1
|
Pokprasert A, Rasitanon N, Rahma Lani I, Jeerapan I. Tuning the Surface: Screen-Printed Flexible Porous Nanocomposite Electrodes with Programmable Electrochemical Performances for Wearable Platforms. ACS Sens 2025. [PMID: 40017420 DOI: 10.1021/acssensors.4c03519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Flexible electrodes fabricated through cost-effective thick-film strategies are important for developing electrochemical devices, such as sensors. Properly engineered nanocomposite electrodes can enhance the electrochemically active surface area, facilitate mass and charge transport, and allow for tailored surface chemistry and structure. Although great efforts have been devoted to developing porous nanocomposite electrodes, a facile method to achieve screen-printed porous nanocomposite electrodes in the form of flexible electrodes with tunable electrochemical performance has been overlooked. This article introduces a strategy for fabricating flexible porous electrodes using screen printing and electrochemical surface treatments, resulting in enhanced surface chemistry and electrochemical properties. By applying selective etching and anodization, the electrode's surface area increases by 214% compared to a nontreated electrode, enabling programmable sensitivity to specific molecules. The engineered electrode improves the hydroquinone-to-salicylic acid detection ratio from less than 1 to over 10, allowing selective detection of neutral and positively charged molecules while rendering the electrode inactive for negatively charged species. This flexible sensor can be integrated into a wearable glove for rapid analysis and has also been successfully implemented in a second-generation glucose biosensor. This approach holds significant potential for advancing surface electrochemistry, offering new possibilities for tailoring electrode surfaces for diverse analytical applications.
Collapse
Affiliation(s)
- Adisak Pokprasert
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- The ijE Electrochemistry for All Laboratory, Hat Yai, Songkhla 90110, Thailand
| | - Natcha Rasitanon
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- The ijE Electrochemistry for All Laboratory, Hat Yai, Songkhla 90110, Thailand
| | - Irlesta Rahma Lani
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- The ijE Electrochemistry for All Laboratory, Hat Yai, Songkhla 90110, Thailand
| | - Itthipon Jeerapan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- The ijE Electrochemistry for All Laboratory, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
2
|
Fenniche F, Khane Y, Aouf D, Albukhaty S, Nouasria FZ, Chouireb M, Harfouche N, Henni A, Sulaiman GM, Jabir MS, Mohammed HA, Abomughaid MM. Electrochemical study of an enhanced platform by electrochemical synthesis of three-dimensional polyaniline nanofibers/reduced graphene oxide thin films for diverse applications. Sci Rep 2024; 14:26408. [PMID: 39488583 PMCID: PMC11531504 DOI: 10.1038/s41598-024-77252-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
This work reports the electrochemical fabrication of thin films comprising polyaniline nanofibers (PANI) in conjunction with graphene oxide (GO) and reduced graphene oxide (rGO) on ITO substrate, along with examining the electrochemical properties, with a focus on the influence of the substrate and electrolyte in the electrodeposition methods. The study explores the electrochemical characteristics of these thin films and establishes a flexible framework for their application in diverse sectors such as sensors, supercapacitors, and electronic devices. It analyzes the impact of the substrate and electrolyte in electrodeposition techniques. The effects were studied using techniques such as cyclic voltammetry and chronoamperometry. The fabrication process of PANI/GO and PANI/rGO thin films involved the integration of rGO within PANI via electropolymerization, conducted under sulfuric acid. GO was synthesized by modifying the well-known Hummers' method and characterized by X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). SEM showed the diameters of the formed PANI were between 40 and 150 nm, which helped to intertwine the rGO nanosheets with PANI nanofibers to form thin films. The electrochemical behavior of the PANI/rGO thin films was examined using cyclic voltammetry (CV) and chronoamperometry in different electrolytes, including sulfuric acid (H₂SO₄) and potassium nitrate (KNO₃). The CV profiles exhibited distinct oxidation and reduction peaks, with variations in the voltammogram morphology attributed to the nature of the electrolyte and the substrate employed during the electrodeposition process. These results highlight the critical role of both the substrate and electrolyte in governing the electrochemical performance of PANI/rGO thin films. The findings from this study demonstrate a versatile approach for the fabrication of PANI/graphene-based thin films with tunable electrochemical properties, and such a strategy has great application to fabricating other thin film composites for supercapacitors or other control source frameworks requiring enhanced charge storage and electrochemical responsiveness.
Collapse
Affiliation(s)
- Fares Fenniche
- Materials, Energy Systems Technology and Environment Laboratory, Faculty of Sciences and Technology, University of Ghardaia, 47000, Ghardaia, Algeria.
- Department of Process Engineering, Faculty of Sciences and Technology, University of Ghardaïa, BP 455, 47000, Ghardaïa, Algeria.
| | - Yasmina Khane
- Materials, Energy Systems Technology and Environment Laboratory, Faculty of Sciences and Technology, University of Ghardaia, 47000, Ghardaia, Algeria
- University of Ghardaïa, BP 455, 47000, Ghardaïa, Algeria
| | - Djaber Aouf
- Laboratory of Dynamic Interactions and Reactivity of Systems, University of Kasdi Merbah, 30000, Ouargla, Algeria
| | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan, 62001, Iraq.
- Al-Manara College for Medical Sciences, Maysan, 62001, Iraq.
| | - Fatima Zohra Nouasria
- Process Engineering Laboratory (PEL), Kasdi Merbah University, 30000, Ouargla, Algeria
| | - Makhlouf Chouireb
- Laboratoire Algérienne Des Eaux (ADE), l'unité de Ghardaïa, Ghardaïa, Algeria
| | - Nesrine Harfouche
- Laboratoire Matériaux Polymères-Interfaces-Environnement Marin, Université du Sud Toulon, Var, BP 132, La Garde Cedex, 83957, France
| | - Abdellah Henni
- Laboratory of Dynamic Interactions and Reactivity of Systems, University of Kasdi Merbah, 30000, Ouargla, Algeria
| | - Ghassan M Sulaiman
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad, 10066, Iraq.
| | - Majid S Jabir
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad, 10066, Iraq
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Mosleh M Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, 67714, Bisha, Saudi Arabia
| |
Collapse
|
3
|
Fenniche F, Henni A, Khane Y, Aouf D, Harfouche N, Bensalem S, Zerrouki D, Belkhalfa H. Electrochemical Synthesis of Reduced Graphene Oxide–Wrapped Polyaniline Nanorods for Improved Photocatalytic and Antibacterial Activities. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02204-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
4
|
Anantharaj S, Karthik PE, Noda S. The Significance of Properly Reporting Turnover Frequency in Electrocatalysis Research. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sengeni Anantharaj
- Department of Applied Chemistry School of Advanced Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
- Waseda Research Institute for Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| | - Pitchiah Esakki Karthik
- Department of Chemical Engineering Hanyang University 222 Wangsimni ro, Seongdong-gu Seoul 04763 Republic of Korea
| | - Suguru Noda
- Department of Applied Chemistry School of Advanced Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
- Waseda Research Institute for Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| |
Collapse
|
5
|
Anantharaj S, Karthik PE, Noda S. The Significance of Properly Reporting Turnover Frequency in Electrocatalysis Research. Angew Chem Int Ed Engl 2021; 60:23051-23067. [PMID: 34523770 PMCID: PMC8596788 DOI: 10.1002/anie.202110352] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Indexed: 11/08/2022]
Abstract
For decades, turnover frequency (TOF) has served as an accurate descriptor of the intrinsic activity of a catalyst, including those in electrocatalytic reactions involving both fuel generation and fuel consumption. Unfortunately, in most of the recent reports in this area, TOF is often not properly reported or not reported at all, in contrast to the overpotentials at a benchmarking current density. The current density is significant in determining the apparent activity, but it is affected by catalyst-centric parasitic reactions, electrolyte-centric competing reactions, and capacitance. Luckily, a properly calculated TOF can precisely give the intrinsic activity free from these phenomena in electrocatalysis. In this Viewpoint we ask: 1) What makes the commonly used activity markers unsuitable for intrinsic activity determination? 2) How can TOF reflect the intrinsic activity? 3) Why is TOF still underused in electrocatalysis? 4) What methods are used in TOF determination? and 5) What is essential in the more accurate calculation of TOF? Finally, the significance of normalizing TOF by Faradaic efficiency (FE) is stressed and we give our views on the development of universal analytical tools to determine the exact number of active sites and real surface area for all kinds of materials.
Collapse
Affiliation(s)
- Sengeni Anantharaj
- Department of Applied ChemistrySchool of Advanced Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
- Waseda Research Institute for Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
| | - Pitchiah Esakki Karthik
- Department of Chemical EngineeringHanyang University222 Wangsimni ro, Seongdong-guSeoul04763Republic of Korea
| | - Suguru Noda
- Department of Applied ChemistrySchool of Advanced Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
- Waseda Research Institute for Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
| |
Collapse
|
6
|
Ansón-Casaos A, Sanahuja-Parejo O, Hernández-Ferrer J, Benito AM, Maser WK. Carbon Nanotube Film Electrodes with Acrylic Additives: Blocking Electrochemical Charge Transfer Reactions. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1078. [PMID: 32486435 PMCID: PMC7353131 DOI: 10.3390/nano10061078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 11/25/2022]
Abstract
Carbon nanotubes (CNTs) processed into conductive films by liquid phase deposition technologies reveal increasing interest as electrode components in electrochemical device platforms for sensing and energy storage applications. In this work we show that the addition of acrylic latex to water-based CNT inks not only favors the fabrication of stable and robust flexible electrodes on plastic substrates but, moreover, sensitively enables the control of their electrical and electrochemical transport properties. Importantly, within a given concentration range, the acrylic additive in the films, being used as working electrodes, effectively blocks undesired faradaic transfer reactions across the electrode-electrolyte interface while maintaining their capacitance response as probed in a three-electrode electrochemical device configuration. Our results suggest a valuable strategy to enhance the chemical stability of CNT film electrodes and to suppress non-specific parasitic electrochemical reactions of relevance to electroanalytical and energy storage applications.
Collapse
Affiliation(s)
- Alejandro Ansón-Casaos
- Instituto de Carboquímica, ICB-CSIC, Miguel Luesma Castán 4, 50018 Zaragoza, Spain; (O.S.-P.); (J.H.-F.); (A.M.B.); (W.K.M.)
| | | | | | | | | |
Collapse
|
7
|
Djelad H, Benyoucef A, Morallón E, Montilla F. Reactive Insertion of PEDOT-PSS in SWCNT@Silica Composites and its Electrochemical Performance. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1200. [PMID: 32155965 PMCID: PMC7085076 DOI: 10.3390/ma13051200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 11/16/2022]
Abstract
Hybrid silica-modified materials were synthesized on glassy carbon (GC) electrodes by electroassisted deposition of sol-gel precursors. Single-wall carbon nanotubes (SWCNTs) were dispersed in a silica matrix (SWCNT@SiO2) to enhance the electrochemical performance of an inorganic matrix. The electrochemical behavior of the composite electrodes was tested against the ferrocene redox probe. The SWCNT@SiO2 presents an improvement in the electrochemical performance towards ferrocene. The heterogeneous rate constant of the SWCNT@SiO2 can be enhanced by the insertion of poly(3,4-Ethylendioxythiophene)-poly(sodium 4-styrenesulfonate) PEDOT-PSS within the silica matrix, and this composite was synthesized successfully by reactive electrochemical polymerization of the precursor EDOT in aqueous solution. The SWCNT@SiO2-PEDOT-PSS composite electrodes showed a heterogeneous rate constant more than three times higher than the electrode without conducting polymer. Similarly, the electroactive area was also enhanced to more than twice the area of SWCNT@SiO2-modified electrodes. The morphology of the sample films was analyzed by scanning electron microscopy (SEM).
Collapse
Affiliation(s)
- Halima Djelad
- Laboratoire des Sciences et Techniques de l’Eau, University of Mascara, Bp 763 Mascara 29000, Algeria; (H.D.); (A.B.)
- Departamento de Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain;
| | - Abdelghani Benyoucef
- Laboratoire des Sciences et Techniques de l’Eau, University of Mascara, Bp 763 Mascara 29000, Algeria; (H.D.); (A.B.)
| | - Emilia Morallón
- Departamento de Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain;
| | - Francisco Montilla
- Departamento de Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain;
| |
Collapse
|
8
|
Quintero-Jaime AF, Berenguer-Murcia Á, Cazorla-Amorós D, Morallón E. Carbon Nanotubes Modified With Au for Electrochemical Detection of Prostate Specific Antigen: Effect of Au Nanoparticle Size Distribution. Front Chem 2019; 7:147. [PMID: 30972319 PMCID: PMC6445958 DOI: 10.3389/fchem.2019.00147] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/28/2019] [Indexed: 12/26/2022] Open
Abstract
Different functionalized Multi-Wall Carbon Nanotube and gold nanoparticles (AuNPs) were synthesized as biosensor electrodes. These materials have been applied to the detection of the Prostate Specific Antigen (PSA). The synthesis of AuNPs was carried out using polyvinylpyrrolidone (PVP) as protecting agent. The PVP/Au molar ratio (0.5 and 50) controls the nanoparticle size distribution, obtaining a wide and narrow distribution with an average diameter of 9.5 and 6.6 nm, respectively. Nanoparticle size distribution shows an important effect in the electrochemical performance of the biosensor, increasing the electrochemical active surface area (EASA) and promoting the electron-transfer from the redox probe (Ferrocene/Ferrocenium) to the electrode. Furthermore, a narrow and small nanoparticle size distribution enhances the amount of antibodies immobilized on the transducer material and the performance during the detection of the PSA. Significant results were obtained for the quantification of PSA, with a limit of detection of 1 ng·ml−1 and sensitivities of 0.085 and 0.056 μA·mL·ng−1 for the two transducer materials in only 5 min of detection.
Collapse
Affiliation(s)
- Andrés Felipe Quintero-Jaime
- Departamento de Química Física and Instituto Universitario de Materiales de Alicante (IUMA), University of Alicante, Alicante, Spain
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica and Instituto Universitario de Materiales de Alicante (IUMA), University of Alicante, Alicante, Spain
| | - Diego Cazorla-Amorós
- Departamento de Química Inorgánica and Instituto Universitario de Materiales de Alicante (IUMA), University of Alicante, Alicante, Spain
| | - Emilia Morallón
- Departamento de Química Física and Instituto Universitario de Materiales de Alicante (IUMA), University of Alicante, Alicante, Spain
| |
Collapse
|
9
|
Lawal AT. Progress in utilisation of graphene for electrochemical biosensors. Biosens Bioelectron 2018; 106:149-178. [PMID: 29414083 DOI: 10.1016/j.bios.2018.01.030] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/02/2018] [Accepted: 01/15/2018] [Indexed: 01/02/2023]
Abstract
This review discusses recent graphene (GR) electrochemical biosensor for accurate detection of biomolecules, including glucose, hydrogen peroxide, dopamine, ascorbic acid, uric acid, nicotinamide adenine dinucleotide, DNA, metals and immunosensor through effective immobilization of enzymes, including glucose oxidase, horseradish peroxidase, and haemoglobin. GR-based biosensors exhibited remarkable performance with high sensitivities, wide linear detection ranges, low detection limits, and long-term stabilities. Future challenges for the field include miniaturising biosensors and simplifying mass production are discussed.
Collapse
|
10
|
Park J, Kumar V, Wang X, Lee PS, Kim W. Investigation of Charge Transfer Kinetics at Carbon/Hydroquinone Interfaces for Redox-Active-Electrolyte Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2017; 9:33728-33734. [PMID: 28895724 DOI: 10.1021/acsami.7b06863] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The redox-active electrolyte supercapacitor (RAES) is a relatively new type of energy storage device. Simple addition of selected redox species in the electrolyte can greatly enhance the energy density of supercapacitors relative to traditional electric double layer capacitors (EDLCs) owing to redox reactions. Studies on the kinetics at the interface of the electrode and redox mediator are important when developing RAESs. In this work, we employ highly accurate scanning electrochemical microscopy (SECM) to extract the kinetic constants at carbon/hydroquinone interfaces. The charge transfer rate constants are 1.2 × 10-2 and 1.3 × 10-2 cm s-1 for the carbon nanotube/hydroquinone and reduced graphene oxide/hydroquinone interfaces, respectively. These values are higher than those obtained by the conventional cyclic voltammetry method, approximately by an order of magnitude. The evaluation of heterogeneous rate constants with SECM would be the cornerstone for understanding and developing high performance RAESs.
Collapse
Affiliation(s)
- Jinwoo Park
- Department of Materials Science and Engineering, Korea University , Seoul 02841, Republic of Korea
| | - Vipin Kumar
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Xu Wang
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Woong Kim
- Department of Materials Science and Engineering, Korea University , Seoul 02841, Republic of Korea
| |
Collapse
|
11
|
Tailor designed exclusive carbon nanomaterial electrodes for off-chip and on-chip electrochemical detection. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2020-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Dezfuli AS, Ganjali MR, Norouzi P, Faridbod F. Facile sonochemical synthesis and electrochemical investigation of ceria/graphene nanocomposites. J Mater Chem B 2015; 3:2362-2370. [DOI: 10.1039/c4tb01847h] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have developed a self-assembly approach to anchor CeO2 nanoparticles onto reduced graphene oxide (RGO) through a sonochemical method. We found that a suitable loading content of CeO2 on RGO can induce a synergistic effect for optimizing the electro-catalytic activity of the nanocomposites.
Collapse
Affiliation(s)
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry
- Faculty of Chemistry
- University of Tehran
- Tehran
- Iran
| | - Parviz Norouzi
- Center of Excellence in Electrochemistry
- Faculty of Chemistry
- University of Tehran
- Tehran
- Iran
| | - Farnoush Faridbod
- Center of Excellence in Electrochemistry
- Faculty of Chemistry
- University of Tehran
- Tehran
- Iran
| |
Collapse
|