1
|
Huang Z, Yi G, Wang Q, Wang S, Xu Q, Huan C, Wang Y, Zhang W, Wang A, Liu W. Improving microbial activity in high-salt wastewater: A review of innovative approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176278. [PMID: 39278494 DOI: 10.1016/j.scitotenv.2024.176278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
The Zero discharge technology has become an important pathroute for sustainable development of high salt wastewater treatment. However, the cohabitation of organic and inorganic debris can cause serious problems such membrane clogging and the formation of hazardous impurity salts that further restrict the recovery of all salt varieties by evaporating and crystallizing. In highly salinized wastewater, biological treatments offer advantages in terms of cost and sustainability when used as a pre-treatment step to eliminate organic debris. On the other hand, high salinity is always a major obstacle to microbial diversity, abundance, and activity, which can result in low organic matter removal effectiveness or the failure of the microbial treatment system. Biofortification techniques can attenuate the negative effects of salt stress and other unfavourable conditions on microorganisms, while the regulation mechanisms of microbial and community collaboration by fortification methods have been an open question. Therefore, a comprehensive summary of the types, mechanisms, and effects of the major biofortification techniques is proposed. This review dialyzes the characteristics and sources of hypersaline wastewater and the main treatment methods. Then, the mechanisms of microbial salt tolerance are summarized and discussed based on microbial characteristics and the protective effects provided by the processes. Finally, the research and application of the main bioaugmentation methods are developed in detail, describing the characteristics, advantages and disadvantages of the different enhancement methods in their implementation. This review provides a more comprehensive perspective on the future engineering applications of bioaugmentation technology, and explores in depth the possibilities of applying biological methods to high-salinity wastewater treatment.
Collapse
Affiliation(s)
- Zongyi Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Genping Yi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Qiandi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Sihui Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Qiongying Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Changan Huan
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Yuqi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wenzhe Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; China Testing & Certification International Group Co.,Ltd., Beijng 100024, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
2
|
Liang H, Jia Y, Khanal SK, Huang D, Sun L, Lu H. Electrochemical-coupled sulfur-driven autotrophic denitrification for nitrogen removal from raw landfill leachate: Evaluation of performance and mechanisms. WATER RESEARCH 2024; 256:121592. [PMID: 38626614 DOI: 10.1016/j.watres.2024.121592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024]
Abstract
The cost-effective and environment-friendly sulfur-driven autotrophic denitrification (SdAD) process has drawn significant attention for advanced nitrogen removal from low carbon-to-nitrogen (C/N) ratio wastewater in recent years. However, achieving efficient nitrogen removal and maintaining system stability of SdAD process in treating low C/N landfill leachate treatment have been a major challenge. In this study, a novel electrochemical-coupled sulfur-driven autotrophic denitrification (ESdAD) system was developed and compared with SdAD system through a long-term continuous study. Superior nitrogen removal performance (removal efficiency of 89.1 ± 2.5 %) was achieved in ESdAD system compared to SdAD process when treating raw landfill leachate (influent total nitrogen (TN) concentration of 241.7 ± 36.3 mg-N/L), and the effluent TN concentration of ESdAD bioreactor was as low as 24.8 ± 5.1 mg-N/L, which meets the discharge standard of China (< 40 mg N/L). Moreover, less sulfate production rate (1.3 ± 0.2 mg SO42--S/mgNOx--N vs 1.7 ± 0.2 mg SO42--S/mgNOx--N) and excellent pH modulation (pH of 6.9 ± 0.2 vs 5.8 ± 0.4) were also achieved in the ESdAD system compared to SdAD system. The improvement of ESdAD system performance was contributed to coexistence and interaction of heterotrophic bacteria (e.g., Rhodanobacter, Thermomonas, etc.), sulfur autotrophic bacteria (e.g., Thiobacillus, Sulfurimonas, Ignavibacterium etc.) and hydrogen autotrophic bacteria (e.g., Thauera, Comamonas, etc.) under current stimulation. In addition, microbial nitrogen metabolic activity, including functional enzyme (e.g., Nar and Nir) activities and electron transfer capacity of extracellular polymeric substances (EPS) and cytochrome c (Cyt-C), were also enhanced during current stimulation, which facilitated the nitrogen removal and maintained system stability. These findings suggested that ESdAD is an effective and eco-friendly process for advanced nitrogen removal for low C/N wastewater.
Collapse
Affiliation(s)
- Huiyu Liang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, PR China
| | - Yanyan Jia
- School of Ecology, Sun Yat-Sen University, Shenzhen, PR China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, USA
| | - Dongqi Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, PR China
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, PR China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, PR China.
| |
Collapse
|
3
|
Zhao F, Zhang Q, He L, Yang W, Si M, Liao Q, Yang Z. Molecular level insight of thiocyanate degradation by Pseudomonas putida TDB-1 under a high arsenic and alkaline condition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162578. [PMID: 36870261 DOI: 10.1016/j.scitotenv.2023.162578] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
It is a big challenge to bioremediate thiocyanate pollution in the gold extraction heap leaching tailings and surrounding soils with high contents of arsenic and alkali. Here, a novel thiocyanate-degrading bacterium Pseudomonas putida TDB-1 was successfully applied to completely degrade 1000 mg/L thiocyanate under a high arsenic (400 mg/L) and alkaline condition (pH = 10). It also leached the contents of thiocyanate from 1302.16 to 269.72 mg/kg in the gold extraction heap leaching tailings after 50 h. The maximum transformation rates of S and N in thiocyanate to the two finial products of SO42- and NO3- were 88.98 % and 92.71 %, respectively. Moreover, the genome sequencing confirmed that the biomarker gene of thiocyanate-degrading bacterium, CynS was identified in the strain TDB-1. The bacterial transcriptome revealed that critical genes, such as CynS, CcoNOQP, SoxY, tst, gltBD, arsRBCH and NhaC, etc. in the thiocyanate degradation, S and N metabolisms, and As and alkali resistance were significantly up-regulated in the groups with 300 mg/L SCN- (T300) and with 300 mg/L SCN- and 200 mg/L As (TA300). In addition, the protein-protein interaction network showed that the glutamate synthase encoding by gltB and gltD served as central node to integrate the S and N metabolism pathways with thiocyanate as substrate. The results of our study provide a novel molecular level insight for the dynamic gene expression regulation of thiocyanate degradation by the strain TDB-1 with a severe arsenic and alkaline stress.
Collapse
Affiliation(s)
- Feiping Zhao
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083 Changsha, China
| | - Qinya Zhang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China
| | - Lixu He
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China
| | - Weichun Yang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083 Changsha, China
| | - Mengying Si
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083 Changsha, China
| | - Qi Liao
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083 Changsha, China.
| | - Zhihui Yang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083 Changsha, China
| |
Collapse
|
4
|
Feng HJ, Chen L, Ding YC, Ma XJ, How SW, Wu D. Mechanism on the microbial salt tolerance enhancement by electrical stimulation. Bioelectrochemistry 2022; 147:108206. [PMID: 35868204 DOI: 10.1016/j.bioelechem.2022.108206] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022]
Abstract
The application of biological methods in industrial saline wastewater treatment is limited, since the activities of microorganisms are strongly inhibited by the highly concentrated salts. Acclimatized halotolerant and halophilic microorganisms are of high importance since they can resist the environmental stresses of high salinity. The acclimation to salinity can be passive or active based on whether external simulation is used. However, there is a need for development of economic, efficient and reliable active biological stimulation technologies to accelerate salinity acclimation. Recent studies have shown that electrical stimulation can effectively enhance microbial salt tolerance and pollutant removal ability. However, there have been no comprehensive reviews of the mechanisms involved. Therefore, this mini-review described the mechanisms of electrical stimulation that can significantly improve microbial bioactivity and biodiversity. These mechanisms include regulation of Na+ and K+ transporters by changing membranepotential and promoting ATP production, as well as regulation of extracellular polymer substances through enhanced release of low molecular weight EPS and quorum sensing molecules. The information provided herein will facilitate the application of biological high-salinity wastewater treatment.
Collapse
Affiliation(s)
- Hua-Jun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China
| | - Long Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China
| | - Yang-Cheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China.
| | - Xiang-Juan Ma
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China
| | - Seow-Wah How
- Faculty of Bioengineering, Ghent University, Ghent 9000, Belgium
| | - Di Wu
- Faculty of Bioengineering, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
5
|
Dong X, Liu H, Long S, Xu S, Lichtfouse E. Weak electrical stimulation on biological denitrification: Insights from the denitrifying enzymes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150926. [PMID: 34655632 DOI: 10.1016/j.scitotenv.2021.150926] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
In order to improve the denitrification efficiency of low carbon to nitrogen ratio (C/N) wastewater, we conducted continuous flow experiments of weakly electrically stimulated denitrification using a direct current output voltage. The results showed that the best denitrification was achieved at a voltage of 0.2 V. The removal of nitrate and total nitrogen was increased by 20% and the production of intermediate greenhouse gas (N2O) was reduced by 62.6%. We explored the specific pathways involved in the weak electrical stimulated denitrification using enzyme activity as a cut-off point. The enzyme activity analysis and 3D fluorescence spectroscopy revealed that nitrate reductase (NAR) and nitrite reductase (NIR) activities were significantly enhanced by weak electrical stimulation, and the aromatic protein content in extracellular polymers substances (EPS) increased, accelerating electron transfer and promoting the conversion of loosely bound EPS (LB) to tightly bound EPS (TB). The accelerated electron transfer further increased enzyme activity and the metabolic rate of microorganisms. This study indicates that weak electrical stimulation could improve activities of biological enzymes to enhance denitrification efficiency.
Collapse
Affiliation(s)
- Xinyi Dong
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093 Shanghai, China
| | - Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093 Shanghai, China.
| | - Shiping Long
- Chongqing New World Environment Detection Technology Co. Ltd., 22 Jinyudadao, 401122 Chongqing, China
| | - Suyun Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093 Shanghai, China.
| | - Eric Lichtfouse
- Aix-Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, 13100 Aix en Provence, France
| |
Collapse
|
6
|
Fernandez-Gatell M, Corbella C, Sanchez-Vila X, Puigagut J. Microbial activity enhancement in constructed wetlands operated as bioelectrochemical systems. CHEMOSPHERE 2022; 287:132383. [PMID: 34592205 DOI: 10.1016/j.chemosphere.2021.132383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Treatment wetlands (TW) operated as bioelectrochemical systems (BES-TW) provide a higher degree of treatment than conventional TW. Yet, the fundamental processes or mechanisms for the envisaged better performance of BES-TW over conventional TW remains poorly understood. This work aimed to determine to which extent microbial activity enhancement could be the reason behind this treatment performance increase. To this purpose, pilot-scale horizontal sub-surface flow BES-TW operated under three different configurations were continuously fed with real urban wastewater. BES-TW were evaluated for COD and ammonia removal efficiency, and two techniques of microbial activity assessment were applied. Configurations, tested in duplicate, were: control TWs without electrodes (C-TW), TWs operated as microbial fuel cells (MFC-TW), and TWs operated as microbial electrolysis cells (MEC-TW). Microbial activity was assessed by measuring the enzymatic activity (EA) (FDA hydrolysis technique) and the aerobic activity (AA) (estimated through respirometry). Results showed that BES-TW outperformed C-TW in terms of both microbial activity enhancement and contaminants removal efficiency, especially in the case of MEC-TW. More precisely, this configuration showed an average improvement of 17%, and 56% in COD removal and EA efficiencies, respectively, compared to C-TW. Regarding AA activity, although MEC-TW seemed to outperform the rest of the configurations, differences were not statistically significant. This work demonstrates that TWs operated as BES increase the overall enzymatic activity of the treatment bed and this, in turn, is the leading cause to a higher degree of treatment performance.
Collapse
Affiliation(s)
- Marta Fernandez-Gatell
- GEMMA - Environmental Engineering and Microbiology Research Group, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, c/ Jordi Girona 1-3, Building D1, 08034, Barcelona, Spain; GHS - Dept. of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034, Barcelona, Spain
| | - Clara Corbella
- GEMMA - Environmental Engineering and Microbiology Research Group, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, c/ Jordi Girona 1-3, Building D1, 08034, Barcelona, Spain
| | - Xavier Sanchez-Vila
- GHS - Dept. of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034, Barcelona, Spain; Associated Unit: Hydrogeology Group (UPC-CSIC), Spain
| | - Jaume Puigagut
- GEMMA - Environmental Engineering and Microbiology Research Group, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, c/ Jordi Girona 1-3, Building D1, 08034, Barcelona, Spain.
| |
Collapse
|
7
|
Hu D, Min H, Wang H, Zhao Y, Cui Y, Wu P, Ge H, Luo K, Zhang L, Liu W, Wang A. Performance of an up-flow anaerobic bio-electrochemical system (UBES) for treating sulfamethoxazole (SMX) antibiotic wastewater. BIORESOURCE TECHNOLOGY 2020; 305:123070. [PMID: 32120235 DOI: 10.1016/j.biortech.2020.123070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
This paper focused on the feasibility and performance of an up-flow anaerobic bio-electrochemical system (UBES) for treating sulfamethoxazole (SMX) antibiotic wastewater at different COD loading rates (LRs) from 2.02 ± 0.13 to 6.09 ± 0.14 kgCOD/(m3·d). Open-circuit UBES had a lower average COD removal rate of 62.4 ± 4.7% in Run2, and the accumulation of volatile fatty acid (VFA) was occurred. However, closed-circuit UBES can alleviate the accumulation of VFA (which was decreased from 720.4 to 102.4 mg/L), the highest average COD, SMX removal rates were 85.7 ± 3.2% and 73.7 ± 2.0%, respectively. The closed-circuit UBES can withstand more than 3 times LR than open-circuit UBES, which proved that the ability of microorganisms to resist toxic substance stress was strengthened. And the mathematical models for pollutants removal rate were established and well interpreted the results, which also can guide the operation of UBES.
Collapse
Affiliation(s)
- Dongxue Hu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Hongchao Min
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Hongcheng Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
| | - Yuanyi Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Yubo Cui
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Pan Wu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Hui Ge
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Kongyan Luo
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Lufeng Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Wenyu Liu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Aijie Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| |
Collapse
|
8
|
Song X, Huang L, Lu H, Zhou P, Wang M, Li N. An external magnetic field for efficient acetate production from inorganic carbon in Serratia marcescens catalyzed cathode of microbial electrosynthesis system. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Hou J, Huang L, Zhou P, Qian Y, Li N. Understanding the interdependence of strain of electrotroph, cathode potential and initial Cu(II) concentration for simultaneous Cu(II) removal and acetate production in microbial electrosynthesis systems. CHEMOSPHERE 2020; 243:125317. [PMID: 31722262 DOI: 10.1016/j.chemosphere.2019.125317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Metallurgical microbial electrosynthesis systems (MES) are holding great promise for simultaneous heavy metal removal and acetate production from heavy metal-contaminated and organics-barren waters. How critical parameters of strain of electrotroph, cathode potential and initial heavy metal concentration affect MES performance, however, is not yet fully understood. Heavy metal of Cu(II) and four Cu(II)-tolerant electrotrophs (Stenotrophomonas maltophilia JY1, Citrobacter sp. JY3, Pseudomonas aeruginosa JY5 and Stenotrophomonas sp. JY6) were employed to evaluate MES performance at various cathode potentials (-900 or -600 mV vs. standard hydrogen electrode) and initial Cu(II) concentrations (60-120 mg L-1). Each electrotrophs exhibited incremental Cu(II) removals with increased Cu(II) at -900 mV, higher than at -600 mV or in the abiotic controls. Acetate production by JY1 and JY6 decreased with the increase in initial Cu(II), compared to an initial increase and a decrease thereafter for JY3 and JY5. For each electrotrophs, the biofilms than the planktonic cells released more amounts of extracellular polymeric substances (EPS) with a compositional diversity and stronger Cu(II) complexation at -900 mV. These were higher than at -600 mV, or in the controls either under open circuit conditions or in the absence of Cu(II). This work demonstrates the interdependence of strain of electrotroph, cathode potential and initial Cu(II) on simultaneous Cu(II) removal and acetate production through the release of different amounts of EPS with diverse composites, contributing to enhancing the controlled MES for efficient recovery of value-added products from Cu(II)-contaminated and organics-barren waters.
Collapse
Affiliation(s)
- Jiaxin Hou
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Liping Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Peng Zhou
- College of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yitong Qian
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Ning Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
10
|
Hou X, Huang L, Zhou P, Tian F, Tao Y, Li Puma G. Electrosynthesis of acetate from inorganic carbon (HCO 3-) with simultaneous hydrogen production and Cd(II) removal in multifunctional microbial electrosynthesis systems (MES). JOURNAL OF HAZARDOUS MATERIALS 2019; 371:463-473. [PMID: 30875574 DOI: 10.1016/j.jhazmat.2019.03.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
The simultaneous production of acetate from bicarbonate (from CO2 sequestration) and hydrogen gas, with concomitant removal of Cd(II) heavy metal in water is demonstrated in multifunctional metallurgical microbial electrosynthesis systems (MES) incorporating Cd(II) tolerant electrochemically active bacteria (EAB) (Ochrobactrum sp. X1, Pseudomonas sp. X3, Pseudomonas delhiensis X5, and Ochrobactrum anthropi X7). Strain X5 favored the production of acetate, while X7 preferred the production of hydrogen. The rate of Cd(II) removal by all EAB (1.20-1.32 mg/L/h), and the rates of acetate production by X5 (29.4 mg/L/d) and hydrogen evolution by X7 (0.0187 m3/m3/d) increased in the presence of a circuital current. The production of acetate and hydrogen was regulated by the release of extracellular polymeric substances (EPS), which also exhibited invariable catalytic activity toward the reduction of Cd(II) to Cd(0). The intracellular activities of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) and dehydrogenase were altered by the circuital current and Cd(II) concentration, and these regulated the products distribution. Such understanding enables the targeted manipulation of the MES operational conditions that favor the production of acetate from CO2 sequestration with simultaneous hydrogen production and removal/recovery of Cd(II) from metal-contaminated and organics-barren waters.
Collapse
Affiliation(s)
- Xia Hou
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Liping Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Peng Zhou
- College of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Fuping Tian
- College of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Ye Tao
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Gianluca Li Puma
- Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| |
Collapse
|
11
|
Qian Y, Huang L, Zhou P, Tian F, Puma GL. Reduction of Cu(II) and simultaneous production of acetate from inorganic carbon by Serratia Marcescens biofilms and plankton cells in microbial electrosynthesis systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:114-125. [PMID: 30798222 DOI: 10.1016/j.scitotenv.2019.02.267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/17/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
Simultaneous Cu(II) reduction (6.42 ± 0.02 mg/L/h), acetate production (1.13 ± 0.02 mg/L/h) from inorganic carbon (i.e., CO2 sequestration), and hydrogen evolution (0.0315 ± 0.0005 m3/m3/d) were achieved in a Serratia marcescens Q1 catalyzed microbial electrosynthesis system (MES). The biofilms released increasing amounts of extracellular polymeric substances (EPS) with a higher compositional diversity and stronger Cu(II) complexation, compared to the plankton cells, at higher Cu(II) concentrations (up to 80 mg/L) and circuital currents (cathodic potential of -900 mV vs. standard hydrogen electrode (SHE)). Moreover, the biofilms reduced Cu(II) to Cu(0) more effectively than the plankton cells. At Cu(II) concentrations below 80 mg/L, the dehydrogenase activity in the biofilms was higher than in the plankton cells, and increased with circuital current, which was converse to the lower activities of catalase (CAT), superoxide dismutase (SOD) and antioxidative glutathione (GSH) in the biofilms than the plankton cells, although all these physiological activities were positively correlated with the concentration of Cu(II). This is the first study that evaluates the EPS constituents and the physiological activities of the biofilms and the plankton cells in the MESs, that favors the production of acetate from CO2 sequestration and the simultaneous reduction of Cu(II) from organics-barren waters contaminated with heavy metals.
Collapse
Affiliation(s)
- Yitong Qian
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Liping Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Peng Zhou
- College of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Fuping Tian
- College of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Gianluca Li Puma
- Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| |
Collapse
|
12
|
Chen D, Xiao Z, Wang H, Yang K. Toxic effects of vanadium (V) on a combined autotrophic denitrification system using sulfur and hydrogen as electron donors. BIORESOURCE TECHNOLOGY 2018; 264:319-326. [PMID: 29859503 DOI: 10.1016/j.biortech.2018.05.093] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/24/2018] [Accepted: 05/26/2018] [Indexed: 05/13/2023]
Abstract
Vanadium (V) is a common heavy metal and often co-occurs with nitrate in effluents from mining and metal finishing industry. In the present study, the toxic effects of V(V) were examined in a sulfur and hydrogen based autotrophic denitrification system. This combined system achieved simultaneously microbial denitrification and V(V) reduction. High concentration of V(V) (60 and 100 mg/L) inhibited the denitrification activities, while 30 mg/L V(V) had a very slight effect. V(V) induced increases of lactate dehydrogenase release and reactive oxygen species production, which may inhibit nitrate and nitrite reductases activities and abundances of denitrifying functional genes. Moreover, the extracellular polymeric substance production was also suppressed under V(V) stress, thereby decreasing the amount of biofilm biomass. Microbial community analyses suggesting the genus Bacillus may have higher tolerance to V(V). These findings can provide scientific basis for the optimized design of treatment system to remove nitrate and V(V) simultaneously.
Collapse
Affiliation(s)
- Dan Chen
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China
| | - Zhixing Xiao
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China.
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Kai Yang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| |
Collapse
|
13
|
Influence of Carbon Source on the Efficiency of Nitrogen Removal and Denitrifying Bacteria in Biofilm from Bioelectrochemical SBBRs. WATER 2018. [DOI: 10.3390/w10040393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Pous N, Balaguer MD, Colprim J, Puig S. Opportunities for groundwater microbial electro-remediation. Microb Biotechnol 2017; 11:119-135. [PMID: 28984425 PMCID: PMC5743827 DOI: 10.1111/1751-7915.12866] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 12/01/2022] Open
Abstract
Groundwater pollution is a serious worldwide concern. Aromatic compounds, chlorinated hydrocarbons, metals and nutrients among others can be widely found in different aquifers all over the world. However, there is a lack of sustainable technologies able to treat these kinds of compounds. Microbial electro‐remediation, by the means of microbial electrochemical technologies (MET), can become a promising alternative in the near future. MET can be applied for groundwater treatment in situ or ex situ, as well as for monitoring the chemical state or the microbiological activity. This document reviews the current knowledge achieved on microbial electro‐remediation of groundwater and its applications.
Collapse
Affiliation(s)
- Narcís Pous
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003, Girona, Spain
| | - Maria Dolors Balaguer
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003, Girona, Spain
| | - Jesús Colprim
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003, Girona, Spain
| | - Sebastià Puig
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003, Girona, Spain
| |
Collapse
|
15
|
Xu D, Xiao E, Xu P, Zhou Y, He F, Zhou Q, Xu D, Wu Z. Performance and microbial communities of completely autotrophic denitrification in a bioelectrochemically-assisted constructed wetland system for nitrate removal. BIORESOURCE TECHNOLOGY 2017; 228:39-46. [PMID: 28056368 DOI: 10.1016/j.biortech.2016.12.065] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 05/03/2023]
Abstract
A bioelectrochemically-assisted constructed wetland (BECW) system was used to treat nitrate-contaminated wastewater without organic carbon source. The denitrification performance and microbial community composition of a BECW in closed-circuit mode (BECW-C) was compared to a BECW in open-circuit mode (BECW-O). The highest denitrification efficiency (78.92±3.12%) was obtained in the BECW-C with an applied current of 15mA. No nitrite accumulation was observed during the autotrophic denitrification process in the BECW-C. The significantly higher denitrification efficiency of the BECW-C compared to the BECW-O suggested enhanced denitrification due to in situ generation of hydrogen. The bacterial communities in the anode, cathode and rhizosphere regions collected from the BECW-C (with 10 or 15mA) and the BECW-O were characterized using 16S rRNA pyrosequencing technology, which revealed different microbial community structures among the treatments. The results also indicated that Thiohalophilus and Clostridium sensu stricto might be responsible for autotrophic denitrification in the BECW-C.
Collapse
Affiliation(s)
- Dan Xu
- College of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Enrong Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| | - Peng Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; Graduate University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yin Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; Graduate University of Chinese Academy of Sciences, Beijing 100039, China
| | - Feng He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Dong Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| |
Collapse
|
16
|
Chen D, Yang K, Wei L, Wang H. Microbial community and metabolism activity in a bioelectrochemical denitrification system under long-term presence of p-nitrophenol. BIORESOURCE TECHNOLOGY 2016; 218:189-195. [PMID: 27367815 DOI: 10.1016/j.biortech.2016.06.081] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/18/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
Bioelectrochemical denitrification system (BEDS) is a promising technology for nitrate removal from wastewaters. The hazards and effects concerning p-nitrophenol (PNP) towards BEDS lack enough investigations and possess great research prospects. This study investigated how PNP affected the nitrate removal efficiency, microbial communities, functional denitrifying genes abundances, nitrate and nitrite reductase activities, diffusible signal factors (DSF) release, and extracellular polymeric substances (EPS) production in the BEDS. Results indicated that nitrate removal efficiency decreased with initial PNP concentration increased from 0 to 100mg/L. Phylum Firmicutes and class Clostridia were the main contributors for denitrification process in this BEDS. The abundances of the denitrifying genes nirS, nirK, napA, and narG all presented decreased trends with increasing PNP. In addition, the concentrations of nitrate reductase (NR), nitrite reductase (NIR), and EPS obviously decreased, while the concentration of DSF increased with increasing PNP, which demonstrated that higher PNP would inhibit the biofilm formation.
Collapse
Affiliation(s)
- Dan Chen
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Kai Yang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Li Wei
- State Key Lab of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
17
|
Sun H, Xu S, Zhuang G, Zhuang X. Performance and recent improvement in microbial fuel cells for simultaneous carbon and nitrogen removal: A review. J Environ Sci (China) 2016; 39:242-248. [PMID: 26899662 DOI: 10.1016/j.jes.2015.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/03/2015] [Accepted: 12/16/2015] [Indexed: 06/05/2023]
Abstract
Microbial fuel cells (MFCs) have become a promising technology for wastewater treatment accompanying electricity generation. Carbon and nitrogen removal can be achieved by utilizing the electron transfer between the anode and cathode in an MFC. However, large-scale power production and high removal efficiency must be achieved at a low cost to make MFCs practical and economically competitive in the future. This article reviews the principles, feasibility and bottlenecks of MFCs for simultaneous carbon and nitrogen removal, the recent advances and prospective strategies for performance improvement, as well as the involved microbes and electron transfer mechanisms.
Collapse
Affiliation(s)
- Haishu Sun
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guoqiang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
18
|
Kelly PT, He Z. Nutrients removal and recovery in bioelectrochemical systems: a review. BIORESOURCE TECHNOLOGY 2014; 153:351-60. [PMID: 24388692 DOI: 10.1016/j.biortech.2013.12.046] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/08/2013] [Accepted: 12/11/2013] [Indexed: 05/03/2023]
Abstract
Nutrient removal and recovery has received less attention during the development of bioelectrochemical systems (BES) for energy efficient wastewater treatment, but it is a critical issue for sustainable wastewater treatment. Both nitrogen and phosphorus can be removed and/or recovered in a BES through involving biological processes such as nitrification and bioelectrochemical denitrification, the NH4(+)/NH3 couple affected by the electrolyte pH, or precipitating phosphorus compounds in the high-pH zone adjacent a cathode electrode. This paper has reviewed the nutrients removal and recovery in various BES including microbial fuel cells and microbial electrolysis cells, discussed the influence factors and potential problems, and identified the key challenges for nitrogen and phosphorus removal/recovery in a BES. It expects to give an informative overview of the current development, and to encourage more thinking and investigation towards further development of efficient processes for nutrient removal and recovery in a BES.
Collapse
Affiliation(s)
- Patrick T Kelly
- Department of Civil Engineering and Mechanics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Zhen He
- Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|