1
|
Behboudi E, Khadivi-Derakhshan S, Pirouzmand M, Jouyban A, Soleymani J. Spectrophotometric and smartphone-based colorimetric methods utilizing polyvinylpyrrolidone-capped silver nanoparticles for determining doxorubicin in human plasma samples. Sci Rep 2025; 15:14745. [PMID: 40289164 PMCID: PMC12034750 DOI: 10.1038/s41598-025-98460-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
Doxorubicin (DOX) or adriamycin is a common anticancer drug with a narrow therapeutic index. Therefore, sensitive and reliable quantification of DOX is crucial for therapeutic drug monitoring purposes. In this study, both a spectrophotometric and a smartphone-based colorimetric method were fabricated to detect DOX in plasma samples. Both methods utilize polyvinylpyrrolidone (PVP)-capped silver nanoplates, which undergo color with varying DOX concentrations. The colorimetric method offers significant beneficial features of fast detection time, simplicity, and the ability to be easily observed by the naked eye without any need for expensive instruments. The linear dynamic ranges are 0.25-5.0 µg/mL and 0.5-5.0 µg/mL, with the lower limit of quantification (LLOQ) of 0.25 and 0.5 µg/mL for spectrophotometric and smartphone image analysis, respectively. The smartphone-based image analysis was performed using a smartphone application (PhotoMetrix), which relies on univariate calibration using the histograms of the RGB image. Using the smartphone camera, the image histograms were automatically generated and processed. The proposed probe can potentially be utilized to detect DOX in clinical samples with a mean accuracy and precision of 88.7% and 3.2%, respectively. The results demonstrated that these methods can accurately determine DOX concentrations in plasma samples, highlighting the potential of integrating digital imagery and smartphone applications with chemometric tools.
Collapse
Affiliation(s)
- Elmira Behboudi
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Saeedeh Khadivi-Derakhshan
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mahtab Pirouzmand
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Sousa DVM, Pereira FV, Orlando RM. Enhancing Doxorubicin Detection: Multiphase Electroextraction for Efficient and Affordable UHPLC-DAD Analysis in Saliva. Electrophoresis 2024. [PMID: 39607318 DOI: 10.1002/elps.202400094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Attesting optimal drug concentrations in biological fluids is crucial to ensure precise dosage adjustment, to guarantee therapy adherence, and to manage side effects in chemotherapy. Accurate drug determination relies on liquid chromatography and advanced detectors, with sample preparation playing a pivotal role, especially in complex matrices such as biological fluids. This study introduces a multiphase electroextraction (MPEE) of doxorubicin (DOX) in saliva by utilizing a paper point, followed by ultra-high-performance liquid chromatography coupled to diode array detection. The extraction time and electric potential were carried out by using the Doehlert optimization approach, whereas the desorption solvent was fine-tuned through the centroid-simplex experimental design. After optimization, DOX and the internal standard were extracted in 35 min, utilizing an applied voltage of 300 V and a multiwell plate capable of simultaneous extraction of 66 samples. The recovery was 87%-101%, with a linear range between 50 and 500 µg L-1 (R2 > 0.999). The intra- and inter-assay coefficients of variation for precision were <10%, and the limit of detection and limit of quantification were 25 and 50 µg L-¹, respectively. When applied to five different fortified saliva samples, there were no statistically significant differences in the detected concentrations. Although the enrichment factor (0.6) was not as high as expected, the other results confirm that the method obtained is suitable for monitoring DOX in this complex matrix and can contribute to further developments in sample preparation using MPEE approaches.
Collapse
Affiliation(s)
- Denise V M Sousa
- Laboratory of Microfluidics and Separations (LaMS), Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fabiano V Pereira
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo M Orlando
- Laboratory of Microfluidics and Separations (LaMS), Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
3
|
Qureshi A, Shah A, Iftikhar FJ, Haleem A, Zia MA. Electrochemical analysis of anticancer and antibiotic drugs in water and biological specimens. RSC Adv 2024; 14:36633-36655. [PMID: 39559583 PMCID: PMC11570916 DOI: 10.1039/d4ra05685j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
The increasing prevalence of pharmaceuticals in water and complex matrices necessitates accurate measurement and monitoring of their environmental contamination levels. This is crucial not only for environmental conservation but also for comprehending the intricate mechanisms involved and developing more effective treatment approaches. In this context, electrochemical techniques show significant potential for the detection of pharmaceuticals across various matrices. Specifically, voltammetry is advantageous due to its rapid, straightforward, and cost-effective nature, allowing for the simultaneous analysis of multiple anticancer and antibiotic drugs. By utilizing nanomaterial-modified electrochemical sensors, the sensitivity and selectivity of detection methods can be significantly improved. The small size and customizable properties of nanomaterials enable these sensors to identify trace amounts of drugs in diverse samples. However, challenges persist in achieving reliable and accurate electrochemical monitoring of drugs in water and biological samples. Biofluids such as saliva, urine, and blood/serum, along with environmental samples from lakes and rivers, often contain numerous interfering substances that can diminish analyte signals. This review examines electrochemical methods and their potential applications for detecting pharmaceuticals and their metabolites, while also addressing the mechanisms of action and harmful effects of these drugs on both ecosystems and human health. Recent developments in electrochemical sensors utilizing nanomaterials for the detection of health-threatening pharmaceutical contaminants are examined, providing important insights into their underlying mechanisms. The emphasis is placed on the detection of anticancer agents and antibiotics, which relies on the electrocatalytic properties of the sensor materials. Additionally, discussions on density functional theory studies are included, along with an exploration of the emerging challenges and future directions in this area, aimed at enhancing readers' comprehension of the field and underscoring the necessary actions for a sustainable future.
Collapse
Affiliation(s)
- Ayesha Qureshi
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | | | - Abdul Haleem
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Muhammad Abid Zia
- Department of Chemistry, University of Education Attock Punjab 43600 Pakistan
| |
Collapse
|
4
|
Dagher D, Elmansi H, Nasr JJ, El-Enany N. Investigation of green synchronous spectrofluorimetric approach for facile sensitive estimation of two co-administered anti-cancer drugs; curcumin and doxorubicin in their laboratory-prepared mixtures, human plasma, and urine. BMC Chem 2024; 18:164. [PMID: 39252071 PMCID: PMC11385172 DOI: 10.1186/s13065-024-01272-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
Recently, phytochemicals play an important role in cancer management. Curcumin (CUR), a natural phytochemical, has been co-administered with widespread chemotherapeutic agents such as doxorubicin (DOX) due to its excellent antitumor activity and the ability to lower the adverse reactions and drug resistance cells associated with DOX use. The present study aims to determine DOX and CUR utilizing a label-free, selective, sensitive, and precise synchronous spectrofluorimetric method. The obvious overlap between the emission spectra of DOX and CUR prevents simultaneous estimation of both analytes by conventional spectrofluorimetry. To solve such a problem, synchronous spectrofluorimetric measurements were recorded at Δλ = 20 nm, utilizing ethanol as a diluting solvent. Curcumin was recorded at 442.5 nm, whereas DOX was estimated at 571.5 nm, each at the zero-crossing point of the other one. The developed method exhibited linearity over a concentration range of 0.04-0.40 μg/mL for CUR and 0.05-0.50 μg/mL for DOX, respectively. The values of limit of detection (LOD) were 0.009 and 0.012 µg/mL, while the values of limit of quantitation (LOQ) were 0.028 and 0.037 µg/mL for CUR and DOX, respectively. The adopted approach was carefully validated according to the guidelines of ICH Q2R1. The method was utilized to estimate CUR and DOX in laboratory-prepared mixtures and human biological matrices. It showed a high percentage of recoveries with minimal RSD values. Additionally, three different tools were utilized to evaluate the greenness of the proposed approach.
Collapse
Affiliation(s)
- Diaa Dagher
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Heba Elmansi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Jenny Jeehan Nasr
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura National University, Gamasa, 7723730, Egypt
| | - Nahed El-Enany
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Mansoura University, New Mansoura, 7723730, Egypt
| |
Collapse
|
5
|
Kurmaz VA, Konev DV, Kurmaz SV, Emel’yanova NS. Electrochemical Study of the Antitumor Antibiotic Doxorubicin in Its Free Form and Encapsulated in a Biocompatible Copolymer of N-Vinylpyrrolidone and (di)Methacrylates. RUSS J ELECTROCHEM+ 2024; 60:321-337. [DOI: 10.1134/s1023193524040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/18/2023] [Accepted: 10/04/2023] [Indexed: 01/06/2025]
|
6
|
Megale JD, De Souza D. New approaches in antibiotics detection: The use of square wave voltammetry. J Pharm Biomed Anal 2023; 234:115526. [PMID: 37385092 DOI: 10.1016/j.jpba.2023.115526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/27/2023] [Accepted: 06/10/2023] [Indexed: 07/01/2023]
Abstract
Antibiotics belongs to a class of pharmaceutical compounds widely used due to their effectiveness against bacterial infections. However, if consumed or inappropriately disposed of in the environment can results in environmental and public health problems, because they are considered emerging contaminants and their residues represent damage, whether in the long or short term, to different terrestrial ecosystems, in addition to bringing potential risks to agricultural sectors, such as livestock and fish farming. For this, the development of analytical methods for low-concentration detection and identification of antibiotics in natural waters, wastewaters, soil, foods, and biological fluids is necessary. This review shows the applicability of square wave voltammetry for the analytical determination of antibiotics from different chemical classes and covers a variety of samples and working electrodes that are used as voltammetric sensors. The review involved the analysis of scientific publications from the Science Direct® and Scopus® databases, with scientific manuscripts covering the period between January 2012 and May 2023. Various manuscripts were discussed indicating the applicability of square wave voltammetry in antibiotics detection in urine, blood, natural waters, milk, among other complex samples.
Collapse
Affiliation(s)
- Júlia Duarte Megale
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Major Jerônimo street, 566, Patos de Minas, MG 38700-002, Brazil
| | - Djenaine De Souza
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Major Jerônimo street, 566, Patos de Minas, MG 38700-002, Brazil.
| |
Collapse
|
7
|
Sousa DVM, Pereira FV, Boratto VHM, Orlando RM. Multiphase electroextraction as a simple and fast sample preparation alternative for the digital image determination of doxorubicin in saliva. Talanta 2023; 255:124242. [PMID: 36638654 DOI: 10.1016/j.talanta.2022.124242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Monitoring chemotherapeutic drugs in biological fluids is, in many cases, extremely important for dose adjustment, the maintenance of therapies, and the control of side effects. In this work, a method for determining the doxorubicin in saliva by digital image analysis (DIA) was optimised and validated. Images from a paper point were obtained using a conventional and cheap flatbed scanner at a 600 ppp resolution. The RGB data channels were obtained from the images in a region of 15 × 15 pixels around the sorbent vertex. The paper point was used as sorbent material in sample preparation using a multiphase electroextraction system. Following optimisation using a Doehlert experimental design, the method was able to simultaneously extract 66 samples in 20 min. The high selectivity of the electric field associated with the sorption capacity of the cellulosic material allowed the chemotherapy drug to be pre-concentrated and quantified in a range between 50 and 500 μg L-1 (R2 > 0.98). The method also exhibited adequate parameters (limits of detection and quantification, recovery, and precision) indicating its potential application in the monitoring of doxorubicin and similar drugs in saliva.
Collapse
|
8
|
Mohammadinejad A, Abnous K, Alinezhad Nameghi M, Yahyazadeh R, Hamrah S, Senobari F, Mohajeri SA. Application of green-synthesized carbon dots for imaging of cancerous cell lines and detection of anthraquinone drugs using silica-coated CdTe quantum dots-based ratiometric fluorescence sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122200. [PMID: 36481534 DOI: 10.1016/j.saa.2022.122200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/17/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Chemotherapy drugs of daunorubicin and doxorubicin treat cancers with many side effects. So, detection of them in the biological system for regulation and controlling of usage is essential. In this study, a ratiometric fluorescent method was introduced for detection of daunorubicin and doxorubicin using bell pepper-based carbon dots, as the variable signal, and silica-coated CdTe quantum dots, as the constant signal. The detection was done based on variations of carbon dots intensity in the presence of drugs in comparison with the constant intensity of silica-coated CdTe quantum dots. The proposed ratiometric fluorescent method was successfully used for detection of daunorubicin and doxorubicin range of 54.37-13594.34 nmolL-1 and 86.2-17242 nmolL-1, with a detection limit of 18.53 nmolL-1 and 29 nmolL-1, respectively. Also, this method was used for detection of drugs in serum samples with recovery ranges of 86.14-99.62 (RSD 3-1.47%) and 86.32-97.53 (3.38-1.48%), respectively. Finally, after evaluation of carbon dots toxicity by MTT test, carbon dots was applied for imaging of prostate cancer cell lines (PC-3) and breast cancer cell lines (MCF7). The results demonstrated that despite improvement of the repeatability and interferences reduction by ratiometric method, also carbon dots were successfully applied for imaging of cell lines.
Collapse
Affiliation(s)
- Arash Mohammadinejad
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morteza Alinezhad Nameghi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roghayeh Yahyazadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Hamrah
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fereshteh Senobari
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
New Nanosized Systems Doxorubicin-Amphiphilic Copolymers of N-Vinylpyrrolidone and (Di)methacrylates with Antitumor Activity. Pharmaceutics 2022; 14:pharmaceutics14122572. [PMID: 36559068 PMCID: PMC9784683 DOI: 10.3390/pharmaceutics14122572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Nanosized systems of DOX with antitumor activity on the base of micelle-like particles of amphiphilic thermosensitive copolymers of N-vinylpyrrolidone (VP) with triethylene glycol dimethacrylate (TEGDM), and N-vinylpyrrolidone and methacrylic acid (MAA) with TEGDM were explored. They were investigated in aqueous solutions by electron absorption spectroscopy, dynamic light scattering and cyclic voltammetry. Experimental data and quantum-chemical modeling indicated the formation of a hydrogen bond between oxygen-containing groups of monomer units of the copolymers and H-atoms of OH and NH2 groups of DOX; the energies and H-bond lengths in the considered structures were calculated. A simulation of TDDFT spectra of DOX and its complexes with the VP and TEGDM units was carried out. Electrochemical studies in PBS have demonstrated that the oxidation of encapsulated DOX appeared to be easier than that of the free one, and its reduction was somewhat more difficult. The cytotoxicity of VP-TEGDM copolymer compositions containing 1, 5 and 15 wt% DOX was studied in vitro on HeLa cells, and the values of IC50 doses were determined at 24 and 72 h of exposure. The copolymer compositions containing 5 and 15 wt% DOX accumulated actively in cell nuclei and did not cause visual changes in cell morphology.
Collapse
|
10
|
Arkaban H, Shervedani RK, Torabi M, Norouzi-Barough L. Fabrication of a biocompatible & biodegradable targeted theranostic nanocomposite with pH-Controlled drug release ability. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Application of Optical Methods for Determination of Concentration of Doxorubicin in Blood and Plasma. Pharmaceuticals (Basel) 2022; 15:ph15020112. [PMID: 35215225 PMCID: PMC8880482 DOI: 10.3390/ph15020112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of presented research is to develop a simple and quick method of spectrophotometric detection for the determination of doxorubicin hydrochloride in blood and plasma. Anthracycline antibiotics are among the most effective antineoplastic agents. However, despite their high efficacy in the treatment of various types of cancer, their administration is limited primarily because they exhibit myocardial toxicity. This may be a limiting factor in the dosage of medications; nevertheless, drugs exhibiting this mechanism of action constitute a very important group of chemotherapeutics. One of the more widely studied antibiotics from the anthracycline group is doxorubicin. It exhibits the highest antineoplastic activity from among a number of derivative compounds. Because of the adverse effects of doxorubicin, especially cardiotoxicity, it is important to maintain control of its concentration in body fluids. The method in the study consists of extraction doxorubicin from the plasma or blood and measurements of the absorbance of light in the visible light range in a DOX solution with respect to a reference sample. The research used blood and plasma samples spiked with doxorubicin to give concentrations in the range of 0.2–10 µg/mL. Obtained LODs were 1.6 µg/mL and 1.2 µg/mL, respectively.
Collapse
|
12
|
Motoc Ilies S, Schinteie B, Pop A, Negrea S, Cretu C, Szerb EI, Manea F. Graphene Quantum Dots and Cu(I) Liquid Crystal for Advanced Electrochemical Detection of Doxorubicine in Aqueous Solutions. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2788. [PMID: 34835559 PMCID: PMC8625772 DOI: 10.3390/nano11112788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 01/10/2023]
Abstract
Two paste electrodes based on graphene quantum dots and carbon nanotubes (GRQD/CNT) and one modified with a homoleptic liquid crystalline Cu(I) based coordination complex (Cu/GRQD/CNT) were obtained and morphostructurally and electrochemically characterized in comparison with simple CNT electrode (CNT) for doxorubicine (DOX) detection in aqueous solutions. GRQD/CNT showed the best electroanalytical performance by differential pulse voltammetry technique (DPV). Moreover, applying a preconcentration step prior to detection stage, the lowest limit of detection (1 ng/L) and the highest sensitivity (216,105 µA/mg·L-1) in comparison with reported literature data were obtained. Cu/GRQD/CNT showed good results using multiple pulse amperometry technique (MPA) and a favorable shifting of the potential detection to mitigate potential interferences. Both GRQD-based paste electrodes have a great potential for practical utility in DOX determination in water at trace concentration levels, using GRQD/CNT with DPV and in pharmaceuticals formulations using Cu/GRQD/CNT with MPA.
Collapse
Affiliation(s)
- Sorina Motoc Ilies
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania; (S.M.I.); (B.S.); (C.C.)
| | - Bianca Schinteie
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania; (S.M.I.); (B.S.); (C.C.)
| | - Aniela Pop
- Department of Applied Chemistry and Engineering of Inorganic Compounds and Environment, Politehnica University of Timisoara, 2 Victoriei Square, 300006 Timisoara, Romania;
| | - Sorina Negrea
- National Institute of Research and Development for Industrial Ecology (INCD ECOIND), Timisoara Branch, 300431 Timisoara, Romania;
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania
| | - Carmen Cretu
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania; (S.M.I.); (B.S.); (C.C.)
| | - Elisabeta I. Szerb
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania; (S.M.I.); (B.S.); (C.C.)
| | - Florica Manea
- Department of Applied Chemistry and Engineering of Inorganic Compounds and Environment, Politehnica University of Timisoara, 2 Victoriei Square, 300006 Timisoara, Romania;
| |
Collapse
|
13
|
Arkaban H, Karimi Shervedani R, Yaghoobi F, Kefayat A. A nanocomposite theranostic system, consisting of AuNPs@MnCO3/Mn3O4 coated with PAA and integrated with folic acid, doxorubicin, and propidium iodide: Synthesis, characterization and examination for capturing of cancer cells. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Inclusive study for segregation of two commonly used anticancer drugs with tramadol: Applying a green fluorimetric strategy to pharmaceutical dosage forms and human plasma. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Glutathione and cystamine functionalized MoS 2core-shell nanoparticles for enhanced electrochemical detection of doxorubicin. Mikrochim Acta 2021; 188:35. [PMID: 33420619 DOI: 10.1007/s00604-020-04642-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/09/2020] [Indexed: 01/03/2023]
Abstract
Two-dimensional (2D) MoS2core-shell nanoparticles were synthesized using an eco-friendly surface functionalization-agent with L-glutathione and cystamine (L-GSH-MoS2-CYS) using ultrasonic frequency of 20-25 kHz. The novel modified electrode was evaluated for the electrochemical detection of doxorubicin (DOX), through cyclic and differential pulse voltammetric techniques. The electro-catalytic oxidation currents of DOX exhibited a linear relationship in the concentration ranges 0.1-78.3 and 98.3-1218 μM, with a detection limit of 31 nM. A sensitivity of 0.017μA μM-1 cm-2 was acquired at 0.48 V. The fabricated L-GSH-MoS2-CYS modified electrode showed excellent precision, selectivity, repeatability, and reproducibility during the determination of DOX levels in blood serum samples. Thus, the fabricated L-GSH-MoS2-CYS/GCE modified electrode has potential for clinical applications for optimization of chemotherapeutic drugs owing to its selectivity, ease of preparation, and long-term stability. Graphical abstract.
Collapse
|
16
|
Deepa S, Swamy BK, Pai KV. A surfactant SDS modified carbon paste electrode as an enhanced and effective electrochemical sensor for the determination of doxorubicin and dacarbazine its applications: A voltammetric study. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114748] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Homogeneous liquid liquid extraction using salt as mass separating agent for the ultra high pressure liquid chromatographic determination of doxorubicin in human urine. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Rahmani F, Hosseini MRM, Es-Haghi A, Mollahosseini A. A 96-Monolithic inorganic hollow fiber array as a new geometry for high throughput solid-phase microextraction of doxorubicin in water and human urine samples coupled with liquid chromatography-tandem mass spectrometry. J Chromatogr A 2020; 1627:461413. [PMID: 32823111 DOI: 10.1016/j.chroma.2020.461413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/13/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022]
Abstract
Innovations in extraction phases, extraction modes and hyphenated instrument configurations, are the most important issues to address for progress in the solid phase microextraction (SPME) methodology. In this regard, we have embarked on the development of a novel biocompatible 96-monolithic inorganic hollow fiber (96-MIHF) array as a new configuration for high-throughput SPME on a 96-well plate system. An arrangement of highly ordered 96 titania/Hydroxyapatite (TiO2/HAP) nanocomposite hollow fibers and corresponding stainless-steel needles on a Teflon plate holder were used as the extraction module. The inorganic hollow fibers were prepared via a rapid and reproducible template approach (Polypropylene hollow fiber) in combination with a sol-gel method in the presence of polyvinyl alcohol (PVA), as a network maker. The hollow fiber-shape sorbents were obtained with excellent precision by weight (RSD% = 4.98, n = 10) and length (RSD% = 1.08, n = 10) criteria. The proposed design can overcome a number of geometrically dependent drawbacks of conventional high-throughput SPME methods, mainly the ones related to sorbent amount and surface area due to possessing inner/outer surfaces without additional internal supports. The SPME platform, for the first time, was successfully applied for the extraction and preconcentration of doxorubicin from urine and water media without requiring sample preparation and free from significant matrix effect. The extracted analyte was analyzed by liquid chromatography-ion trap tandem mass spectrometry (LC-MS/MS). Highly satisfactory analytical figures of merit were obtained under optimized conditions. The limit of detection (LOD), limit of quantification (LOQ) and linearity of determination were 0.1 ng mL-1, 0.25 ng mL-1 and 0.25 to 4000 ng mL-1, respectively. The interday, intraday and inter sorbent precisions for three concentration levels ranged from 2.01 to 8.09 % (n = 3), 1.02 to 8.65 % (n = 5) and 0.99 to 1.02% (n = 15), respectively. The mean intra-well RSD value for 96 individual wells in 96-MIHF-SPME-LC-MS/MS (n = 3) at the medium concentration level was 7.81%.
Collapse
Affiliation(s)
- Fereidoon Rahmani
- Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, P.O. Box 16846/11367 Narmak, Tehran, Iran
| | - Mohammad-Reza Milani Hosseini
- Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, P.O. Box 16846/11367 Narmak, Tehran, Iran.
| | - Ali Es-Haghi
- Department of Physico Chemistry, Razi Vaccine & Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31975/148 Karaj, Iran.
| | - Afsaneh Mollahosseini
- Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, P.O. Box 16846/11367 Narmak, Tehran, Iran
| |
Collapse
|
19
|
A review on various analytical methods for determination of anthracyclines and their metabolites as anti–cancer chemotherapy drugs in different matrices over the last four decades. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Deepa S, Kumara Swamy B, Vasantakumar Pai K. Voltammetric detection of anticancer drug Doxorubicin at pencil graphite electrode: A voltammetric study. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
21
|
Ozcelikay G, Karadurmus L, Kaya SI, Bakirhan NK, Ozkan SA. A Review: New Trends in Electrode Systems for Sensitive Drug and Biomolecule Analysis. Crit Rev Anal Chem 2019; 50:212-225. [PMID: 31107105 DOI: 10.1080/10408347.2019.1615406] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Drug and biomolecule analysis with high precision, fast response, not expensive, and user-friendly methods have been very important for developing technology and clinical applications. Electrochemical methods are highly capable for assaying the concentration of electroactive drug or biomolecule and supply excellent knowledge concerning its physical and chemical properties such as electron transfer rates, diffusion coefficients, electron transfer number, and oxidation potential. Electrochemical methods have been widely applied because of their accuracy, sensitivity, cheapness, and can applied on-site determinations of various substances. The progress on electronics has allowed developing reliable, more sensitive and less expensive instrumentations, which have significant contribution in the area of drug development, drug and biomolecule analysis. The developing new sensors for electrochemical analysis of these compounds have growing interest in recent years. Screen-printed based electrodes have a great interest in electrochemical analysis of various drugs and biomolecules due to their easy manufacturing procedure of the electrode allow the transfer of electrochemical laboratory experiments for disposable on-site analysis of some compounds. Paper based electrodes are also fabricated by new technology. They can be preferred due to their easy, cheap, portable, disposable, and offering high sensitivity properties for many application field such as environmental monitoring, food quality control, clinical diagnosis, drug, and biomolecules analysis. In this review, the recent electrochemical drug and biomolecule (DNA, RNA, µRNA, Biomarkers, etc.) studies will be presented that involve new trend disposable electrodes.
Collapse
Affiliation(s)
- Goksu Ozcelikay
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Leyla Karadurmus
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.,Department of Analytical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Turkey
| | - S Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Nurgul K Bakirhan
- Department of Chemistry, Arts & Sciences Faculty, Hitit University, Corum, Turkey
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
22
|
Chekin F, Myshin V, Ye R, Melinte S, Singh SK, Kurungot S, Boukherroub R, Szunerits S. Graphene-modified electrodes for sensing doxorubicin hydrochloride in human plasma. Anal Bioanal Chem 2019; 411:1509-1516. [PMID: 30739196 DOI: 10.1007/s00216-019-01611-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 12/12/2022]
Abstract
Doxorubicin (DOX), an anthracycline molecule, is currently one of the most widely used anticancer drugs in clinics. Systematic treatment of patients with DOX is known to be accompanied by several unpleasant side effects due to the toxicity of the drug. Thus, monitoring of DOX concentration in serum samples has become increasingly important to avoid side effects and ensure therapeutic efficiency. In this study, we discuss the construction of a disposable electrochemical sensor for the direct monitoring of DOX in clinical blood samples. The sensor is based on coating a gold electrode in a flexible integrated electrode construct formed on polyimide sheets using photolithography, with nitrogen-doped reduced graphene oxide (N-rGO) suspended in chitosan. Under optimized conditions, a linear relationship between the oxidative peak current and the concentration of DOX in the range of 0.010-15 μM with a detection limit of 10 nM could be achieved. The sensor was adapted to monitor DOX in serum samples of patients under anticancer treatment. Graphical abstract.
Collapse
Affiliation(s)
- Fereshteh Chekin
- Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, 46131, Iran. .,Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, 59000, Lille, France.
| | - Vladyslav Myshin
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, 59000, Lille, France
| | - Ran Ye
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Sorin Melinte
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Santosh K Singh
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110001, India
| | - Sreekumar Kurungot
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110001, India
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, 59000, Lille, France
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, 59000, Lille, France.
| |
Collapse
|
23
|
Rudnicki K, Landová P, Wrońska M, Domagała S, Čáslavský J, Vávrová M, Skrzypek S. Quantitative determination of the veterinary drug monensin in horse feed samples by square wave voltammetry (SWV) and direct infusion electrospray ionization tandem mass spectrometry (DI–ESI–MS/MS). Microchem J 2018. [DOI: 10.1016/j.microc.2018.05.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
24
|
Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.01.034] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Laura Soriano M, Carrillo-Carrion C, Ruiz-Palomero C, Valcárcel M. Cyclodextrin-modified nanodiamond for the sensitive fluorometric determination of doxorubicin in urine based on its differential affinity towards β/γ-cyclodextrins. Mikrochim Acta 2018; 185:115. [DOI: 10.1007/s00604-017-2660-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/30/2017] [Indexed: 10/18/2022]
|
26
|
Petroni JM, Lucca BG, da Silva Júnior LC, Barbosa Alves DC, Souza Ferreira V. Paper-based Electrochemical Devices Coupled to External Graphene-Cu Nanoparticles Modified Solid Electrode through Meniscus Configuration and their Use in Biological Analysis. ELECTROANAL 2017. [DOI: 10.1002/elan.201700398] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Bruno Gabriel Lucca
- Departamento de Ciências Naturais; Universidade Federal do Espírito Santo; São Mateus, ES 29932-540 Brazil
| | | | | | - Valdir Souza Ferreira
- Instituto de Química; Universidade Federal de Mato Grosso do Sul; Campo Grande, MS 79074-460 Brazil
| |
Collapse
|
27
|
Voltammetric determination of insecticide thiodicarb through its electrochemical reduction using novel solid amalgam electrode fabricated with silver nanoparticles. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.06.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Vajdle O, Guzsvány V, Škorić D, Csanádi J, Petković M, Avramov-Ivić M, Kónya Z, Petrović S, Bobrowski A. Voltammetric behavior and determination of the macrolide antibiotics azithromycin, clarithromycin and roxithromycin at a renewable silver – amalgam film electrode. Electrochim Acta 2017; 229:334-344. [DOI: 10.1016/j.electacta.2017.01.146] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Voltammetric and corrosion studies of the ionophoric antibiotic–salinomycin and its determination in a soil extract. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.10.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Brycht M, Nosal-Wiercińska A, Sipa K, Rudnicki K, Skrzypek S. Electrochemical determination of closantel in the commercial formulation by square-wave adsorptive stripping voltammetry. MONATSHEFTE FUR CHEMIE 2016; 148:463-472. [PMID: 28344363 PMCID: PMC5346127 DOI: 10.1007/s00706-016-1862-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/17/2016] [Indexed: 11/30/2022]
Abstract
ABSTRACT In this paper, the square-wave adsorptive stripping voltammetric (SWAdSV) determination of the veterinary drug closantel using a renewable silver amalgam film electrode (Hg(Ag)FE) is presented. As observed in SWAdSV, closantel provided one well-shaped reduction peak suitable for analytical purposes at potential ca. -1.4 V in the Britton-Robinson (B-R) buffer at pH 7.0. At optimal conditions, the SWAdSV response of Hg(Ag)FE for determining closantel was linear over two concentration ranges of 5.0 × 10-8 to 2.0 × 10-7 mol dm-3 and 2.0 × 10-7 to 1.2 × 10-6 mol dm-3 with a detection limit of 1.1 × 10-8 mol dm-3. In addition, a relevance of the developed SWAdSV method was successfully verified by the quantitative analysis of closantel in the commercial formulation Closamectin Pour-On with satisfactory results (RSD = 5.8%, recovery = 101.8%). The results showed that the developed procedure can be adequate for screening purposes. Also, the electrochemical behavior of closantel was characterized by cyclic voltammetry, and it was found that closantel exhibited a quasi-reversible behavior with cathodic peak on the forward scan at ca. -1.4 V and anodic peak on the reverse scan at ca. -1.35 V vs. Ag/AgCl in B-R buffer, pH 7.0. As the obtained results showed that the electrode mechanism of closantel is controlled by the adsorption, the effect of adsorption was studied using the electrochemical impedance spectroscopy technique. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Mariola Brycht
- Department of Inorganic and Analytical Chemistry Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland
| | - Agnieszka Nosal-Wiercińska
- Department of Analytical Chemistry and Instrumental Analysis Faculty of Chemistry, Maria Skłodowska-Curie University, M. Skłodowska-Curie sq. 3, 20-031 Lublin, Poland
| | - Karolina Sipa
- Department of Inorganic and Analytical Chemistry Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland
| | - Konrad Rudnicki
- Department of Inorganic and Analytical Chemistry Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland
| | - Sławomira Skrzypek
- Department of Inorganic and Analytical Chemistry Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland
| |
Collapse
|
31
|
New sensitive square-wave adsorptive stripping voltammetric determination of pesticide chlornitrofen, and an evaluation of its corrosivity towards steel agricultural equipment. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.07.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
El-Kimary EI, El-Yazbi AF. An eco-friendly stability-indicating spectrofluorimetric method for the determination of two anticancer stereoisomer drugs in their pharmaceutical preparations following micellar enhancement: Application to kinetic degradation studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 163:145-153. [PMID: 27045788 DOI: 10.1016/j.saa.2016.03.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/04/2016] [Accepted: 03/20/2016] [Indexed: 06/05/2023]
Abstract
A new rapid and highly sensitive stability-indicating spectrofluorimetric method was developed for the determination of two stereoisomers anticancer drugs, doxorubicin (DOX) and epirubicin (EPI) in pure form and in pharmaceutical preparations. The fluorescence spectral behavior of DOX and EPI in a sodium dodecyl sulfate (SDS) micellar system was investigated. It was found that the fluorescence intensity of DOX and EPI in an aqueous solution of phosphate buffer pH4.0 and in the presence of SDS was greatly (about two fold) enhanced and the mechanism of fluorescence enhancement effect of SDS on DOX was also investigated. The fluorescence intensity of DOX or EPI was measured at 553nm after excitation at 497nm. The plots of fluorescence intensity versus concentration were rectilinear over a range of 0.03-2μg/mL for both DOX and EPI with good correlation coefficient (r>0.999). High sensitivity to DOX and EPI was attained using the proposed method with limits of detection of 10 and 9ng/mL and limits of quantitation of 29 and 28ng/mL, for DOX and EPI, respectively. The method was successfully applied for the determination of DOX and EPI in biological fluids and in their commercial pharmaceutical preparations and the results were concordant with those obtained using a previously reported method. The application of the proposed method was extended to stability studies of DOX following different forced degradation conditions (acidic, alkaline, oxidative and photolytic) according to ICH guidelines. Moreover, the kinetics of the alkaline and oxidative degradation of DOX was investigated and the apparent first-order rate constants and half-life times were calculated.
Collapse
Affiliation(s)
- Eman I El-Kimary
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria 21521, Egypt.
| | - Amira F El-Yazbi
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria 21521, Egypt
| |
Collapse
|
33
|
Renewable silver amalgam film electrodes in electrochemical stripping analysis—a review. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3275-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Haghshenas E, Madrakian T, Afkhami A. Electrochemically oxidized multiwalled carbon nanotube/glassy carbon electrode as a probe for simultaneous determination of dopamine and doxorubicin in biological samples. Anal Bioanal Chem 2016; 408:2577-86. [DOI: 10.1007/s00216-016-9361-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/09/2016] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
|
35
|
Vajdle O, Guzsvány V, Škorić D, Anojčić J, Jovanov P, Avramov-Ivić M, Csanádi J, Kónya Z, Petrović S, Bobrowski A. Voltammetric behavior of erythromycin ethylsuccinate at a renewable silver-amalgam film electrode and its determination in urine and in a pharmaceutical preparation. Electrochim Acta 2016; 191:44-54. [DOI: 10.1016/j.electacta.2015.12.207] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Madrakian T, Asl KD, Ahmadi M, Afkhami A. Fe3O4@Pt/MWCNT/carbon paste electrode for determination of a doxorubicin anticancer drug in a human urine sample. RSC Adv 2016. [DOI: 10.1039/c6ra13935c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, a Fe3O4@Pt nanoparticle and multi-walled carbon nanotube (MWCNT) modified carbon paste electrode was used as a fast and sensitive tool for the electrochemical determination of doxorubicin (DOX).
Collapse
Affiliation(s)
| | | | | | - Abbas Afkhami
- Faculty of Chemistry
- Bu-Ali Sina University
- Hamedan
- Iran
| |
Collapse
|
37
|
Novotný L, Petrankova R. Potentiometric Determination of Silver Nanoparticles using Silver Amalgam Electrodes. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1045584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Electrodepositing of copper nanowires on layered double hydroxide film modified glassy carbon electrode for the determination of doxorubicin. J Taiwan Inst Chem Eng 2015. [DOI: 10.1016/j.jtice.2015.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Taei M, Hasanpour F, Salavati H, Mohammadian S. Fast and sensitive determination of doxorubicin using multi-walled carbon nanotubes as a sensor and CoFe2O4 magnetic nanoparticles as a mediator. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1588-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
40
|
Smajdor J, Piech R, Paczosa-Bator B. A Novel Method of High Sensitive Determination of Prednisolone on Renewable Mercury Film Silver Based Electrode. ELECTROANAL 2015. [DOI: 10.1002/elan.201500262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Brycht M, Burnat B, Skrzypek S, Guzsvány V, Gutowska N, Robak J, Nosal–Wiercińska A. Voltammetric and corrosion studies of the fungicide fludioxonil. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.01.130] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Brycht M, Skrzypek S, Robak J, Guzsvány V, Vajdle O, Zbiljić J, Nosal-Wiercińska A, Guziejewski D, Andrijewski G. Ultra trace level determination of fenoxanil by highly sensitive square wave adsorptive stripping voltammetry in real samples with a renewable silver amalgam film electrode. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2014.11.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
43
|
Ahmadi M, Madrakian T, Afkhami A. Solid phase extraction of doxorubicin using molecularly imprinted polymer coated magnetite nanospheres prior to its spectrofluorometric determination. NEW J CHEM 2015. [DOI: 10.1039/c4nj01402b] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective doxorubicin-imprinted polymer coated magnetite nanospheres were synthesized.
Collapse
Affiliation(s)
| | | | - Abbas Afkhami
- Faculty of Chemistry
- Bu-Ali Sina University
- Hamedan
- Iran
| |
Collapse
|