1
|
Wu B, Jiang Z, Lei W, Sun J, Chen Z. A novel flow-through dual-system electro-Fenton for boosting PAEs removal efficiency in natural waters. CHEMOSPHERE 2023; 330:138645. [PMID: 37044145 DOI: 10.1016/j.chemosphere.2023.138645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 05/14/2023]
Abstract
In a conventional electro-Fenton system with a single cathode, it is difficult to attain both high H2O2 generation by oxygen reduction reaction (ORR) and efficient iron reduction reaction (FRR). For this study, a flow-through dual-system electro-Fenton (FT-DEF) reactor was designed to overcome this shortcoming and promote mass transfer to effectively remove dimethyl phthalate (DMP) from water. By comparing the ORR and FRR performances of four different commercial carbon electrodes, the graphite felt with the highest amount of H2O2 generation was selected as the cathode of the ORR system, and the activated carbon fiber with the best Fe (III) reduction effect was selected as another cathode of the FRR system. The ORR system and FRR system operate simultaneously to form the DEF system. The FT-DEF system displayed many advantages compared with the conventional electro-Fenton (CI-ORR), presenting an improved efficiency and low energy consumption in phthalates removal. Under optimal reaction conditions, the FT-DEF system is capable to degrade 100% DMP in 20 min, which is 25% higher than the CI-ORR, while the reaction rate constant (0.271 min-1) is 16 times that of CI-ORR system (0.017min-1). In addition, the TOC removal of FT-DEF achieving 72.3% within 2 h with energy consumption of 2.35 kW h·m-3 is much better than CI-ORR that only achieves 18.3% TOC removal within 2 h with energy consumption of 8.13 kW h·m-3. Furthermore, control parameters and mechanism of FT-DEF were investigated in detail. The main intermediate products of DMP were analyzed by UPLC-ESI-HRMS, and the possible degradation path of DMP was speculated. In addition, application of FT-DEF in three types of natural water demonstrated its universal applicability of the system.
Collapse
Affiliation(s)
- Bei Wu
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, Hubei Province, College of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, PR China
| | - Zhiqiang Jiang
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, Hubei Province, College of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, PR China
| | - Weidong Lei
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, Hubei Province, College of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, PR China
| | - Jie Sun
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, Hubei Province, College of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, PR China.
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G1M8, Canada
| |
Collapse
|
2
|
Sharma P, Garai P, Banerjee P, Saha S, Chukwuka AV, Chatterjee S, Saha NC, Faggio C. Behavioral toxicity, histopathological alterations and oxidative stress in Tubifex tubifex exposed to aromatic carboxylic acids- acetic acid and benzoic acid: A comparative time-dependent toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162739. [PMID: 36906024 DOI: 10.1016/j.scitotenv.2023.162739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/23/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
This study evaluated Acetic acid (AA) and Benzoic acid's (BA) acute and sublethal toxicity by observing mortality, behavioral responses, and changes in the levels of oxidative stress enzymes in Tubifex tubifex. Exposure-induced changes in antioxidant activity (Catalase, Superoxide dismutase), oxidative stress (Malondialdehyde concentrations), and histopathological alterations in the tubificid worms were also noted across exposure intervals. The 96 h LC50 values of AA and BA to T. tubifex were 74.99 and 37.15 mg/l, respectively. Severity in behavioral alterations (including increased mucus production, wrinkling, and reduction in clumping) and autotomy showed concentration-dependent trends for both toxicants. Although histopathological effects also showed marked degeneration in the alimentary and integumentary systems in highest exposure groups (worms exposed to 14.99 mg/l for AA and 7.42 mg/l for BA) for both toxicants. Antioxidant enzymes (catalase and superoxide dismutase) also showed a marked increase of up to 8-fold and 10-fold for the highest exposure group of AA and BA respectively. While species sensitivity distribution analysis revealed T. tubifex as most sensitive to AA and BA compared to other freshwater vertebrates and invertebrates, General Unified Threshold model of Survival (GUTS) predicted individual tolerance effects (GUTS-IT), with slower potential for toxicodynamic recovery, as a more likely pathway for population mortality. Study findings demonstrate BA with greater potential for ecological effects compared to AA within 24 h of exposure. Furthermore, ecological risks to critical detritus feeders like T. tubifex may have severe implications for ecosystem services and nutrient availability within freshwater habitats.
Collapse
Affiliation(s)
- Pramita Sharma
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Pramita Garai
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Priyajit Banerjee
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Shubhajit Saha
- Department of Zoology, Sundarban Hazi Desarat College, Pathankhali, South 24, Parganas 743611, West Bengal, India
| | - Azubuike V Chukwuka
- National Environmental Standards and Regulations Enforcement Agency, Osogbo, Osun State, Nigeria
| | - Soumendranath Chatterjee
- Parasitology & Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal 713 104, India
| | - Nimai Chandra Saha
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
3
|
Brillas E. Solar photoelectro-Fenton: A very effective and cost-efficient electrochemical advanced oxidation process for the removal of organic pollutants from synthetic and real wastewaters. CHEMOSPHERE 2023; 327:138532. [PMID: 37003440 DOI: 10.1016/j.chemosphere.2023.138532] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/19/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Recalcitrant and toxic organic pollutants from wastewaters are scarcely removed in conventional wastewater treatment plants. To preserve the water quality, organics need to be removed by developing powerful oxidation technologies. Our laboratory proposed in 2007 a potent electrochemical advanced oxidation process (EAOP) for wastewater remediation, so-called solar photoelectro-Fenton (SPEF). This review summarizes the advances of this emerging technology up to 2022, making evident its effectiveness and cost-efficiency for the destruction of usual organic pollutants. The simultaneous action of generated hydroxyl radicals and the photolysis by sunlight explains the high oxidation power of SPEF respect to other EAOPs. The review is initiated by describing the fundamentals of the process to remark the role of the produced oxidants and the benefits of using solar irradiation in its performance. The photoelectrochemical systems used (bench tank reactor and solar pre-pilot flow plant) and the assessment of the operating variables are discussed. The characteristics of the most common homogeneous SPEF for the degradation and mineralization of several synthetic solutions of industrial chemicals, herbicides, pharmaceuticals, and synthetic organic dyes, as well as of some real wastewaters, are further described. The influence of the photoelectrochemical cell, electrodes, solution pH, electrolyte composition, Fe2+ and pollutant concentration, and current density is analyzed. The performance of a homogeneous SPEF-like process with active chlorine and heterogeneous SPEF processes with solid catalysts such as Fe3O4 and sodium vermiculite is also discussed. Finally, the advances of homogeneous SPEF combined with other techniques like solar photocatalysis, solar photoelectrocatalysis, anaerobic digestion, and nanofiltration are reported.
Collapse
Affiliation(s)
- Enric Brillas
- Laboratori d'Electroquímica dels Materialsi del Medi Ambient, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| |
Collapse
|
4
|
Zeng G, Wang J, Dai M, Meng Y, Luo H, Zhou Q, Lin L, Zang K, Meng Z, Pan X. Natural iron minerals in an electrocatalytic oxidation system and in situ pollutant removal in groundwater: Applications, mechanisms, and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161826. [PMID: 36708820 DOI: 10.1016/j.scitotenv.2023.161826] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/04/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Natural iron-bearing minerals are widely distributed in the environment and show prominent catalytic performance in pollutant removal. This work provides an overview of groundwater restoration technologies utilizing heterogeneous electro-Fenton (HEF) techniques with the aid of different iron forms as catalysts. In particular, applications of natural iron-bearing minerals in groundwater in the HEF system have been thoroughly summarized from either the view of organic pollutant removal or degradation. Based on the analysis of the catalytic mechanism in the HEF process by pyrite (FeS2), goethite (α-FeOOH), and magnetite (Fe3O4) and the geochemistry analysis of these natural iron-bearing minerals in groundwater, the feasibility and challenges of HEF for organic degradation by using typical iron minerals in groundwater have been discussed, and natural factors affecting the HEF process have been analyzed so that appropriate in situ remedial measures can be applied to contaminated groundwater.
Collapse
Affiliation(s)
- Ganning Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Ocean Space Resource Management Technology, MNR, Hangzhou 310012, China
| | - Ji Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengzheng Dai
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yutong Meng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongwei Luo
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qian Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liangyu Lin
- Key Laboratory of Ocean Space Resource Management Technology, MNR, Hangzhou 310012, China; Zhejiang Academic of Marine Science, Hangzhou 310012, China
| | - Kunpeng Zang
- Zhejiang Carbon Neutral Innovation Institute, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhu Meng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
5
|
Benedoue S, Benedet M, Gasparotto A, Gauquelin N, Orekhov A, Verbeeck J, Seraglia R, Pagot G, Rizzi GA, Balzano V, Gavioli L, Noto VD, Barreca D, Maccato C. Insights into the Photoelectrocatalytic Behavior of gCN-Based Anode Materials Supported on Ni Foams. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061035. [PMID: 36985929 PMCID: PMC10057045 DOI: 10.3390/nano13061035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 05/27/2023]
Abstract
Graphitic carbon nitride (gCN) is a promising n-type semiconductor widely investigated for photo-assisted water splitting, but less studied for the (photo)electrochemical degradation of aqueous organic pollutants. In these fields, attractive perspectives for advancements are offered by a proper engineering of the material properties, e.g., by depositing gCN onto conductive and porous scaffolds, tailoring its nanoscale morphology, and functionalizing it with suitable cocatalysts. The present study reports on a simple and easily controllable synthesis of gCN flakes on Ni foam substrates by electrophoretic deposition (EPD), and on their eventual decoration with Co-based cocatalysts [CoO, CoFe2O4, cobalt phosphate (CoPi)] via radio frequency (RF)-sputtering or electrodeposition. After examining the influence of processing conditions on the material characteristics, the developed systems are comparatively investigated as (photo)anodes for water splitting and photoelectrocatalysts for the degradation of a recalcitrant water pollutant [potassium hydrogen phthalate (KHP)]. The obtained results highlight that while gCN decoration with Co-based cocatalysts boosts water splitting performances, bare gCN as such is more efficient in KHP abatement, due to the occurrence of a different reaction mechanism. The related insights, provided by a multi-technique characterization, may provide valuable guidelines for the implementation of active nanomaterials in environmental remediation and sustainable solar-to-chemical energy conversion.
Collapse
Affiliation(s)
- Serge Benedoue
- Department of Chemical Sciences, Padova University and INSTM, 35131 Padova, Italy
- Laboratory of Applied Physical and Analytical Chemistry, Department of Inorganic Chemistry, Faculty of Science, University of Yaoundé, Yaoundé P.O. Box 812, Cameroon
| | - Mattia Benedet
- Department of Chemical Sciences, Padova University and INSTM, 35131 Padova, Italy
| | - Alberto Gasparotto
- Department of Chemical Sciences, Padova University and INSTM, 35131 Padova, Italy
- CNR-ICMATE and INSTM, Department of Chemical Sciences, Padova University, 35131 Padova, Italy
| | - Nicolas Gauquelin
- EMAT and NANOlab Center of Excellence, University of Antwerp, 2020 Antwerpen, Belgium
| | - Andrey Orekhov
- EMAT and NANOlab Center of Excellence, University of Antwerp, 2020 Antwerpen, Belgium
| | - Johan Verbeeck
- EMAT and NANOlab Center of Excellence, University of Antwerp, 2020 Antwerpen, Belgium
| | - Roberta Seraglia
- CNR-ICMATE and INSTM, Department of Chemical Sciences, Padova University, 35131 Padova, Italy
| | - Gioele Pagot
- Section of Chemistry for the Technology (ChemTech), Department of Industrial Engineering, University of Padova and INSTM, 35131 Padova, Italy
| | - Gian Andrea Rizzi
- Department of Chemical Sciences, Padova University and INSTM, 35131 Padova, Italy
- CNR-ICMATE and INSTM, Department of Chemical Sciences, Padova University, 35131 Padova, Italy
| | - Vincenzo Balzano
- Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP), Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, 25133 Brescia, Italy
| | - Luca Gavioli
- Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP), Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, 25133 Brescia, Italy
| | - Vito Di Noto
- Section of Chemistry for the Technology (ChemTech), Department of Industrial Engineering, University of Padova and INSTM, 35131 Padova, Italy
| | - Davide Barreca
- CNR-ICMATE and INSTM, Department of Chemical Sciences, Padova University, 35131 Padova, Italy
| | - Chiara Maccato
- Department of Chemical Sciences, Padova University and INSTM, 35131 Padova, Italy
- CNR-ICMATE and INSTM, Department of Chemical Sciences, Padova University, 35131 Padova, Italy
| |
Collapse
|
6
|
F. Khaleel G, Ismail I, Abbar AH. Application of solar photo-electro-Fenton technology to petroleum refinery wastewater degradation: Optimization of operational parameters. Heliyon 2023; 9:e15062. [PMID: 37095992 PMCID: PMC10121842 DOI: 10.1016/j.heliyon.2023.e15062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Industrial and agricultural advances have led to global issues such as contamination of water sources and lack of access to clean water. Wastewater from petroleum refineries must be subjected to treatment as it poses a significant environmental threat. The present research aimed to reduce the level of chemical oxygen demand (COD) of an effluent from Bijee petroleum refinery plant, Iraq, using solar photo-electro-Fenton (SPEF) process operated in a batch recycle model. The electrochemical reactor used in the present research was of a tubular design with an anode composed of porous graphite rod and a concentric cylindrical cathode made of the same material. The impacts of operating parameters such as current density (10-50 mA/cm2), Fe2+ concentration (0.2-0.8 mM), NaCl addition (0-1 g/L), and time (30-90 min) on the COD removal efficiency were explored based on the response surface methodology (RSM). Results showed that the impact of Fe2+ concentration was most prominent, with an effective contribution of 47.7%, followed by current density, with a contribution of 18.26%, and the addition of NaCl, with a contribution of 11.20%. COD removal was found to increase with an increase in current density, Fe2+ concentration, NaCl addition, and time, respectively, while energy consumption was found to increase significantly with an increase in current density and a decrease in Fe2+ concentration, respectively. The optimum conditions were observed to be an initial pH of 3, current density of 10 mA/cm2, Fe2+ concentration of 0.8 mM, NaCl addition of 0.747 g/L, and a duration of 87 min, upon which 93.20% COD removal efficiency was achieved, with an energy consumption of 15.97 kWh/kg COD.
Collapse
|
7
|
Ismail GA, Sakai H. Review on effect of different type of dyes on advanced oxidation processes (AOPs) for textile color removal. CHEMOSPHERE 2022; 291:132906. [PMID: 34785181 DOI: 10.1016/j.chemosphere.2021.132906] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
The textile industry is one of the most valuable industries, especially in developing countries, because it employs a large portion of the workforce. However, the development of the textile industry has led to increasing concern about environmental issues. Wastewater from the textile industry has a high COD and an undesirable color. Color is one of the problems with the wastewater due to its toxicity and low biodegradability. Color in textile wastewater mainly originates from the dyestuff used during the dyeing or printing process. Amongst all of available technology for color removal, advanced oxidation processes (AOPs) are considered one of the best and the most potential technology. However, the understanding of AOPs reaction mechanism to degrade dyestuff is still limited. In general, dyes degradation mechanism will vary and mainly depend on the chemical structure of the dyes itself. Some reaction pathway that seems less favorable thermodynamically can still happen during the process. Understanding the mechanism will be beneficial for future dyes improvement, especially on developing the moiety of the aromatic compound in order to produce easily degraded dyes while maintaining the fastness quality.
Collapse
Affiliation(s)
- Guntur Adisurya Ismail
- Department of Civil and Environmental Engineering, School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-city, Tokyo, Japan; Laboratory of Microbiology and Bioprocess Technology, Chemical Engineering Department, Bandung Institute of Technology, Ganesa Street no. 8, Bandung, Indonesia
| | - Hiroshi Sakai
- Department of Civil and Environmental Engineering, School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-city, Tokyo, Japan.
| |
Collapse
|
8
|
Lv XY, Jin GP, Yuan DK, Ding YF, Long PX. Improving generation of H 2O 2 and •OH at copper hexacyanocobaltate/graphene/ITO composite electrode for degradation of levofloxacin in photo-electro-Fenton process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17636-17647. [PMID: 33400121 DOI: 10.1007/s11356-020-11883-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
In this work, copper hexacyanocobaltate was electro-deposited at amino-graphene-coated indium-tin-oxide glass to form multifunctional heterogeneous catalyst (CuCoG/ITO), which was confirmed by field emission scanning microscope, infrared spectra, X-ray diffraction, and electro-chemistry techniques. A novel heterogeneous photo-electro-Fenton-like system was established using CuCoG/ITO as an air-diffusion electrode, in which hydrogen peroxide (H2O2) and hydroxyl radical (•OH) could be simultaneously generated by air O2 reduction. The productive rate of •OH could reached to 70.5 μmol h-1 at - 0.8 V with 300 W visible light irradiation at pH 7.0, 0.1 M PBS. Levofloxacin could be quickly degraded at CuCoG/ITO during heterogeneous photo-electro-Fenton process in neutral media with a first-order kinetic constant of 0.49 h-1.
Collapse
Affiliation(s)
- Xiao-Yuan Lv
- Anhui Key Lab of Controllable Chemical Reaction & Material Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Guan-Ping Jin
- Anhui Key Lab of Controllable Chemical Reaction & Material Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Ding-Kun Yuan
- Anhui Key Lab of Controllable Chemical Reaction & Material Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yan-Feng Ding
- Anhui Key Lab of Controllable Chemical Reaction & Material Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Peng-Xing Long
- Anhui Key Lab of Controllable Chemical Reaction & Material Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
9
|
Asif MB, Maqbool T, Zhang Z. Electrochemical membrane bioreactors: State-of-the-art and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140233. [PMID: 32570070 DOI: 10.1016/j.scitotenv.2020.140233] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
Integration of an electrochemical process with membrane bioreactor (MBR) has attracted considerable attention in the last decade for simultaneous improvement in pollutant removal and hydraulic performance of MBR. Electrochemical MBR (eMBR) with sacrificial anodes has been observed to achieve enhanced phosphorus (up to 40%) and micropollutant removal (5-60%). This is because direct anodic oxidation, indirect oxidation by reactive oxygen species and electrocoagulation can supplement the biological process. The application of an electric field can substantially reduce membrane fouling by 10% to 95% in the eMBR as compared to the conventional MBR. Sacrificial electrodes (e.g., iron or aluminium) have been reported to be more suitable for fouling mitigation than non-sacrificial electrodes (e.g., titanium). However, during prolonged operation, metal ions released from sacrificial electrodes can adversely affect microbial activity and could accumulate in activated sludge. Depending on the current density and electrode material (sacrificial or non- sacrificial), anodic oxidation, electrocoagulation, electrophoresis and/or electroosmosis mechanisms are responsible for suppressing membrane fouling propensity. This paper critically reviews the current status of the electrochemical MBR technology and presents a concise summary of eMBR configurations and electrode materials. Comparative removal of bulk organics, nutrients and micropollutants in the eMBR and conventional MBR is discussed, and performance governing factors are elucidated. Impacts of operating conditions such as current density on mixed liquor properties (e.g., floc size and zeta potential) and microbial activity are elucidated. The extent of membrane fouling mitigation along with associated mechanisms as well as energy consumption is explained and critically analysed. Future research directions are suggested to fast track the scalability of eMBR, which include but are not limited to electrode lifetime, development of self-cleaning conductive membranes, optimisation of operating parameters, removal of emerging micropollutants, accumulation of toxic metals in activated sludge, and degradation by-products and ecotoxicity.
Collapse
Affiliation(s)
- Muhammad Bilal Asif
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Tahir Maqbool
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Moradi M, Vasseghian Y, Khataee A, Kobya M, Arabzade H, Dragoi EN. Service life and stability of electrodes applied in electrochemical advanced oxidation processes: A comprehensive review. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.03.038] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Brillas E. A review on the photoelectro-Fenton process as efficient electrochemical advanced oxidation for wastewater remediation. Treatment with UV light, sunlight, and coupling with conventional and other photo-assisted advanced technologies. CHEMOSPHERE 2020; 250:126198. [PMID: 32105855 DOI: 10.1016/j.chemosphere.2020.126198] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 05/03/2023]
Abstract
Wastewaters containing recalcitrant and toxic organic pollutants are scarcely decontaminated in conventional wastewater facilities. Then, there is an urgent challenge the development of powerful oxidation processes to ensure their organic removal in order to preserve the water quality in the environment. This review presents the recent development of an electrochemical advanced oxidation process (EAOP) like the photoelectro-Fenton (PEF) process, covering the period 2010-2019, as an effective treatment for wastewater remediation. The high oxidation ability of this photo-assisted Fenton-based EAOP is due to the combination of in situ generated hydroxyl radicals and the photolytic action of UV or sunlight irradiation over the treated wastewater. Firstly, the fundamentals and characteristics of the PEF process are described to understand the role of oxidizing agents. Further, the properties of the homogeneous PEF process with iron catalyst and UV irradiation and the benefit of sunlight in the homogeneous solar PEF one (SPEF) are discussed, supported with examples over their application to the degradation and mineralization of synthetic solutions of industrial chemicals, herbicides, dyes and pharmaceuticals, as well as real wastewaters. Novel heterogeneous PEF processes involving solid iron catalysts or iron-modified cathodes are subsequently detailed. Finally, the oxidation power of hybrid processes including photocatalysis/PEF, solar photocatalysis/SPEF, photoelectrocatalysis/PEF and solar photoelectrocatalysis/SPEF, followed by that of sequential processes like electrocoagulation/PEF and biological oxidation coupled to SPEF, are analyzed.
Collapse
Affiliation(s)
- Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| |
Collapse
|
12
|
Ding J, Dong L, Geng Y, Huang H, Zhao G, Jiang J, Qiu S, Yuan Y, Zhao Q. Modification of graphite felt doped with nitrogen and boron for enhanced removal of dimethyl phthalate in peroxi-coagulation system and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18810-18821. [PMID: 32207015 DOI: 10.1007/s11356-020-08384-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
To enhance the generation of hydrogen peroxide (H2O2), a modified graphite felt cathode doped with nitrogen and boron was developed and used in peroxi-coagulation system to degrade dimethyl phthalate (DMP). After a simple modification method, the yield of H2O2 on cathode increased from 9.39 to 152.8 mg/L, with current efficiency increased from 1.61 to 70.3%. Complete degradation of DMP and 80% removal of TOC were achieved within 2 h at the optimal condition with pH of 5, cathodic potential of - 0.69 V (vs. SCE), oxygen aeration, and electrode gap of 1 cm. Possible mechanism with synergistic effect of electro-Fenton and electrocoagulation process in the peroxi-coagulation system was revealed via quenching experiments. The prospect of this system in the effluent of landfill leachate and domestic sewage was studied, achieving 50% and 61% of DMP removal in 2 h. This efficient system with simple modified cathode had promising prospects in practical applications.
Collapse
Affiliation(s)
- Jing Ding
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Langang Dong
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yuxuan Geng
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Huibin Huang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Guanshu Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shan Qiu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yixing Yuan
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
13
|
de Matos DB, Barbosa MPR, Leite OM, Steter JR, Lima NS, Torres NH, Marques MN, de Alsina OLS, Cavalcanti EB. Characterization of a tubular electrochemical reactor for the degradation of the commercial diuron herbicide. ENVIRONMENTAL TECHNOLOGY 2020; 41:1307-1321. [PMID: 30280982 DOI: 10.1080/09593330.2018.1531941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 09/15/2018] [Indexed: 06/08/2023]
Abstract
After designing and constructing an electrochemical reactor with concentric electrodes and tangential feed (RECT), it is necessary to characterize it and to study its performance. The experimental study of the residence time distribution (RTD) was conducted for flow rates of 2.78 × 10-6 m3 s-1, 8.33 × 10-6 m3 s-1 and 13.9 × 10-6 m3 s-1. According to the values obtained from the Pe number (0.67-1.52), the RECT fits as tubular with great dispersion. The determined empirical correlation (Sh = 18.16 Re0.50 Sc0.33) showed a laminar flow behavior in the range of Reynolds number (Re) between 23 and 117. In order to use RECT in effluent treatment, an electrochemical oxidation study of the Diuron model molecule (Nortox®) was performed to analyze reactor performance in a closed system with total reflux. A decay kinetics of pseudo-first order was associated with the decay of the concentration of diuron and 30% mineralization in 180 min of process were obtained, having a total volume of 4 × 10-3 m3 and an initial concentration of commercial Diuron in 215.83 mg dm-3. Eleven by-products were identified by HPLC-MS analysis and, from this, it was possible to propose a route of degradation of the diuron. From these observations, it can be inferred that the studied electrochemical reactor had applicability in the degradation of recalcitrant compounds, as is the case of commercial diuron. Make some changes in the electrochemical reactor studied and other advanced oxidative processes, such as electro-Fenton, can be associated with the studied system to achieve a better conversion efficiency.
Collapse
Affiliation(s)
| | | | - Otávio Monteiro Leite
- Post-Graduated Program on Process Engineering, Tiradentes University, Aracaju, Brazil
| | - Juliana Ribeiro Steter
- Faculty of Exact Sciences and Technology - FACET, Universidade Federal da Grande Dourados, Dourados, Brazil
| | - Nayara Silva Lima
- Post-Graduated Program on Process Engineering, Tiradentes University, Aracaju, Brazil
| | - Nádia Hortense Torres
- Post-Graduated Program on Process Engineering, Tiradentes University, Aracaju, Brazil
| | - Maria Nogueira Marques
- Institute of Technology and Research, Aracaju, Brazil
- Post-Graduated Program on Health and Environment, Tiradentes University, Aracaju, Brazil
| | - Odelsia Leonor Sanchez de Alsina
- Post-Graduated Program on Process Engineering, Tiradentes University, Aracaju, Brazil
- Institute of Technology and Research, Aracaju, Brazil
| | - Eliane Bezerra Cavalcanti
- Post-Graduated Program on Process Engineering, Tiradentes University, Aracaju, Brazil
- Institute of Technology and Research, Aracaju, Brazil
| |
Collapse
|
14
|
Effect of homogeneous Fenton combined with electron transfer on the fate of inorganic chlorinated species in synthetic and reclaimed municipal wastewater. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135608] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Kumagai Y, Jonsson M. γ-Radiation and H 2O 2 induced oxidative dissolution of uranium(iv) oxide in aqueous solution containing phthalic acid. Dalton Trans 2020; 49:1907-1914. [PMID: 31970362 DOI: 10.1039/c9dt03952j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aims to reveal possible involvements of organic acids in the oxidative dissolution of UO2. Using phthalic acid as a model compound, we have measured adsorption on UO2 and investigated effects on the reaction between H2O2 and UO2 and on oxidative dissolution induced by γ-irradiation. Significant adsorption of phthalic acid was observed even at neutral pH. However, the reaction between H2O2 and UO2 in phthalic acid solution induced oxidative dissolution of U(vi) similar to in aqueous bicarbonate solution. Moreover, degradation products of phthalic acid were not detected after the reaction of H2O2. These results indicate that even though phthalic acid adsorbs on the UO2 surface, it is not involved in the interfacial reaction of H2O2. In contrast, the dissolution of U by irradiation was inhibited in aqueous phthalic acid solution, whereas H2O2 generated by radiolysis was consumed by UO2. Based on these contrasting results, possible roles of radical species generated by water radiolysis were discussed.
Collapse
Affiliation(s)
- Yuta Kumagai
- Nuclear Science and Engineering Center, Nuclear Science Research Institute, Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan.
| | | |
Collapse
|
16
|
Chen W, Dong J, Zhou S, Zhang C, Fu D. Electrochemical mineralization of 1-naphthol and 2-naphthol using boron-doped diamond anodes: Factor analysis and mechanisms study. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
17
|
Li L, Lai C, Huang F, Cheng M, Zeng G, Huang D, Li B, Liu S, Zhang M, Qin L, Li M, He J, Zhang Y, Chen L. Degradation of naphthalene with magnetic bio-char activate hydrogen peroxide: Synergism of bio-char and Fe-Mn binary oxides. WATER RESEARCH 2019; 160:238-248. [PMID: 31152949 DOI: 10.1016/j.watres.2019.05.081] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/16/2019] [Accepted: 05/25/2019] [Indexed: 05/22/2023]
Abstract
This study investigated the hydrogen peroxide (H2O2) activation potential of Fe-Mn binary oxides modified bio-char (FeMn/bio-char) for the degradation of naphthalene, the dominant PAHs in drinking water. Results showed that FeMn/bio-char exhibited 80.7- and 2.18-times decomposition rates towards H2O2 than that of pure bio-char and Fe-Mn binary oxides, respectively, and consequently the FeMn/bio-char/H2O2 photo-Fenton system presented highest naphthalene removal efficiency. The enhanced catalytic activity could be ascribed to the synergistic effect of the combination of bio-char and Fe-Mn binary oxides, such as promoting the adsorption capacity towards contaminant, increasing concentration of persistent free radicals (PFRs) and introducing Fe-Mn binary oxides as new activator. According to the batch-scale experiments, FeMn/bio-char/H2O2 photo-Fenton system could degrade naphthalene effectively at a wide pH ranges, and 82.2% of naphthalene was degraded under natural pH of 5.6 within 148 min. Free radicals quenching studies and electron spin resonance (ESR) analyses verified that the dominant free radical within FeMn/bio-char/H2O2 photo-Fenton system was hydroxyl radical (•OH). According to the preliminary analysis, the generation of •OH were ascribed to the activation of H2O2 by Fe (II), Mn (II) and PFRs on the catalyst surface. The mainly degradation intermediates of naphthalene were identified by GC-MS analysis. Consequently, the possible degradation pathways were proposed. Moreover, naphthalene degradation experiments were also conducted in river, tap water, industrial wastewater as well as medical wastewater, and the results indicated that the FeMn/bio-char/H2O2 photo-Fenton system was effective in the treatment of naphthalene in natural waters. This study brings a valuable insight for the potential environmental applications of modified bio-char.
Collapse
Affiliation(s)
- Ling Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Fanglong Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Bisheng Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - MingMing Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Minfang Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Jiangfan He
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yujin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Liang Chen
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| |
Collapse
|
18
|
Vidal J, Huiliñir C, Santander R, Silva-Agredo J, Torres-Palma RA, Salazar R. Degradation of ampicillin antibiotic by electrochemical processes: evaluation of antimicrobial activity of treated water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:4404-4414. [PMID: 29770941 DOI: 10.1007/s11356-018-2234-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/04/2018] [Indexed: 05/03/2023]
Abstract
Ampicillin (AMP) is an antibiotic widely used in hospitals and veterinary clinics around the world for treating infections caused by bacteria. Therefore, it is common to find traces of this antibiotic in wastewater from these entities. In this work, we studied the mineralization of this antibiotic in solution as well as the elimination of its antimicrobial activity by comparing different electrochemical advanced oxidation processes (EAOPs), namely electro-oxidation with hydrogen peroxide (EO-H2O2), electro-Fenton (EF), and photo electro-Fenton (PEF). With PEF process, a high degradation, mineralization, and complete elimination of antimicrobial activity were achieved in 120-min electrolysis with high efficiency. In the PEF process, fast mineralization rate is caused by hydroxyl radicals (·OH) that are generated in the bulk, on the anode surface, by UV radiation, and most importantly, by the direct photolysis of complexes formed between Fe3+ and some organic intermediates. Moreover, some products and intermediates formed during the degradation of the antibiotic Ampicillin, such as inorganic ions, carboxylic acids, and aromatic compounds, were determined by photometric and chromatographic methods. An oxidation pathway is proposed for the complete conversion to CO2.
Collapse
Affiliation(s)
- Jorge Vidal
- Laboratorio de Electroquímica del Medio Ambiente (LEQMA), Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Casilla 40, Correo, 33, Santiago, Chile
| | - Cesar Huiliñir
- Departamento de Ingeniería Química. Laboratorio de Biotecnología Ambiental, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Rocío Santander
- Laboratorio de Electroquímica del Medio Ambiente (LEQMA), Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Casilla 40, Correo, 33, Santiago, Chile
| | - Javier Silva-Agredo
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia (UdeA), Calle 70 No 52-21, Medellín, Colombia
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia (UdeA), Calle 70 No 52-21, Medellín, Colombia
| | - Ricardo Salazar
- Laboratorio de Electroquímica del Medio Ambiente (LEQMA), Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Casilla 40, Correo, 33, Santiago, Chile.
| |
Collapse
|
19
|
Ma P, Ma H, Galia A, Sabatino S, Scialdone O. Reduction of oxygen to H2O2 at carbon felt cathode in undivided cells. Effect of the ratio between the anode and the cathode surfaces and of other operative parameters. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.04.062] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
20
|
Boonrattanakij N, Sakul W, Garcia-Segura S, Lu MC. Implementation of fluidized-bed Fenton as pre-treatment to reduce chemical oxygen demand of wastewater from screw manufacture: Influence of reagents feeding mode. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.03.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Vidal J, Huiliñir C, Santander R, Silva-Agredo J, Torres-Palma RA, Salazar R. Effective removal of the antibiotic Nafcillin from water by combining the Photoelectro-Fenton process and Anaerobic Biological Digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:1095-1105. [PMID: 29625524 DOI: 10.1016/j.scitotenv.2017.12.159] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 05/03/2023]
Abstract
The elimination of the antibiotic Nafcillin (NAF), which is usually used in hospitals and veterinary clinics around the world, was assessed through a combination of three advanced electrochemical oxidation processes followed by anaerobic digestion process. In the first stage different electrochemical advanced oxidation processes (EAOPs) were used: electro-oxidation with hydrogen peroxide (EO-H2O2), electro-Fenton (EF) and Photo electro-Fenton (PEF). After PEF, almost complete and highly efficient degradation and elimination of NAF was achieved, with the concomitant elimination of the associated antimicrobial activity. The fast degradation rate produced by PEF is explained by the oxidative action of hydroxyl radicals (•OH) together with the direct UV photolysis of complexes formed between Fe3+ and some organic intermediates. Total removal of NAF occurs after 90min of electrolysis by PEF, with the generation of organic intermediates that remain in solution. However, when this post PEF process solution was treated with an anaerobic biological process, the intermediates generated in the electrochemical degradation of NAF were completely eliminated after 24h. The kinetic degradation of NAF as well as the identification/quantification of products and intermediates formed during the degradation of antibiotic, such as inorganic ions, carboxylic acids and aromatic compounds, were determined by chromatographic and photometric methods. Finally, an oxidation pathway is proposed for the complete conversion to CO2.
Collapse
Affiliation(s)
- Jorge Vidal
- Laboratorio de Electroquímica del Medio Ambiente (LEQMA), Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Casilla 40, Correo 33, Santiago, Chile
| | - Cesar Huiliñir
- Departamento de Ingeniería Química, Laboratorio de Biotecnología Ambiental, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Chile
| | - Rocío Santander
- Laboratorio de Electroquímica del Medio Ambiente (LEQMA), Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Casilla 40, Correo 33, Santiago, Chile
| | - Javier Silva-Agredo
- Grupo de Investigación en Remediación Ambiental y Biocatálisis, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Ricardo Salazar
- Laboratorio de Electroquímica del Medio Ambiente (LEQMA), Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Casilla 40, Correo 33, Santiago, Chile.
| |
Collapse
|
22
|
Espinoza LC, Henríquez A, Contreras D, Salazar R. Evidence for the production of hydroxyl radicals at boron-doped diamond electrodes with different sp 3 /sp 2 ratios and its relationship with the anodic oxidation of aniline. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2018.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
23
|
Nidheesh PV, Zhou M, Oturan MA. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. CHEMOSPHERE 2018; 197:210-227. [PMID: 29366952 DOI: 10.1016/j.chemosphere.2017.12.195] [Citation(s) in RCA: 424] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 05/21/2023]
Abstract
Wastewater containing dyes are one of the major threats to our environment. Conventional methods are insufficient for the removal of these persistent organic pollutants. Recently much attention has been received for the oxidative removal of various organic pollutants by electrochemically generated hydroxyl radical. This review article aims to provide the recent trends in the field of various Electrochemical Advanced Oxidation Processes (EAOPs) used for removing dyes from water medium. The characteristics, fundamentals and recent advances in each processes namely anodic oxidation, electro-Fenton, peroxicoagulation, fered Fenton, anodic Fenton, photoelectro-Fenton, sonoelectro-Fenton, bioelectro-Fenton etc. have been examined in detail. These processes have great potential to destroy persistent organic pollutants in aqueous medium and most of the studies reported complete removal of dyes from water. The great capacity of these processes indicates that EAOPs constitute a promising technology for the treatment of the dye contaminated effluents.
Collapse
Affiliation(s)
- P V Nidheesh
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Mehmet A Oturan
- Université Paris-Est, Laboratoire Géomatériaux et Environnement, (LGE), EA 4508, UPEM, 5 Bd Descartes, 77454 Marne-la-Vallée Cedex 2, France.
| |
Collapse
|
24
|
Hong M, Lu G, Hou C, She S, Zhu L. Advanced treatment of landfill leachate membrane concentrates: performance comparison, biosafety and toxic residue analysis. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 76:2949-2958. [PMID: 29210682 DOI: 10.2166/wst.2017.469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
With the improvement of people's consciousness about health, more attention has been paid to the biosafety of effluent reaching conventional discharge standard. In this contribution, removal efficiency of chemical oxygen demand (COD), acute toxicity, genotoxicity and estrogenicity in landfill leachate membrane concentrates (MCs) among UV-Fenton, Fenton and activated carbon adsorption process were compared. Daphnia magna acute toxicity assay, comet assay, cytokinesis-block micronucleus and E-screen assay were performed to assess whether the effluent reaching the main parameters of Chinese Discharge Standard (GB 16889-2008) still had toxic residues. Under the conditions that COD of effluents treated by the three processes were up to the discharge standard, no obvious toxic residue was found in the effluent of UV-Fenton treatment, but effluent from Fenton or activated carbon adsorption process showed genotoxicity or estrogenicity to some extent. Dynamic analysis of UV-Fenton degradation process for estrogen simulation solutions was also conducted, and the formation of intermediates was detected by gas chromatography-mass spectrometry (GC/MS). Toxic residues might be caused by the lack of treatment duration and the formation of more toxic intermediates. UV-Fenton was found to be efficient for the treatment of MCs. Biosafety should be concerned when a new wastewater discharge standard is being established.
Collapse
Affiliation(s)
- Mianwei Hong
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China E-mail:
| | - Gang Lu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China E-mail:
| | - Changcheng Hou
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China E-mail:
| | - Shaohua She
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China E-mail:
| | - Lingfei Zhu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China E-mail:
| |
Collapse
|
25
|
Fernandes A, Labiadh L, Ciríaco L, Pacheco MJ, Gadri A, Ammar S, Lopes A. Electro-Fenton oxidation of reverse osmosis concentrate from sanitary landfill leachate: Evaluation of operational parameters. CHEMOSPHERE 2017; 184:1223-1229. [PMID: 28672722 DOI: 10.1016/j.chemosphere.2017.06.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
The electro-Fenton oxidation of a concentrate from reverse osmosis of a sanitary landfill leachate, with an initial chemical oxygen demand (COD) of 42 g L-1, was carried out using a carbon-felt cathode and a boron doped diamond anode. The influence of the applied current intensity, initial pH and dissolved iron initial concentration on the electro-Fenton process was assessed. For the experimental conditions used, results showed that the initial pH is the parameter that more strongly influences the current efficiency of the electro-Fenton process, being this influence more pronounced on the oxidation rate than on the mineralization rate of the organic matter. The increase in iron initial concentration was found to be detrimental, since the natural amount of iron present in the effluent, 73 mg L-1 of total iron and 61 mg L-1 of dissolved iron, was sufficient to ensure the electro-Fenton process at the applied intensities - 0.2-1.4 A. For the more favourable conditions studied, initial pH of 3 and natural iron concentration, it was found an increase in the organic load and nitrogen removals with the applied current intensity. For the highest current intensity applied, a COD removal of 16.7 g L-1 was achieved after 8-h experiments.
Collapse
Affiliation(s)
- Annabel Fernandes
- FibEnTech Unit and Department of Chemistry, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Lazhar Labiadh
- Unité de Recherche Electrochimie, Matériaux et Environnement (UREME), Faculté des Sciences de Gabès, Université de Gabès, Cité Erriadh, 6072 Gabès, Tunisia.
| | - Lurdes Ciríaco
- FibEnTech Unit and Department of Chemistry, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Maria José Pacheco
- FibEnTech Unit and Department of Chemistry, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Abdellatif Gadri
- Unité de Recherche Electrochimie, Matériaux et Environnement (UREME), Faculté des Sciences de Gabès, Université de Gabès, Cité Erriadh, 6072 Gabès, Tunisia
| | - Salah Ammar
- Unité de Recherche Electrochimie, Matériaux et Environnement (UREME), Faculté des Sciences de Gabès, Université de Gabès, Cité Erriadh, 6072 Gabès, Tunisia; Département de Chimie, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Jarzouna, Tunisia
| | - Ana Lopes
- FibEnTech Unit and Department of Chemistry, University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
26
|
Hou C, Lu G, Zhao L, Yin P, Zhu L. Estrogenicity assessment of membrane concentrates from landfill leachate treated by the UV-Fenton process using a human breast carcinoma cell line. CHEMOSPHERE 2017; 180:192-200. [PMID: 28407549 DOI: 10.1016/j.chemosphere.2017.04.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/06/2017] [Accepted: 04/08/2017] [Indexed: 06/07/2023]
Abstract
Membrane concentrates (MCs) are generated when membranes are used to concentrate landfill leachate. It contains high concentrations of inorganic and organic environmental pollutants, which are highly toxic and carcinogenic. In this paper, the proliferation effect (PE) from MC before and after treatment with the UV-Fenton process was assessed using the human breast carcinoma cell line MCF-7. The highest value of 116% was found at 5% (v/v) concentration after a 10 min reaction. Phthalic acid esters (PAEs) play an important role in the MC estrogenicity. Estrogen simulation solutions (ESS) of PAEs were prepared to simulate the changes in estrogenic active substances during the UV-Fenton process. The ESS degradation conformed to the first-order kinetics model. The estrogenicity decreased after an initial increase until it acted in a non-estrogenic manner. Convincingly, the intermediates were determined by GC/MS, and the estrogenicity was assessed during the degradation process. The estrogenicity was highly related to the generation of intermediates and the PAE concentration. The results provide guidance for UV-Fenton application in MC estrogenicity reduction.
Collapse
Affiliation(s)
- Changcheng Hou
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Gang Lu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Ling Zhao
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Pinghe Yin
- Research Center of Analysis and Test, Jinan University, Guangzhou 510632, China
| | - Lingfei Zhu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
27
|
Simultaneous di-oxygenation and denitrification in an internal circulation baffled bioreactor. Biodegradation 2017; 28:195-203. [DOI: 10.1007/s10532-017-9788-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/28/2017] [Indexed: 10/20/2022]
|
28
|
Díez AM, Sanromán MA, Pazos M. Sequential two-column electro-Fenton-photolytic reactor for the treatment of winery wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:1137-1151. [PMID: 27796998 DOI: 10.1007/s11356-016-7937-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
The high amount of winery wastewaters produced each year makes their treatment a priority issue due to their problematic characteristics such as acid pH, high concentration of organic load and colourful compounds. Furthermore, some of these effluents can have dissolved pesticides, due to the previous grape treatments, which are recalcitrant to conventional treatments. Recently, photo-electro-Fenton process has been reported as an effective procedure to mineralize different organic contaminants and a promising technology for the treatment of these complex matrixes. However, the reactors available for applying this process are scarce and they show several limitations. In this study, a sequential two-column reactor for the photo-electro-Fenton treatment was designed and evaluated for the treatment of different pesticides, pirimicarb and pyrimethanil, used in wine production. Both studied pesticides were efficiently removed, and the transformation products were determined. Finally, the treatment of a complex aqueous matrix composed by winery wastewater and the previously studied pesticides was carried out in the designed sequential reactor. The high removals of TOC and COD reached and the low energy consumption demonstrated the efficiency of this new configuration.
Collapse
Affiliation(s)
- A M Díez
- Department of Chemical Engineering, University of Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain
| | - M A Sanromán
- Department of Chemical Engineering, University of Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain
| | - M Pazos
- Department of Chemical Engineering, University of Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain.
| |
Collapse
|
29
|
Zhong X, Cui C, Yu S. Exploring the pathways of aromatic carboxylic acids in ozone solutions. RSC Adv 2017. [DOI: 10.1039/c7ra03039h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The reaction between ozone and natural organic matter (NOM) generates a certain amount of aromatic carboxylic acids (ACAs).
Collapse
Affiliation(s)
- Xin Zhong
- School of Municipal & Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Chongwei Cui
- School of Municipal & Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Shuili Yu
- School of Environmental Science and Engineering
- Tongji University
- Shanghai 200433
- China
| |
Collapse
|
30
|
Salazar C, Contreras N, Mansilla HD, Yáñez J, Salazar R. Electrochemical degradation of the antihypertensive losartan in aqueous medium by electro-oxidation with boron-doped diamond electrode. JOURNAL OF HAZARDOUS MATERIALS 2016; 319:84-92. [PMID: 27180209 DOI: 10.1016/j.jhazmat.2016.04.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 06/05/2023]
Abstract
In this work the electrochemical oxidation of losartan, an emerging pharmaceutical pollutant, was studied. Electrochemical oxidation was carried out in batch mode, in an open and undivided cell of 100cm(3) using a boron-doped diamond (BDD)/stainless steel system. With Cl(-) medium 56% of mineralization was registered, while with the trials containing SO4(2-) as supporting electrolyte a higher mineralization yield of 67% was reached, even obtaining a total removal of losartan potassium at 80mAcm(-2) and 180min of reaction time at pH 7.0. Higher losartan potassium concentrations enhanced the mineralization degree and the efficiency of the electrochemical oxidation process. During the mineralization up to 4 aromatic intermediates were identified by ultra high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Moreover, short-linear carboxylic acids, like oxalic, succinic and oxamic were detected and quantified by ion-exclusion HPLC. Finally, the ability of the electrochemical oxidation process to mineralize dissolved commercial tablets containing losartan was achieved, obtaining TOC removal up to 71% under optimized conditions (10mAcm(-2), 0.05M Na2SO4, pH 7.0 and 25°C and 360min of electrolysis).
Collapse
Affiliation(s)
- Claudio Salazar
- Laboratorio de Trazas Elementales y Especiación, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile; Laboratorio de Química Orgánica Ambiental, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile.
| | - Nicole Contreras
- Laboratorio de Electroquímica Medioambiental, LEQMA, Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, PO-Box 40, Correo 33, Santiago, Chile
| | - Héctor D Mansilla
- Laboratorio de Química Orgánica Ambiental, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile
| | - Jorge Yáñez
- Laboratorio de Trazas Elementales y Especiación, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile
| | - Ricardo Salazar
- Laboratorio de Electroquímica Medioambiental, LEQMA, Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, PO-Box 40, Correo 33, Santiago, Chile.
| |
Collapse
|
31
|
Cotillas S, de Vidales MJM, Llanos J, Sáez C, Cañizares P, Rodrigo MA. Electrolytic and electro-irradiated processes with diamond anodes for the oxidation of persistent pollutants and disinfection of urban treated wastewater. JOURNAL OF HAZARDOUS MATERIALS 2016; 319:93-101. [PMID: 26832074 DOI: 10.1016/j.jhazmat.2016.01.050] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/11/2016] [Accepted: 01/19/2016] [Indexed: 05/03/2023]
Abstract
This paper analyzes the advantages and drawbacks of the combination of UV irradiation with electrolysis with the aim to give insight about the feasibility of the application of this technology for the reclaiming of conventionally-treated wastewater. The oxidation of synthetic solutions containing five selected model complex pollutants has been compared, showing that UV irradiation improves the results of electrolysis for progesterone, metoprolol and caffeine and deteriorates the performance for the degradation of sulfamethoxazole and dimethyl-phthalate. Differences observed becomes lower when mineralization is compared showing that the effects of UV irradiation are diluted when a mixture of species is oxidized. Results suggest that high ThOD/TOC (Theoretical Oxygen Demand/Total Organic Carbon) ratios improve the synergistic coupling of technologies while low values lead to a clear antagonistic effect. Because during oxidation progress this ratio is decreased, the observed effect on mineralization is much lower than in the oxidation of the raw molecule. Opposite to this low effect on the oxidation of organics, the improvement in the performance of the disinfection by coupling UV to electrolysis is much clearer. In addition, UV irradiation modifies significantly the chlorine speciation and helps to prevent the formation of hazardous species such as chlorate and perchlorate during the electrochemical processes.
Collapse
Affiliation(s)
- Salvador Cotillas
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technology, Universidad de Castilla-La Mancha, Edificio E. Costa, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - María J Martín de Vidales
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technology, Universidad de Castilla-La Mancha, Edificio E. Costa, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - Javier Llanos
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technology, Universidad de Castilla-La Mancha, Edificio E. Costa, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - Cristina Sáez
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technology, Universidad de Castilla-La Mancha, Edificio E. Costa, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - Pablo Cañizares
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technology, Universidad de Castilla-La Mancha, Edificio E. Costa, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - Manuel A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technology, Universidad de Castilla-La Mancha, Edificio E. Costa, Campus Universitario s/n, 13071 Ciudad Real, Spain.
| |
Collapse
|
32
|
Espinoza C, Romero J, Villegas L, Cornejo-Ponce L, Salazar R. Mineralization of the textile dye acid yellow 42 by solar photoelectro-Fenton in a lab-pilot plant. JOURNAL OF HAZARDOUS MATERIALS 2016; 319:24-33. [PMID: 26971051 DOI: 10.1016/j.jhazmat.2016.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 06/05/2023]
Abstract
A complete mineralization of a textile dye widely used in the Chilean textile industry, acid yellow 42 (AY42), was studied. Degradation was carried out in an aqueous solution containing 100mgL(-1) of total organic carbon (TOC) of dye using the advanced solar photoelectro-Fenton (SPEF) process in a lab-scale pilot plant consisting of a filter press cell, which contains a boron doped diamond electrode and an air diffusion cathode (BDD/air-diffusion cell), coupled with a solar photoreactor for treat 8L of wastewater during 270min of electrolysis. The main results obtained during the degradation of the textile dye were that a complete transformation to CO2 depends directly on the applied current density, the concentration of Fe(2+) used as catalyst, and the solar radiation intensity. The elimination of AY42 and its organic intermediates was due to hydroxyl radicals formed at the anode surface from water oxidation and in the bulk from Fenton's reaction between electrogenerated H2O2 and added Fe(2+). The application of solar radiation in the process (SPEF) yield higher current efficiencies and lower energy consumptions than electro-Fenton (EF) and electro-oxidation with electrogenerated H2O2 (E OH2O2) by the additional production of hydroxyl radicals from the photolysis of Fe(III) hydrated species and the photodecomposition of Fe(III) complexes with organic intermediates. Moreover, some products and intermediates formed during mineralization of dye, such as inorganic ions, carboxylic acids and aromatic compounds were determined by photometric and chromatographic methods. An oxidation pathway is proposed for the complete conversion to CO2.
Collapse
Affiliation(s)
- Carolina Espinoza
- Laboratorio de Electroquímica MedioAmbiental, LEQMA, Departamento de Química de los, Materiales Facultad de Química y Biología, Chile
| | - Julio Romero
- Departamento de Ingeniería Química, Laboratorio de procesos de Separación por membranas, Facultad de Ingeniería, Chile
| | - Loreto Villegas
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología. Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile
| | - Lorena Cornejo-Ponce
- Laboratorio de Investigaciones Medioambientales de Zonas Áridas, LIMZA, Universidad de Tarapacá, UTA, Chile
| | - Ricardo Salazar
- Laboratorio de Electroquímica MedioAmbiental, LEQMA, Departamento de Química de los, Materiales Facultad de Química y Biología, Chile.
| |
Collapse
|
33
|
Rivera-Utrilla J, Daiem MMA, Sánchez-Polo M, Ocampo-Pérez R, López-Peñalver JJ, Velo-Gala I, Mota AJ. Removal of compounds used as plasticizers and herbicides from water by means of gamma irradiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:518-526. [PMID: 27366982 DOI: 10.1016/j.scitotenv.2016.06.114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/07/2016] [Accepted: 06/15/2016] [Indexed: 06/06/2023]
Abstract
Gamma radiation has been used to induce the degradation of compounds used as plasticizers and herbicides such as phthalic acid (PA), bisphenol A (BPA), diphenolic acid (DPA), 2,4-dichlorophenoxy-acetic acid (2,4-D), and 4-chloro-2-methylphenoxyacetic acid (MCPA) in aqueous solution, determining the dose constants, removal percentages, and radiation-chemical yields. The reaction rate constants of hydroxyl radical (HO), hydrated electron (eaq(-)) and hydrogen atom (H) with these pollutants were also obtained by means of competition kinetics, using 3-aminopyridine and atrazine as reference compounds. The results indicated that the elimination of these pollutants with gamma radiation mainly follows the oxidative pathway through reaction with HO radicals. The degradation by-products from the five pollutants were determined, detecting that the hydroxylation of the corresponding parent compounds was the main chemical process in the degradation of the pollutants. Moreover, a high decrease in the chemical oxygen demand has been observed for all pollutants. As expected, the degradation by-products generated by the irradiation of PA, BPA and DPA showed a lower toxicity than the parent compounds, however, in the case of 2,4-D and MCPA irradiation, interestingly, their by-products were more toxic than the corresponding original compounds.
Collapse
Affiliation(s)
- José Rivera-Utrilla
- Inorganic Chemistry Department, Faculty of Science, University of Granada, 18071 Granada, Spain.
| | - Mahmoud M Abdel Daiem
- Environmental Engineering Department, Faculty of Engineering, Zagazig University, 44519 Zagazig, Egypt
| | - Manuel Sánchez-Polo
- Inorganic Chemistry Department, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Raúl Ocampo-Pérez
- Center of Research and Postgraduate Studies, Faculty of Chemical Science, Autonomous University of San Luis Potosí, Av. Dr. M. Nava No.6, San Luis Potosí SLP 78210, Mexico
| | - Jesús J López-Peñalver
- Inorganic Chemistry Department, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Inmaculada Velo-Gala
- Inorganic Chemistry Department, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Antonio J Mota
- Inorganic Chemistry Department, Faculty of Science, University of Granada, 18071 Granada, Spain
| |
Collapse
|
34
|
Removal of organic matter contained in slaughterhouse wastewater using a combination of anaerobic digestion and solar photoelectro-Fenton processes. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.05.064] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Electrochemical degradation of Acid Blue 113 dye using TiO 2 -nanotubes decorated with PbO 2 as anode. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.enmm.2015.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
36
|
Guo J, Chen X, Shi Y, Lan Y, Qin C. Rapid Photodegradation of Methyl Orange (MO) Assisted with Cu(II) and Tartaric Acid. PLoS One 2015; 10:e0134298. [PMID: 26241043 PMCID: PMC4524705 DOI: 10.1371/journal.pone.0134298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/07/2015] [Indexed: 11/19/2022] Open
Abstract
Cu(II) and organic carboxylic acids, existing extensively in soil and aquatic environments, can form complexes that may play an important role in the photodegradation of organic contaminants. In this paper, the catalytic role of Cu(II) in the removal of methyl orange (MO) in the presence of tartaric acid with light was investigated through batch experiments. The results demonstrate that the introduction of Cu(II) could markedly enhance the photodegradation of MO. In addition, high initial concentrations of Cu(II) and tartaric acid benefited the decomposition of MO. The most rapid removal of MO assisted by Cu(II) was achieved at pH 3. The formation of Cu(II)-tartaric acid complexes was assumed to be the key factor, generating hydroxyl radicals (•OH) and other oxidizing free radicals under irradiation through a ligand-to-metal charge-transfer pathway that was responsible for the efficient degradation of MO. Some intermediates in the reaction system were also detected to support this reaction mechanism.
Collapse
Affiliation(s)
- Jing Guo
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xue Chen
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Ying Shi
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yeqing Lan
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
- * E-mail:
| | - Chao Qin
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
37
|
Magallanes D, Rodríguez JL, Poznyak T, Valenzuela MA, Lartundo L, Chairez I. Efficient mineralization of benzoic and phthalic acids in water by catalytic ozonation using a nickel oxide catalyst. NEW J CHEM 2015. [DOI: 10.1039/c5nj01385b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NiO increased the mineralization degree in benzoic and phthalic acid ozonation.
Collapse
Affiliation(s)
- Diana Magallanes
- Lab. de Ing
- Química Ambiental
- ESIQIE-Instituto Politécnico Nacional
- México
- Mexico
| | - Julia L. Rodríguez
- Lab. de Ing
- Química Ambiental
- ESIQIE-Instituto Politécnico Nacional
- México
- Mexico
| | - Tatiana Poznyak
- Lab. de Ing
- Química Ambiental
- ESIQIE-Instituto Politécnico Nacional
- México
- Mexico
| | | | - Luis Lartundo
- Centro de Nanociencias y Micro y Nanotecnologías-Instituto Politécnico Nacional
- México
- Mexico
| | - Isaac Chairez
- Departamento de Bioprocesos
- UPIBI–Instituto Politécnico Nacional
- Ticoman
- 07340 México
- Mexico
| |
Collapse
|