-6132. [PMID: 32424795 DOI: 10.1007/s00216-020-02655-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 12/28/2022]
Abstract
Label-free biosensing has been the dream of scientists and biotechnologists as reported by Vollmer and Arnold (Nat Methods 5:591-596, 2008). The ability of examining living cells is crucial to cell biology as noted by Fang (Int J Electrochem 2011:460850, 2011). Chemical measurement with electrodes is label-free and has demonstrated capability of studying living cells. In recent years, nanoelectrodes of different functionality have been developed. These nanometer-sized electrodes, coupled with scanning electrochemical microscopy (SECM), have further enabled nanometer spatial resolution study in aqueous environments. Developments in the field of nanoelectrochemistry have allowed measurement of signaling species at single cells, contributing to better understanding of cell biology. Leading studies using nanoelectrochemistry of a variety of cellular signaling molecules, including redox-active neurotransmitter (e.g., dopamine), non-redox-active neurotransmitter (e.g., acetylcholine), reactive oxygen species (ROS), and reactive nitrogen species (RNS), are reviewed here.
Collapse
Affiliation(s)
- Ran Chen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Kristen Alanis
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Theresa M Welle
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Mei Shen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
19
|
Koizumi A, Tahara H, Hirano T, Morita A. Revealing Transient Shuttling Mechanism of Catalytic Ion Transport through Liquid-Liquid Interface. J Phys Chem Lett 2020; 11:1584-1588. [PMID: 32020807 DOI: 10.1021/acs.jpclett.9b03742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hard, hydrophilic ions that hardly transport over the water-oil interface by imposing external electric potential could undergo facile transport with a trace of ligand. Such phenomena, called "shuttling", are elucidated by microscopic investigation with molecular dynamics simulations. The catalytic role manifests itself in a 2-D free-energy surface within the nanometer range of the interface. The free-energy landscape clearly distinguishes the condition that the catalytic shuttling plays a vital role in the ion transport. The mechanism associated with transient complex formation at the interface is shown to be widely relevant to the ion kinetics and extends the conventional concept of facilitated ion transport.
Collapse
Affiliation(s)
- Ai Koizumi
- Department of Chemistry, Graduate School of Science , Tohoku University , Sendai 980-8578 , Japan
| | - Hirofumi Tahara
- Department of Chemistry, Graduate School of Science , Tohoku University , Sendai 980-8578 , Japan
| | - Tomonori Hirano
- Department of Chemistry, Graduate School of Science , Tohoku University , Sendai 980-8578 , Japan
| | - Akihiro Morita
- Department of Chemistry, Graduate School of Science , Tohoku University , Sendai 980-8578 , Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB) , Kyoto University , Kyoto 615-8520 , Japan
| |
Collapse
|
20
|
Chen R, Yang A, Chang A, Oweimrin PF, Romero J, Vichitcharoenpaisarn P, Tapia S, Ha K, Villaflor C, Shen M. A Newly Synthesized Tris(crown ether) Ionophore for Assisted Ion Transfer at NanoITIES Electrodes. ChemElectroChem 2020. [DOI: 10.1002/celc.201901997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ran Chen
- Department of Chemistry University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801
| | - Anna Yang
- Department of Chemistry University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801
| | - Albert Chang
- Department of Chemistry University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801
| | - Philip F. Oweimrin
- Department of Chemistry University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801
| | - Julian Romero
- Department of Chemistry University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801
| | | | - Stephanie Tapia
- Department of Chemistry University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801
| | - Kevin Ha
- Department of Chemistry University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801
| | - Christopher Villaflor
- Department of Chemistry University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801
| | - Mei Shen
- Department of Chemistry University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801
| |
Collapse
|
21
|
Pathirathna P, Balla RJ, Meng G, Wei Z, Amemiya S. Nanoscale electrostatic gating of molecular transport through nuclear pore complexes as probed by scanning electrochemical microscopy. Chem Sci 2019; 10:7929-7936. [PMID: 31673318 PMCID: PMC6788534 DOI: 10.1039/c9sc02356a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/08/2019] [Indexed: 01/07/2023] Open
Abstract
The nuclear pore complex (NPC) is a large protein nanopore that solely mediates molecular transport between the nucleus and cytoplasm of a eukaryotic cell. There is a long-standing consensus that selective transport barriers of the NPC are exclusively based on hydrophobic repeats of phenylalanine and glycine (FG) of nucleoporins. Herein, we reveal experimentally that charged residues of amino acids intermingled between FG repeats can modulate molecular transport through the NPC electrostatically and in a pathway-dependent manner. Specifically, we investigate the NPC of the Xenopus oocyte nucleus to find that excess positive charges of FG-rich nucleoporins slow down passive transport of a polycationic peptide, protamine, without affecting that of a polyanionic pentasaccharide, Arixtra, and small monovalent ions. Protamine transport is slower with a lower concentration of electrolytes in the transport media, where the Debye length becomes comparable to the size of water-filled spaces among the gel-like network of FG repeats. Slow protamine transport is not affected by the binding of a lectin, wheat germ agglutinin, to the peripheral route of the NPC, which is already blocked electrostatically by adjacent nucleoporins that have more cationic residues than anionic residues and even FG dipeptides. The permeability of NPCs to the probe ions is measured by scanning electrochemical microscopy using ion-selective tips based on liquid/liquid microinterfaces and is analysed by effective medium theory to determine the sizes of peripheral and central routes with distinct protamine permeability. Significantly, nanoscale electrostatic gating at the NPC can be relevant not only chemically and biologically, but also biomedically for efficient nuclear import of genetically therapeutic substances.
Collapse
Affiliation(s)
- Pavithra Pathirathna
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , USA .
| | - Ryan J Balla
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , USA .
| | - Guanqun Meng
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , USA .
| | - Zemeng Wei
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , USA .
| | - Shigeru Amemiya
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , USA .
| |
Collapse
|
22
|
Claudio-Cintrón MA, Rodríguez-López J. Scanning electrochemical microscopy with conducting polymer probes: Validation and applications. Anal Chim Acta 2019; 1069:36-46. [PMID: 31084739 DOI: 10.1016/j.aca.2019.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 02/05/2023]
Abstract
Scanning electrochemical microscopy (SECM) allows spatially and temporally resolved measurements of a broad range of reactive surfaces and specimens, typically using electrochemically active metal probes. While conducting polymers (CPs) present several analytical properties of interest due to their chemical versatility, potentially enabling the measurement of ionic fluxes as well as redox processes, they have not been widely used as probe materials for SECM. CPs can be modified and fine-tuned to improve experimental parameters and they can be easily prepared by electrodeposition. In this paper, we show a new type of CP probe for SECM that retains the spatial resolution of conventional metal probes and introduces the possibility to exploit a wide range of ionic and redox systems. Poly-3,4-ethylenedioxythiophene (PEDOT) was electrochemically deposited on flat and recessed Pt microdisks to generate CP SECM probes. To demonstrate their usefulness, an insulating substrate with conducting features was imaged. Well-defined SECM feedback images were observed for both the CP well-probe and the Pt probe, proving the efficiency of the new electrode to image redox reactions. Additionally, an organosulfur compound was used as mediator taking advantage of the electrocatalytic effect PEDOT has on the molecule's kinetics. Finally, these probes were also used in a mediator-less fashion, taking advantage of the ion flux required to electrochemically oxidize the PEDOT deposit. We investigated the impact of anion size and concentration on current-distance relationships for SECM probe positioning. CP probes pose exciting prospects for the imaging and measurement of combined redox and ionic processes in energy materials.
Collapse
Affiliation(s)
- Marie A Claudio-Cintrón
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, United States
| | - Joaquín Rodríguez-López
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, United States.
| |
Collapse
|
23
|
Izadyar A. Stripping Voltammetry at the Interface between two Immiscible Electrolyte Solutions: A Review Paper. ELECTROANAL 2018. [DOI: 10.1002/elan.201800279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anahita Izadyar
- Department of Chemistry and Physics; Arkansas State University, PO Box 419; State University; AR 72467 USA
| |
Collapse
|
24
|
Shen M, Qu Z, DesLaurier J, Welle TM, Sweedler JV, Chen R. Single Synaptic Observation of Cholinergic Neurotransmission on Living Neurons: Concentration and Dynamics. J Am Chem Soc 2018; 140:7764-7768. [PMID: 29883110 DOI: 10.1021/jacs.8b01989] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acetylcholine, the first neurotransmitter identified more than a century ago, plays critical roles in human activities and health; however, its synaptic concentration dynamics have remained unknown. Here, we demonstrate the in situ simultaneous measurements of synaptic cholinergic transmitter concentration and release dynamics. We used nanoscale electroanalytical methods: nanoITIES electrode of 15 nm in radius and nanoresolved scanning electrochemical microscopy (SECM). Time-resolved in situ measurements unveiled information on synaptic acetylcholine concentration and release dynamics of living Aplysia neurons. The measuring technique enabled the quantitative sensing of acetylcholine with negligible interference of other ionic and redox-active species. We measured cholinergic transmitter concentrations very close to the synapse, with values as high as 2.4 mM. We observed diverse synaptic transmitter concentration dynamics consisting of singlet, doublet and multiplet events with a signal-to-noise ratio of 6 to 130. The unprecedented details about synaptic neurotransmission unveiled are instrumental for understanding brain communication and diseases in a way distinctive from extra-synaptic studies.
Collapse
Affiliation(s)
- Mei Shen
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Matthews Avenue , Urbana , Illinois 61801 , United States
| | - Zizheng Qu
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Matthews Avenue , Urbana , Illinois 61801 , United States
| | - Justin DesLaurier
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Matthews Avenue , Urbana , Illinois 61801 , United States
| | - Theresa M Welle
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Matthews Avenue , Urbana , Illinois 61801 , United States
| | - Jonathan V Sweedler
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Matthews Avenue , Urbana , Illinois 61801 , United States
| | - Ran Chen
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Matthews Avenue , Urbana , Illinois 61801 , United States
| |
Collapse
|
25
|
Rudnicki K, Poltorak L, Skrzypek S, Sudhölter EJR. Fused Silica Microcapillaries Used for a Simple Miniaturization of the Electrified Liquid-Liquid Interface. Anal Chem 2018; 90:7112-7116. [PMID: 29781599 PMCID: PMC6011180 DOI: 10.1021/acs.analchem.8b01351] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
Short
pieces of fused silica capillary tubing were used to support
an electrified liquid–liquid interface. A methyl deactivated
silica capillary having a diameter of 25 μm was filled with
1,2-dichloroethane solution and served as the organic part of the
liquid–liquid interface. A nondeactivated fused silica capillary
having a diameter of 5, 10, or 25 μm was filled with an aqueous
HCl solution and served as the aqueous part of the electrochemical
cell. For the latter, silanization of the capillary interior with
chlorotrimethylsilane allowed for a successful phase reversal. All
capillaries were characterized by ion transfer voltammetry using tetramethylammonium
cation as a model ion. This simple, fast, and low-cost miniaturization
technique was successfully applied for detection of the antibiotic
ofloxacin.
Collapse
Affiliation(s)
- Konrad Rudnicki
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry , University of Lodz , Tamka 12 , 91-403 Lodz , Poland
| | - Lukasz Poltorak
- Delft University of Technology , Department of Chemical Engineering , Van der Maasweg 9 , 2629 HZ Delft , The Netherlands
| | - Sławomira Skrzypek
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry , University of Lodz , Tamka 12 , 91-403 Lodz , Poland
| | - Ernst J R Sudhölter
- Delft University of Technology , Department of Chemical Engineering , Van der Maasweg 9 , 2629 HZ Delft , The Netherlands
| |
Collapse
|
26
|
Iwai NT, Kramaric M, Crabbe D, Wei Y, Chen R, Shen M. GABA Detection with Nano-ITIES Pipet Electrode: A New Mechanism, Water/DCE-Octanoic Acid Interface. Anal Chem 2018; 90:3067-3072. [PMID: 29388419 PMCID: PMC6126903 DOI: 10.1021/acs.analchem.7b03099] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Interface between two immiscible electrolyte solutions (ITIES) supported on the orifice of a pipet have become a powerful platform to detect a broad range of analytes. We present here the detection of γ-aminobutyric acid (GABA) with the nanoITIES pipet electrodes for the first time. GABA has a net charge of zero in an aqueous solution at pH ≈ 7, and it has not previously been detected at ITIES. In this work, we demonstrated GABA detection at ITIES in an aqueous solution at pH ≈ 7, where we introduced a novel detection strategy based on "pH modulation from the oil phase". To the best of our knowledge, this is the first report of such. Current increases linearly with increasing concentrations of GABA, ranging from 0.25 mM to 1.0 mM. The measured half-wave transfer potential of GABA is -0.401 ± 0.010 V ( n = 22) vs E1/2,TBA. The measured diffusion coefficient for GABA detection at nanoITIES pipet electrode is 6.09 (±0.58) × 10-10 m2/s ( n = 5). Experimental results indicate that protons generated from octanoic acid dissociation in the oil phase do not come out from the oil phase into the aqueous phase; neither were protons produced in the aqueous phase. NanoITIES pipet electrodes with radii of 320-340 nm were used in the current study. This new strategy and knowledge presented here lays the groundwork for the future development of ITIES pipet electrodes, especially for the detection of electrochemically nonredox active analytes.
Collapse
Affiliation(s)
- Nicholas Toshio Iwai
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Michelle Kramaric
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Daniel Crabbe
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Yuanyuan Wei
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Ran Chen
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Mei Shen
- Corresponding Author, Fax: +1 (217) 265-6290.
| |
Collapse
|
27
|
Katano H, Uematsu K, Kuroda Y, Osakai T. Ion transfer at the interface between water and fluorous solvent 1,1,1,2,3,4,4,5,5,5-decafluoropentane. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.04.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Applicability of a fluorous solvent 1,1,1,2,3,4,4,5,5,5-decafluoropentane for the non-aqueous medium in liquid-liquid electrochemistry. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.01.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Nötzel R. InN/InGaN quantum dot electrochemical devices: new solutions for energy and health. Natl Sci Rev 2017. [DOI: 10.1093/nsr/nww101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AbstractA review is given of the exceptional electrochemical performance of epitaxial InN/InGaN quantum dots (QDs) as photoelectrodes for solar hydrogen generation by water splitting, as biosensor transducers and as anion-selective electrodes, and they are also evaluated as supercapacitor electrodes. The performance is benchmarked against the best performances of other reported materials and nanostructures. A model based on the unique interplay of surface and quantum properties is put forward to understand the boost of catalytic activity and anion selectivity interlinking quantum nanostructure physics with electrochemistry and catalysis. Of equal impact is the direct growth on cheap Si substrates without any buffer layers, allowing novel device designs and integration with Si technology. This makes the InN/InGaN QDs viable, opening up new application fields for III-nitride semiconductors.
Collapse
Affiliation(s)
- Richard Nötzel
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- L-NESS and Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Via Cozzi 53, 20125 Milano, Italy
| |
Collapse
|
30
|
Amemiya S. Voltammetric Ion Selectivity of Thin Ionophore-Based Polymeric Membranes: Kinetic Effect of Ion Hydrophilicity. Anal Chem 2016; 88:8893-901. [PMID: 27527590 PMCID: PMC5031248 DOI: 10.1021/acs.analchem.6b02551] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The high ion selectivity of potentiometric and optical sensors based on ionophore-based polymeric membranes is thermodynamically limited. Here, we report that the voltammetric selectivity of thin ionophore-based polymeric membranes can be kinetically improved by several orders of magnitude in comparison with their thermodynamic selectivity. The kinetic improvement of voltammetric selectivity is evaluated quantitatively by newly introducing a voltammetric selectivity coefficient in addition to a thermodynamic selectivity coefficient. Experimentally, both voltammetric and thermodynamic selectivity coefficients are determined from cyclic voltammograms of excess amounts of analyte and interfering ions with respect to the amount of a Na(+)- or Li(+)-selective ionophore in thin polymeric membranes. We reveal the slower ionophore-facilitated transfer of a smaller alkaline earth metal cation with higher hydrophilicity across the membrane/water interface, thereby kinetically improving voltammetric Na(+) selectivity against calcium, strontium, and barium ions by 3, 2, and 1 order of magnitude, respectively, in separate solutions. Remarkably, voltammetric Na(+) and Li(+) selectivity against calcium and magnesium ions in mixed solutions is improved by 4 and >7 orders of magnitude, respectively, owing to both thermodynamic and kinetic effects in comparison with thermodynamic selectivity in separate solutions. Advantageously, the simultaneous detection of sodium and calcium ions is enabled voltammetrically in contrast to the potentiometric and optical counterparts. Mechanistically, we propose a new hypothetical model that the slower transfer of a more hydrophilic ion is controlled by its partial dehydration during the formation of the adduct with a "water finger" prior to complexation with an ionophore at the membrane/water interface.
Collapse
Affiliation(s)
- Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260
| |
Collapse
|
31
|
Kikkawa N, Wang L, Morita A. Computational study of effect of water finger on ion transport through water-oil interface. J Chem Phys 2016; 145:014702. [DOI: 10.1063/1.4954774] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Nobuaki Kikkawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Lingjian Wang
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Akihiro Morita
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| |
Collapse
|
32
|
Greenawalt PJ, Amemiya S. Voltammetric Mechanism of Multiion Detection with Thin Ionophore-Based Polymeric Membrane. Anal Chem 2016; 88:5827-34. [PMID: 27111277 PMCID: PMC5029862 DOI: 10.1021/acs.analchem.6b00397] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The capability to detect multianalyte ions in their mixed solution is an important advantage of voltammetry with an ionophore-based polymeric membrane against the potentiometric and optical counterparts. This advanced capability is highly attractive for the analysis of physiological ions at millimolar concentrations in biological and biomedical samples. Herein, we report on the comprehensive response mechanisms based on the voltammetric exchange and transfer of millimolar multiions at a thin polymeric membrane, where an ionophore is exhaustively depleted upon the transfer of the most favorable primary ion, I(zI). With a new voltammetric ion-exchange mechanism, the primary ion is exchanged with the secondary favorable ion, J(zJ), at more extreme potentials to transfer a net charge of |zJ|/nJ - |zI|/nI for each ionophore molecule, which forms 1:nI and 1:nJ complexes with the respective ions. Alternatively, an ion-transfer mechanism utilizes the second ionophore that independently transfers the secondary ion without ion exchange. Experimentally, a membrane is doped with a Na(+)- or Li(+)-selective ionophore to detect not only the primary ion, but also the secondary alkaline earth ion, based on the ion-exchange mechanism, where both ions form 1:1 complexes with the ionophores to transfer a net charge of +1. Interestingly, the resultant peak potentials of the secondary divalent ion vary with its sample activity to yield an apparently super-Nernstian slope as predicted theoretically. By contrast, the voltammetric exchange of calcium ion (nI = 3) with lithium ion (nJ = 1) by a Ca(2+)-selective ionophore is thermodynamically unfavorable, thereby requiring a Li(+)-selective ionophore for the ion-transfer mechanism.
Collapse
Affiliation(s)
- Peter J. Greenawalt
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260
| |
Collapse
|
33
|
Amperometric sensing of sodium, calcium and potassium in biological fluids using a microhole supported liquid/gel interface. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.02.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Affiliation(s)
- Eric Bakker
- Department of Inorganic and
Analytical Chemistry, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
35
|
Shen M, Colombo ML. Electrochemical nanoprobes for the chemical detection of neurotransmitters. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2015; 7:7095-7105. [PMID: 26327927 PMCID: PMC4551492 DOI: 10.1039/c5ay00512d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Neurotransmitters, acting as chemical messengers, play an important role in neurotransmission, which governs many functional aspects of nervous system activity. Electrochemical probes have proven a very useful technique to study neurotransmission, especially to quantify and qualify neurotransmitters. With the emerging interests in probing neurotransmission at the level of single cells, single vesicles, as well as single synapses, probes that enable detection of neurotransmitters at the nanometer scale become vitally important. Electrochemical nanoprobes have been successfully employed in nanometer spatial resolution imaging of single nanopores of Si membrane and single Au nanoparticles, providing both topographical and chemical information, thus holding great promise for nanometer spatial study of neurotransmission. Here we present the current state of electrochemical nanoprobes for chemical detection of neurotransmitters, focusing on two types of nanoelectrodes, i.e. carbon nanoelectrode and nano-ITIES pipet electrode.
Collapse
Affiliation(s)
- Mei Shen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, USA. Tel: +1 (217) 300 3587
| | - Michelle L. Colombo
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, USA. Tel: +1 (217) 300 3587
| |
Collapse
|
36
|
Greenawalt PJ, Garada MB, Amemiya S. Voltammetric Characterization of Ion–Ionophore Complexation Using Thin Polymeric Membranes: Asymmetric Thin-Layer Responses. Anal Chem 2015; 87:8564-72. [DOI: 10.1021/acs.analchem.5b02355] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Peter J. Greenawalt
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Mohammed B. Garada
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Shigeru Amemiya
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
37
|
Colombo ML, Sweedler JV, Shen M. Nanopipet-Based Liquid-Liquid Interface Probes for the Electrochemical Detection of Acetylcholine, Tryptamine, and Serotonin via Ionic Transfer. Anal Chem 2015; 87:5095-100. [PMID: 25877788 PMCID: PMC4483307 DOI: 10.1021/ac504151e] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A nanoscale interface between two immiscible electrolyte solutions (ITIES) provides a unique analytical platform for the detection of ionic species of biological interest such as neurotransmitters and neuromodulators, especially those that are otherwise difficult to detect directly on a carbon electrode without electrode modification. We report the detection of acetylcholine, serotonin, and tryptamine on nanopipet electrode probes with sizes ranging from a radius of ≈7 to 35 nm. The transfer of these analytes across a 1,2-dichloroethane/water interface was studied by cyclic voltammetry and amperometry. Well-defined sigmoidal voltammograms were observed on the nanopipet electrodes within the potential window of artificial seawater for acetylcholine and tryptamine. The half wave transfer potential, E1/2, of acetylcholine, tryptamine, and serotonin were found to be -0.11, -0.25, and -0.47 V vs E(1/2,TEA) (term is defined later in experimental), respectively. The detection was linear in the range of 0.25-6 mM for acetylcholine and of 0.5-10 mM for tryptamine in artificial seawater. Transfer of serotonin was linear in the range of 0.15-8 mM in LiCl solution. The limit of detection for serotonin in LiCl on a radius ≈21 nm nanopipet electrode was 77 μM, for acetylcholine on a radius ≈7 nm nanopipet electrode was 205 μM, and for tryptamine on a radius ≈19 nm nanopipet electrode was 86 μM. Nanopipet-supported ITIES probes have great potential to be used in nanometer spatial resolution measurements for the detection of neurotransmitters.
Collapse
Affiliation(s)
- Michelle L. Colombo
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Jonathan V. Sweedler
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Mei Shen
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
38
|
Tian H, Li Y, Shao H, Yu HZ. Thin-film voltammetry and its analytical applications: A review. Anal Chim Acta 2015; 855:1-12. [DOI: 10.1016/j.aca.2014.06.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/19/2014] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
|
39
|
Herzog G. Recent developments in electrochemistry at the interface between two immiscible electrolyte solutions for ion sensing. Analyst 2015; 140:3888-96. [DOI: 10.1039/c5an00601e] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The most recent developments on electrochemical sensing of ions at the liquid–liquid interface are reviewed here.
Collapse
Affiliation(s)
- Grégoire Herzog
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME)
- UMR 7564
- CNRS – Université de Lorraine
- Villers-lès-Nancy
- France
| |
Collapse
|
40
|
Garada MB, Kabagambe B, Kim Y, Amemiya S. Ion-Transfer Voltammetry of Perfluoroalkanesulfonates and Perfluoroalkanecarboxylates: Picomolar Detection Limit and High Lipophilicity. Anal Chem 2014; 86:11230-7. [DOI: 10.1021/ac5027836] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mohammed B. Garada
- Department of Chemistry, University of Pittsburgh, 219 Parkman
Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Benjamin Kabagambe
- Department of Chemistry, University of Pittsburgh, 219 Parkman
Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Yushin Kim
- Department of Chemistry, University of Pittsburgh, 219 Parkman
Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, 219 Parkman
Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
41
|
Sairi M, Chen-Tan N, Neusser G, Kranz C, Arrigan DWM. Electrochemical Characterisation of Nanoscale Liquid|Liquid Interfaces Located at Focused Ion Beam-Milled Silicon Nitride Membranes. ChemElectroChem 2014. [DOI: 10.1002/celc.201402252] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Effect of organic solvent on mutual diffusion and ionic behavior near liquid–liquid interface by molecular dynamics simulations. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2014.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Huang L, Li P, Pamphile N, Tian ZQ, Zhan D. Electrosynthesis of Copper-Tetracyanoquinodimethane Based on the Coupling Charge Transfer across Water/1,2-Dichloroethane Interface. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.04.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Kabagambe B, Garada MB, Ishimatsu R, Amemiya S. Subnanomolar detection limit of stripping voltammetric Ca²⁺-selective electrode: effects of analyte charge and sample contamination. Anal Chem 2014; 86:7939-46. [PMID: 24992261 DOI: 10.1021/ac501951m] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Ultrasensitive ion-selective electrode measurements based on stripping voltammetry are an emerging sensor technology with low- and subnanomolar detection limits. Here, we report on stripping voltammetry of down to 0.1 nM Ca(2+) by using a thin-polymer-coated electrode and demonstrate the advantageous effects of the divalent charge on sensitivity. A simple theory predicts that the maximum concentration of an analyte ion preconcentrated in the thin membrane depends exponentially on the charge and that the current response based on exhaustive ion stripping from the thin membrane is proportional to the square of the charge. The theoretical predictions are quantitatively confirmed by using a thin ionophore-doped polymer membrane spin-coated on a conducting-polymer-modified electrode. The potentiostatic transfer of hydrophilic Ca(2+) from an aqueous sample into the hydrophobic double-polymer membrane is facilitated by an ionophore with high Ca(2+) affinity and selectivity. The resultant concentration of the Ca(2+)-ionophore complex in the ~1 μm-thick membrane can be at least 5 × 10(6) times higher than the aqueous Ca(2+) concentration. The stripping voltammetric current response to the divalent ion is enhanced to achieve a subnanomolar detection limit under the condition where a low-nanomolar detection limit is expected for a monovalent ion. Significantly, charge-dependent sensitivity is attractive for the ultrasensitive detection of multivalent ions with environmental and biomedical importance such as heavy metal ions and polyionic drugs. Importantly, this stripping voltammetric approach enables the absolute determination of subnanomolar Ca(2+) contamination in ultrapure water containing 10 mM supporting electrolytes, i.e., an 8 orders of magnitude higher background concentration.
Collapse
Affiliation(s)
- Benjamin Kabagambe
- Department of Chemistry, University of Pittsburgh , 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | | | | | | |
Collapse
|