1
|
Petrovszki D, Valkai S, Kelemen L, Nagy L, Agarwal V, Krekic S, Zimányi L, Dér A. Microsecond All-Optical Modulation by Biofunctionalized Porous Silicon Microcavity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2070. [PMID: 37513080 PMCID: PMC10385878 DOI: 10.3390/nano13142070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
We successfully created a composite photonic structure out of porous silicon (PSi) microcavities doped by the photochromic protein, photoactive yellow protein (PYP). Massive incorporation of the protein molecules into the pores was substantiated by a 30 nm shift of the resonance dip upon functionalization, and light-induced reflectance changes of the device due to the protein photocycle were recorded. Model calculations for the photonic properties of the device were consistent with earlier results on the nonlinear optical properties of the protein, whose degree of incorporation into the PSi structure was also estimated. The successful proof-of-concept results are discussed in light of possible practical applications in the future.
Collapse
Affiliation(s)
- Dániel Petrovszki
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Science, University of Szeged, 6720 Szeged, Hungary
| | - Sándor Valkai
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary
| | - Lóránd Kelemen
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary
| | - László Nagy
- Department of Medical Physics and Informatics, Faculty of Science and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary
| | - Vivechana Agarwal
- Centro de Investigación en Ingeniería y Ciencias Aplicadas-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| | - Szilvia Krekic
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Science, University of Szeged, 6720 Szeged, Hungary
| | - László Zimányi
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary
| | - András Dér
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary
| |
Collapse
|
2
|
Pérez-Diaz O, Estrada-Wiese D, Aceves-Mijares M, González-Fernández AA. Functionalization of a Fully Integrated Electrophotonic Silicon Circuit for Biotin Sensing. BIOSENSORS 2023; 13:399. [PMID: 36979611 PMCID: PMC10046063 DOI: 10.3390/bios13030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Electrophotonic (EPh) circuits are novel systems where photons and electrons can be controlled simultaneously in the same integrated circuit, attaining the development of innovative sensors for different applications. In this work, we present a complementary metal-oxide-semiconductor (CMOS)-compatible EPh circuit for biotin sensing, in which a silicon-based light source is monolithically integrated. The device is composed of an integrated light source, a waveguide, and a p-n photodiode, which are all fabricated in the same chip. The functionalization of the waveguide's surface was investigated to biotinylate the EPh system for potential biosensing applications. The modified surfaces were characterized by AFM, optical microscopy, and Raman spectroscopy, as well as by photoluminescence measurements. The changes on the waveguide's surface due to functionalization and biotinylation translated into different photocurrent intensities detected in the photodiode, demonstrating the potential uses of the EPh circuit as a biosensor.
Collapse
|
3
|
One-step preparation of SnO2-AuNPs as nanocomposites on photoelectrodes to enhance photoelectrochemical detection of nitrite and superoxide. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
4
|
Cisneros-Covarrubias CA, Gómez-Durán CF, Aguirre-Bañuelos P, Hernández-Esquivel RA, Palestino G. Tramadol extended-release porous silicon microcarriers: A kinetic, physicochemical and biological evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Soussi I, Mazouz Z, Collart-Dutilleul PY, Echabaane M, Martin M, Cloitre T, M'ghaieth R, Cuisinier FJG, Cunin F, Gergely C, Othmane A. Electrochemical and optical investigation of dental pulp stem cell adhesion on modified porous silicon scaffolds. Colloids Surf B Biointerfaces 2019; 181:489-497. [PMID: 31176121 DOI: 10.1016/j.colsurfb.2019.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 02/08/2023]
Abstract
Extensive use of porous silicon (PSi) for tissue engineering is due to its convenient properties as it is both nontoxic and bioresorbable. Moreover, PSi surface modification is an important step to enhance cell adhesion and proliferation. In this work, a combination of optical and electrochemical studies is performed to elaborate a suitable PSi multilayer substrate for cell culture. For this study, we modified PSi surface by silanization and antibody grafting (APTES-anti STRO1), the 12-mer specific peptide to silicon p + type coating and the peptide modified with the antibody recognition sequence. Electrochemical characterization of PSi multilayers is performed to investigate its electrical behavior, determine the optimal measuring conditions and reveal the most stable PSi surfaces. Then, the behavior of dental pulp stem cells (DPSC) was investigated on various modified PSi surfaces. An electrochemical method was applied for the first time monitoring the electrical behavior of stem cell adhesion. The cells electrochemical behavior depends on the nature of the surface coating and the peptide-anti STRO1 improved adhesion and cell spreading onto the PSi surface compared to bare surface and the one coated with the peptide. Fluorescent microscopy revealed that all surface modification methods enhance cell adhesion compared to the bare PSi surface. An increased cell number is observed on APTES-anti STRO1, peptide and peptide-anti STRO1 coated PSi. The peptide-anti STRO1 provided the best cell proliferation results suggesting the improved accessibility of the recognition fragment of the antibody anti-STRO1.
Collapse
Affiliation(s)
- Ines Soussi
- Université de Monastir, Faculté de Médecine de Monastir, Laboratoire des Interfaces et Matériaux Avancés, LR11ES55, 5000, Monastir, Tunisia.
| | - Zouhour Mazouz
- Institut National de Recherche et d'Analyse Physico-chimique (INRAP), Laboratoire Matériaux, Traitement et Analyse (LMTA), BiotechPole, Sidi-Thabet, 2032, Ariana, Tunisia
| | | | - Mosaab Echabaane
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology CRMN of Sousse, Technopark of Sousse, B.P. 334, Sahloul, 4034, Sousse, Tunisia
| | - Marta Martin
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| | - Thierry Cloitre
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| | - Ridha M'ghaieth
- Laboratoire de Micro-Optoélectronique et Nanostructures, Faculté des Sciences de Monastir, Université de Monastir, LR99ES29, 5000, Monastir, Tunisia
| | | | - Frédérique Cunin
- Institut Charles Gerhardt Montpellier (ICGM), UMR 5253, Université de Montpellier 2, Place Eugène Bataillon, 34095, Montpellier Cedex 05, France
| | - Csilla Gergely
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| | - Ali Othmane
- Université de Monastir, Faculté de Médecine de Monastir, Laboratoire des Interfaces et Matériaux Avancés, LR11ES55, 5000, Monastir, Tunisia
| |
Collapse
|
6
|
Immobilization of cytochrome c and its application as electrochemical biosensors. Talanta 2018; 176:195-207. [DOI: 10.1016/j.talanta.2017.08.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 01/19/2023]
|
7
|
Novel biomimetic enzyme for sensitive detection of superoxide anions. Talanta 2017; 174:82-91. [DOI: 10.1016/j.talanta.2017.05.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 01/16/2023]
|
8
|
Alvarez-Paggi D, Hannibal L, Castro MA, Oviedo-Rouco S, Demicheli V, Tórtora V, Tomasina F, Radi R, Murgida DH. Multifunctional Cytochrome c: Learning New Tricks from an Old Dog. Chem Rev 2017; 117:13382-13460. [DOI: 10.1021/acs.chemrev.7b00257] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Damián Alvarez-Paggi
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Luciana Hannibal
- Department
of Pediatrics, Universitätsklinikum Freiburg, Mathildenstrasse 1, Freiburg 79106, Germany
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - María A. Castro
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Santiago Oviedo-Rouco
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Veronica Demicheli
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Veronica Tórtora
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Florencia Tomasina
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Rafael Radi
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
9
|
Cao L, Li X, Qin L, Kang SZ, Li G. Graphene quantum dots supported by graphene oxide as a sensitive fluorescence nanosensor for cytochrome c detection and intracellular imaging. J Mater Chem B 2017; 5:6300-6306. [DOI: 10.1039/c7tb01629h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new class of Cyt c detection fluorescence sensor based on graphene quantum dots supported by graphene oxide has been facilely developed. The sensor shows a high sensitivity and selectivity for Cyt c detection, and further exhibits favorable intracellular imaging in A549 cells.
Collapse
Affiliation(s)
- Lin Cao
- School of Chemical and Environmental Engineering
- Center of Graphene Research
- Shanghai Institute of Technology
- Shanghai 201418
- China
| | - Xiangqing Li
- School of Chemical and Environmental Engineering
- Center of Graphene Research
- Shanghai Institute of Technology
- Shanghai 201418
- China
| | - Lixia Qin
- School of Chemical and Environmental Engineering
- Center of Graphene Research
- Shanghai Institute of Technology
- Shanghai 201418
- China
| | - Shi-Zhao Kang
- School of Chemical and Environmental Engineering
- Center of Graphene Research
- Shanghai Institute of Technology
- Shanghai 201418
- China
| | - Guodong Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
10
|
Sheng Q, Shen Y, Wu Q, Zheng J. Direct electrochemistry and electrocatalysis of cytochrome c based on dandelion-like Bi2S3 nanoflowers. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3353-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|