1
|
Hengge E, Steyskal E, Dennig A, Nachtnebel M, Fitzek H, Würschum R, Nidetzky B. Electrochemically Induced Nanoscale Stirring Boosts Functional Immobilization of Flavocytochrome P450 BM3 on Nanoporous Gold Electrodes. SMALL METHODS 2025; 9:e2400844. [PMID: 39300852 PMCID: PMC11926518 DOI: 10.1002/smtd.202400844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Indexed: 09/22/2024]
Abstract
Enzyme-modified electrodes are core components of electrochemical biosensors for diagnostic and environmental analytics and have promising applications in bioelectrocatalysis. Despite huge research efforts spanning decades, design of enzyme electrodes for superior performance remains challenging. Nanoporous gold (npAu) represents advanced electrode material due to high surface-to-volume ratio, tunable porosity, and intrinsic redox activity, yet its coupling with enzyme catalysis is complex. Here, the study reports a flexible-modular approach to modify npAu with functional enzymes by combined material and protein engineering and use a tailored assortment of surface and in-solution methodologies for characterization. Self-assembled monolayer (SAM) of mercaptoethanesulfonic acid primes the npAu surface for electrostatic adsorption of the target enzyme (flavocytochrome P450 BM3; CYT102A1) that is specially equipped with a cationic protein module for directed binding to anionic surfaces. Modulation of the SAM surface charge is achieved by electrochemistry. The electrode-adsorbed enzyme retains well the activity (33%) and selectivity (complete) from in-solution. Electrochemically triggered nanoscale stirring in the internal porous network of npAu-SAM enhances speed (2.5-fold) and yield (3.0-fold) of the enzyme immobilization. Biocatalytic reaction is fueled from the electrode via regeneration of its reduced coenzyme (NADPH). Collectively, the study presents a modular design of npAu-based enzyme electrode that can support flexible bioelectrochemistry applications.
Collapse
Affiliation(s)
- Elisabeth Hengge
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyPetersgasse 12Graz8010Austria
- Institute of Materials PhysicsGraz University of TechnologyPetergasse 16Graz8010Austria
| | - Eva‐Maria Steyskal
- Institute of Materials PhysicsGraz University of TechnologyPetergasse 16Graz8010Austria
| | - Alexander Dennig
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyPetersgasse 12Graz8010Austria
| | | | - Harald Fitzek
- Graz Centre for Electron Microscopy (ZFE)Steyrergasse 17Graz8010Austria
| | - Roland Würschum
- Institute of Materials PhysicsGraz University of TechnologyPetergasse 16Graz8010Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyPetersgasse 12Graz8010Austria
- Austrian Centre of Industrial Biotechnology (acib)Petersgasse 14Graz8010Austria
| |
Collapse
|
2
|
Arshi S, Madane K, Shortall K, Hailo G, Alvarez-Malmagro J, Xiao X, Szymanńska K, Belochapkine S, Ranade VV, Magner E. Controlled Delivery of H 2O 2: A Three-Enzyme Cascade Flow Reactor for Peroxidase-Catalyzed Reactions. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:10555-10566. [PMID: 39027729 PMCID: PMC11253098 DOI: 10.1021/acssuschemeng.4c03220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024]
Abstract
Peroxidases are promising catalysts for oxidation reactions, yet their practical utility has been hindered by the fact that they require hydrogen peroxide (H2O2), which at high concentrations can cause deactivation of enzymes. Practical processes involving the use of peroxidases require the frequent addition of low concentrations of H2O2. In situ generation of H2O2 can be achieved using oxidase-type enzymes. In this study, a three-enzyme cascade system comprised of a H2O2 generator (glucose oxidase (GOx)), H2O2-dependent enzymes (chloroperoxidase (CPO) or horseradish peroxidase (HRP)), and a H2O2 scavenger (catalase (CAT)) was deployed in a flow reactor. Immobilization of the enzymes on a graphite rod was achieved through electrochemically driven physical adsorption, followed by cross-linking with glutaraldehyde. Modeling studies indicated that the flow in the reactor was laminar (Reynolds number, R e < 2000) and was nearly fully developed at the midplane of the annular reactor. Immobilized CAT and GOx displayed good stability, retaining 79% and 84% of their initial activity, respectively, after three cycles of operation. Conversely, immobilized CPO exhibited a considerable reduction in activity after one use, retaining only 30% of its initial activity. The GOx-CAT-GRE system enabled controlled delivery of H2O2 in a more stable manner with a 4-fold enhancement in the oxidation of indole compared to the direct addition of H2O2. Using CPO in solution coupled with GOx-CAT-GRE yields of 90% for the oxidation of indole to 2-oxyindole and of 93% and 91% for the chlorination of thymol and carvacrol, respectively.
Collapse
Affiliation(s)
- Simin Arshi
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Ketan Madane
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Kim Shortall
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Goran Hailo
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Julia Alvarez-Malmagro
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Xinxin Xiao
- Department
of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Katarzyna Szymanńska
- Department
of Chemical Engineering and Process Design, Silesian University of Technology, Gliwice 44-100, Poland
| | - Serguei Belochapkine
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Vivek V. Ranade
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Edmond Magner
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
3
|
Shi G, Si L, Cai J, Jiang H, Liu Y, Luo W, Ma H, Guan J. Photonic Nanochains for Continuous Glucose Monitoring in Physiological Environment. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:964. [PMID: 38869588 PMCID: PMC11174108 DOI: 10.3390/nano14110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Diabetes is a common disease that seriously endangers human health. Continuous glucose monitoring (CGM) is important for the prevention and treatment of diabetes. Glucose-sensing photonic nanochains (PNCs) have the advantages of naked-eye colorimetric readouts, short response time and noninvasive detection of diabetes, showing immense potential in CGM systems. However, the developed PNCs cannot disperse in physiological environment at the pH of 7.4 because of their poor hydrophilicity. In this study, we report a new kind of PNCs that can continuously and reversibly detect the concentration of glucose (Cg) in physiological environment at the pH of 7.4. Polyacrylic acid (PAA) added to the preparation of PNCs forms hydrogen bonds with polyvinylpyrrolidone (PVP) in Fe3O4@PVP colloidal nanoparticles and the hydrophilic monomer N-2-hydroxyethyl acrylamide (HEAAm), which increases the content of PHEAAm in the polymer shell of prepared PNCs. Moreover, 4-(2-acrylamidoethylcarbamoyl)-3-fluorophenylboronic acid (AFPBA), with a relatively low pKa value, is used as the glucose-sensing monomer to further improve the hydrophilicity and glucose-sensing performances of PNCs. The obtained Fe3O4@(PVP-PAA)@poly(AFPBA-co-HEAAm) PNCs disperse in artificial serum and change color from yellow-green to red when Cg increases from 3.9 mM to 11.4 mM, showing application potential for straightforward CGM.
Collapse
Affiliation(s)
- Gongpu Shi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (G.S.); (L.S.); (H.J.); (Y.L.); (J.G.)
| | - Luying Si
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (G.S.); (L.S.); (H.J.); (Y.L.); (J.G.)
| | - Jinyang Cai
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China;
| | - Hao Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (G.S.); (L.S.); (H.J.); (Y.L.); (J.G.)
| | - Yun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (G.S.); (L.S.); (H.J.); (Y.L.); (J.G.)
| | - Wei Luo
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China;
| | - Huiru Ma
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (G.S.); (L.S.); (H.J.); (Y.L.); (J.G.)
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan 430083, China
| |
Collapse
|
4
|
German N, Popov A, Ramanaviciene A. Reagentless Glucose Biosensor Based on Combination of Platinum Nanostructures and Polypyrrole Layer. BIOSENSORS 2024; 14:134. [PMID: 38534241 DOI: 10.3390/bios14030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
Two types of low-cost reagentless electrochemical glucose biosensors based on graphite rod (GR) electrodes were developed. The electrodes modified with electrochemically synthesized platinum nanostructures (PtNS), 1,10-phenanthroline-5,6-dione (PD), glucose oxidase (GOx) without and with a polypyrrole (Ppy) layer-(i) GR/PtNS/PD/GOx and (ii) GR/PtNS/PD/GOx/Ppy, respectively, were prepared and tested. Glucose biosensors based on GR/PtNS/PD/GOx and GR/PtNS/PD/GOx/Ppy electrodes were characterized by the sensitivity of 10.1 and 5.31 μA/(mM cm2), linear range (LR) up to 16.5 and 39.0 mM, limit of detection (LOD) of 0.198 and 0.561 mM, good reproducibility, and storage stability. The developed glucose biosensors based on GR/PtNS/PD/GOx/Ppy electrodes showed exceptional resistance to interfering compounds and proved to be highly efficient for the determination of glucose levels in blood serum.
Collapse
Affiliation(s)
- Natalija German
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
| | - Anton Popov
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
- NanoTechnas-Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 243, LT-03225 Vilnius, Lithuania
| | - Almira Ramanaviciene
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
- NanoTechnas-Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 243, LT-03225 Vilnius, Lithuania
| |
Collapse
|
5
|
Arshi S, Xiao X, Belochapkine S, Magner E. Electrochemical Immobilisation of Glucose Oxidase for the Controlled Production of H 2O 2 in a Biocatalytic Flow Reactor. ChemElectroChem 2022; 9:e202200319. [PMID: 36246851 PMCID: PMC9545823 DOI: 10.1002/celc.202200319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/24/2022] [Indexed: 11/09/2022]
Abstract
Electrochemical methods can be used to selectively modify the surfaces of electrodes, enabling the immobilisation of enzymes on defined areas on the surfaces of electrodes. Such selective immobilisation methods can be used to pattern catalysts on surfaces in a controlled manner. Using this approach, the selective patterning of the enzyme glucose oxidase on the electrodes was used to develop a flow reactor for the controlled delivery of the oxidant H2O2. GOx was immobilised on a glassy carbon electrode using polypyrrole, silica films, and diazonium linkers. The rate of production of H2O2 and the stability of the response was dependent on the immobilisation method. GOx encapsulated in polypyrrole was selected as the optimal method of immobilisation, with a rate of production of 91±11 μM h-1 for 4 hours of continuous operation. The enzyme was subsequently immobilised on carbon rod electrodes (surface area of 5.76 cm2) using a polypyrrole/Nafion® film and incorporated into a flow reactor. The rate of production of H2O2 was 602±57 μM h-1, with 100 % retention of activity after 7 h of continuous operation, demonstrating that such a system can be used to prepare H2O2 at continuous and stable rate for use in downstream oxidation reactions.
Collapse
Affiliation(s)
- Simin Arshi
- Department of Chemical SciencesBernal InstituteUniversity of LimerickV94 T9PXLimerickIreland
| | - Xinxin Xiao
- Department of ChemistryTechnical University of DenmarkKongens Lyngby2800Denmark
| | - Serguei Belochapkine
- Department of Chemical SciencesBernal InstituteUniversity of LimerickV94 T9PXLimerickIreland
| | - Edmond Magner
- Department of Chemical SciencesBernal InstituteUniversity of LimerickV94 T9PXLimerickIreland
| |
Collapse
|
6
|
Du Y, Zhang X, Liu P, Yu DG, Ge R. Electrospun nanofiber-based glucose sensors for glucose detection. Front Chem 2022; 10:944428. [PMID: 36034672 PMCID: PMC9403008 DOI: 10.3389/fchem.2022.944428] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes is a chronic, systemic metabolic disease that leads to multiple complications, even death. Meanwhile, the number of people with diabetes worldwide is increasing year by year. Sensors play an important role in the development of biomedical devices. The development of efficient, stable, and inexpensive glucose sensors for the continuous monitoring of blood glucose levels has received widespread attention because they can provide reliable data for diabetes prevention and diagnosis. Electrospun nanofibers are new kinds of functional nanocomposites that show incredible capabilities for high-level biosensing. This article reviews glucose sensors based on electrospun nanofibers. The principles of the glucose sensor, the types of glucose measurement, and the glucose detection methods are briefly discussed. The principle of electrospinning and its applications and advantages in glucose sensors are then introduced. This article provides a comprehensive summary of the applications and advantages of polymers and nanomaterials in electrospun nanofiber-based glucose sensors. The relevant applications and comparisons of enzymatic and non-enzymatic nanofiber-based glucose sensors are discussed in detail. The main advantages and disadvantages of glucose sensors based on electrospun nanofibers are evaluated, and some solutions are proposed. Finally, potential commercial development and improved methods for glucose sensors based on electrospinning nanofibers are discussed.
Collapse
Affiliation(s)
- Yutong Du
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Xinyi Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Ping Liu
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
- Institute of Orthopaedic Basic and Clinical Transformation, University of Shanghai for Science and Technology, Shanghai, China
- Shidong Hospital, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Ruiliang Ge
- Department of Outpatient, the Third Afiliated Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
7
|
Kim DS, Yang X, Lee JH, Yoo HY, Park C, Kim SW, Lee J. Development of GO/Co/Chitosan-Based Nano-Biosensor for Real-Time Detection of D-Glucose. BIOSENSORS 2022; 12:bios12070464. [PMID: 35884266 PMCID: PMC9313039 DOI: 10.3390/bios12070464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022]
Abstract
Electrochemical nano-biosensor systems are popular in the industrial field, along with evaluations of medical, agricultural, environmental and sports analysis, because they can simultaneously perform qualitative and quantitative analyses with high sensitivity. However, real-time detection using an electrochemical nano-biosensor is greatly affected by the surrounding environment with the performance of the electron transport materials. Therefore, many researchers are trying to find good factors for real-time detection. In this work, it was found that a composite composed of graphite oxide/cobalt/chitosan had strong stability and electron transfer capability and was applied to a bioelectrochemical nano-biosensor with high sensitivity and stability. As a mediator-modified electrode, the GO/Co/chitosan composite was electrically deposited onto an Au film electrode by covalent boding, while glucose oxidase as a receptor was immobilized on the end of the GO/Co/chitosan composite. It was confirmed that the electron transfer ability of the GO/Co/chitosan composite was excellent, as shown with power density analysis. In addition, the real-time detection of D-glucose could be successfully performed by the developed nano-biosensor with a high range of detected concentrations from 1.0 to 15.0 mM. Furthermore, the slope value composed of the current, per the concentration of D-glucose as a detection response, was significantly maintained even after 14 days.
Collapse
Affiliation(s)
- Dong Sup Kim
- Department of Green Chemical Engineering, Sangmyung University, 31 Sangmyungdae-Gil, Dongnam-Gu, Cheonan 31066, Korea;
| | - Xiaoguang Yang
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea;
- E & S Healthcare Ltd., Suite N313, 11-3, Techno 1-ro, Yuseong-gu, Daejeon 34015, Korea
| | - Ja Hyun Lee
- Department of Convergence Bio-Chemical Engineering, Soonchunhyang University, 22, Soonchunhyang-ro, Asan-si 31538, Korea;
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, 20, Gongjimun, 2-Gil, Jongno-Gum, Seoul 03016, Korea;
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01890, Korea;
| | - Seung Wook Kim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea;
- Correspondence: (S.W.K.); (J.L.); Tel.: +82-2-3290-3300 (S.W.K. & J.L.); Fax: +82-2-926-6102 (S.W.K. & J.L.)
| | - Jinyoung Lee
- Department of Green Chemical Engineering, Sangmyung University, 31 Sangmyungdae-Gil, Dongnam-Gu, Cheonan 31066, Korea;
- Correspondence: (S.W.K.); (J.L.); Tel.: +82-2-3290-3300 (S.W.K. & J.L.); Fax: +82-2-926-6102 (S.W.K. & J.L.)
| |
Collapse
|
8
|
Othman A, Bilan HK, Katz E, Smutok O. Highly Porous Gold Electrodes – Preparation and Characterization. ChemElectroChem 2022. [DOI: 10.1002/celc.202200099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ali Othman
- Clarkson University Department of Chemistry and Biomolecular Science 13699 Potsdam UNITED STATES
| | - Hubert K. Bilan
- Clarkson University Department of Chemistry and Biomolecular Science 13699 Potsdam UNITED STATES
| | - Evgeny Katz
- Clarkson University Chemistry Department 8 Clarkson Avenue 13699-5810 Potsdam UNITED STATES
| | - Oleh Smutok
- Clarkson University Department of Chemistry and Biomolecule Science 13699 Potsdam UNITED STATES
| |
Collapse
|
9
|
Płócienniczak P, Rębiś T, Leda A, Milczarek G. Lignosulfonate-assisted synthesis of platinum nanoparticles deposited on multi-walled carbon nanotubes for biosensing of glucose. Colloids Surf B Biointerfaces 2021; 210:112222. [PMID: 34836706 DOI: 10.1016/j.colsurfb.2021.112222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/03/2021] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
It is presented in this work that lignosulfonate (LS) can be preferentially adsorbed on the surface of multi-walled carbon nanotubes (MWCNT) giving rise to the functional platform for platinum nanoparticles (NPt) deposition. The novel MWCNT/LS/NPt hybrid material has been characterized by X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS). The morphology of the MWCNT/LS/NPt electrodes has been investigated by atomic force microscopy (AFM). The electrochemical studies of MWCNT/LS/NPt hybrid material revealed strong electrocatalytic properties towards hydrogen peroxide. In addition, the effects of lignosulfonate amount adsorbed at the MWCNT on the voltammetric response of the hydrogen peroxide were discussed and used to select the optimal and effective conditions for the synthesis of the electrode material. An amperometric biosensor for glucose was developed based on the covalent linkage of glucose oxidase (GOx) at the MWCNT/LS/NPt. The enzyme electrode exhibited excellent electrocatalytic activity and rapid response for glucose. The linear range of the glucose determination was 50-1400 µM and LOD was quantified as 15.67 µM.
Collapse
Affiliation(s)
- Patrycja Płócienniczak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Tomasz Rębiś
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Amanda Leda
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Grzegorz Milczarek
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| |
Collapse
|
10
|
Chen H, Ru X, Wang H, Liu P, Li G, Cao Y, Bai Z, Yang L. Construction of a Cascade Catalyst of Nanocoupled Living Red Blood Cells for Implantable Biofuel Cell. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28010-28016. [PMID: 34101422 DOI: 10.1021/acsami.1c01479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The broad applications of implantable glucose biofuel cells (GBFCs) have become very attractive in biomedical sciences. The key challenge of GBFCs is eliminating the inevitable product H2O2 generated from the oxidation of glucose when glucose oxidase (GOx) is used as a catalyst while improving the performance of GBFCs. In this work, the cascade electrocatalyst, RBCs@NPDA was obtained through the in situ polymerization of dopamine to form nanopolydopamine (NPDA) on the surface of red blood cells (RBCs). The RBCs@NPDA can catalyze both fuels of H2O2 and O2, so as to generate a high cathodic current (0.414 mA cm-2). Furthermore, when RBCs@NPDA was used as a cathodic catalyst in the membraneless GBFC, it exhibited the cascade catalytic activity in the reduction of O2-H2O2 and minimized the damage to RBCs caused by the high concentration of H2O2. The mechanism research indicates that RBCs@NPDA integrates the property of NPDA and RBCs. Specifically, NPDA plays a catalase-like role in catalyzing the decomposition of H2O2, while RBCs play a laccase-like role in electrocatalyzing the O2 reduction reaction. This work offers the cascade catalyst for improving the performance of implantable GBFC and presents a strategy for constructing catalysts using living cells and nanomaterials to replace deformable and unstable enzymes in other biofuel cells.
Collapse
Affiliation(s)
- Huifeng Chen
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering and College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Xiangli Ru
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering and College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - He Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering and College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Peng Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering and College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Ge Li
- Department of Mechanical Engineering, University of Alberta, 10-348 Donadeo Innovation Centre for Engineering, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| | - Ying Cao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering and College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Zhengyu Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering and College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering and College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
11
|
Yu S, Myung NV. Recent Advances in the Direct Electron Transfer-Enabled Enzymatic Fuel Cells. Front Chem 2021; 8:620153. [PMID: 33644003 PMCID: PMC7902792 DOI: 10.3389/fchem.2020.620153] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
Direct electron transfer (DET), which requires no mediator to shuttle electrons from enzyme active site to the electrode surface, minimizes complexity caused by the mediator and can further enable miniaturization for biocompatible and implantable devices. However, because the redox cofactors are typically deeply embedded in the protein matrix of the enzymes, electrons generated from oxidation reaction cannot easily transfer to the electrode surface. In this review, methods to improve the DET rate for enhancement of enzymatic fuel cell performances are summarized, with a focus on the more recent works (past 10 years). Finally, progress on the application of DET-enabled EFC to some biomedical and implantable devices are reported.
Collapse
Affiliation(s)
| | - Nosang V. Myung
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
12
|
Yan L, Ma P, Liu Y, Ma X, Chen F, Li M. 3D coral-like gold/carbon paper electrode modified with covalent and cross-linked enzyme aggregates for electrochemical sensing of glucose. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD. Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chem Rev 2020; 120:12903-12993. [DOI: 10.1021/acs.chemrev.0c00472] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hui Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Olja Simoska
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Koun Lim
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Matteo Grattieri
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Mengwei Yuan
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Fangyuan Dong
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Yoo Seok Lee
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Kevin Beaver
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Samali Weliwatte
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Erin M. Gaffney
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
14
|
Flexible and optimized carbon paste electrodes for direct electron transfer-based glucose biofuel cell fed by various physiological fluids. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01543-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
G Jayanthi K, S K S. Cholesterol oxidase immobilized inulin based nanocomposite as the sensing material for cholesterol in biological and food samples. Enzyme Microb Technol 2020; 140:109631. [PMID: 32912691 DOI: 10.1016/j.enzmictec.2020.109631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 01/16/2023]
Abstract
In the present study, inulin based nanocomposite viz., TiO2-MWCNT@Inulin was prepared by embedding Inulin (a biopolymer extracted from Allium sativum L.) with TiO2 and MWCNTs. The morphology of the prepared nanocomposite was characterized by High Resolution transmission electron microscopy (HRTEM). Cholesterol oxidase (ChOx) enzyme was then immobilized into the nanocomposite and the immobilization was examined by UV-vis and FT-IR spectral studies. The ChOx immobilized nanocomposite was integrated into carbon paste (CP) matrix to prepare the working electrode for the sensing of cholesterol. Electrochemical characterization of the modified CP/TiO2-MWCNT@Inulin/ChOx electrode was done by cyclic voltammetric (CV) and electrochemical impedance spectroscopic (EIS) studies. Differential pulse voltammetric (DPV) studies were carried out to determine the concentration of cholesterol at the interface of the newly fabricated electrode. The fabricated electrode demonstrated a linear range from 83 μM to 14.28 mM, low limit of detection (35 μM), good sensitivity (21.26 μA mM-1 cm-2), low Km (0.49 mM), high stability (120 days) and good selectivity. The presence of Inulin biopolymer played a vital role in attaching ChOx enzyme firmly to the nanocomposite thereby enhancing the stability and electron transfer efficiency of the electrode. The analysis of product that was formed within the electrochemical cell during the electrochemical oxidation of cholesterol was performed by using sodium nitroprusside. This resulted in a deep purple coloured solution which suggested the electrochemical conversion of cholesterol to cholestenone. The practical applicability of the fabricated electrode was also assessed by the determination of cholesterol in spiked blood serum and milk samples.
Collapse
Affiliation(s)
| | - Suja S K
- Department of Chemistry, Lady Doak College, Madurai, India.
| |
Collapse
|
16
|
Ji J, Ro S, Kwon Y. Membraneless biofuel cells using new cathodic catalyst including hemin bonded with amine functionalized carbon nanotube and glucose oxidase sandwiched by poly(dimethyl-diallylammonium chloride). J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Lv C, Li S, Liu L, Zhu X, Yang X. Enhanced Electrochemical Characteristics of the Glucose Oxidase Bioelectrode Constructed by Carboxyl-Functionalized Mesoporous Carbon. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3365. [PMID: 32545838 PMCID: PMC7349592 DOI: 10.3390/s20123365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 01/04/2023]
Abstract
This research revealed the effect of carboxyl-functionalization on the mesoporous carbon (MC)-fixed glucose oxidase (GOx) for promoting the properties of bioelectrodes. It showed that the oxidation time, temperature and concentration, can significantly affect MC carboxylation. The condition of 2 M ammonium persulfate, 50 °C and 24 h was applied in the study for the successful addition of carboxyl groups to MC, analyzed by FTIR. The nitrogen adsorption isotherms, and X-ray diffraction analysis showed that the carboxylation process slightly changed the physical properties of MC and that the specific surface area and pore size were all well-maintained in MC-COOH. Electrochemical characteristics analysis showed that Nafion/GOx/MC-COOH presented better electrocatalytic activity with greater peak current intensity (1.13-fold of oxidation peak current and 4.98-fold of reduction peak current) compared to Nafion/GOx/MC. Anodic charge-transfer coefficients (α) of GOx/MC-COOH increased to 0.77, implying the favored anodic reaction. Furthermore, the GOx immobilization and enzyme activity in MC-COOH increased 140.72% and 252.74%, leading to the enhanced electroactive GOx surface coverage of Nafion/GOx/MC-COOH electrode (22.92% higher, 1.29 × 10-8 mol cm-2) than the control electrode. Results showed that carboxyl functionalization could increase the amount and activity of immobilized GOx, thereby improving the electrode properties.
Collapse
Affiliation(s)
- Chuhan Lv
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (S.L.); (L.L.); (X.Z.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (S.L.); (L.L.); (X.Z.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Liangxu Liu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (S.L.); (L.L.); (X.Z.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Xingyu Zhu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (S.L.); (L.L.); (X.Z.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (S.L.); (L.L.); (X.Z.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
18
|
Recent advances of electrochemical and optical enzyme-free glucose sensors operating at physiological conditions. Biosens Bioelectron 2020; 165:112331. [PMID: 32729477 DOI: 10.1016/j.bios.2020.112331] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022]
Abstract
Diabetes is a pathological condition that requires the continuous monitoring of glucose level in the blood. Its control has been tremendously improved by the application of point-of-care devices. Conventional enzyme-based sensors with electrochemical and optical transduction systems can successfully measure the glucose concentration in human blood, but they suffer from the low stability of the enzyme. Non-enzymatic wearable electrochemical and optical sensors, with low-cost, high stability, point-of-care testing and online monitoring of glucose levels in biological fluids, have recently been developed and can help to manage and control diabetes worldwide. Advances in nanoscience and nanotechnology have enabled the development of novel nanomaterials that can be implemented for the use in enzyme-free systems to detect glucose. This review summarizes recent developments of enzyme-free electrochemical and optical glucose sensors, as well as their respective wearable and commercially available devices, capable of detecting glucose at physiological pH conditions without the need to pretreat the biological fluids. Additionally, the evolution of electrochemical glucose sensor technology and a couple of widely used optical detection systems along with the glucose detection mechanism is also discussed. Finally, this review addresses limitations and challenges of current non-enzymatic electrochemical, optical, and wearable glucose sensor technologies and highlights opportunities for future research directions.
Collapse
|
19
|
Wan J, Mi L, Tian Z, Li Q, Liu S. A single-liquid miniature biofuel cell with boosting power density via gas diffusion bioelectrodes. J Mater Chem B 2020; 8:3550-3556. [PMID: 31834338 DOI: 10.1039/c9tb02100k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The low solubility of gas molecules in aqueous solutions has limited the power density output of enzymatic biofuel cells. Herein, a single-liquid miniature glucose-O2 fuel cell was constructed by using gas diffusion electrodes, which were prepared by immobilizing glucose oxidase (GOx) or laccase (Lac) modified on a porous structured carbon paper (CP). Due to the fast and direct O2 diffusion from air to the active sites of the immobilized enzyme through the pores of the CP anode/cathode with controlled wettability, the maximum power output densities dramatically increased to 9.64 μW cm-2 at 0.43 V and 53.0 μW cm-2 at 0.45 V for the cell in 5 mM glucose and after exposing the cell to air or O2 atmosphere, respectively. Interestingly, the resulting single-liquid cell could harvest power from human serum operating at a maximum power density of 49.0 μW cm-2 at 0.2 V. The biofuel cell fabricated by the gas diffusion electrodes displayed advantages such as high output power density, low cost and high 'on-chip' integrability and miniaturization, which suggest its great potential for implantable self-powered sensors and for many future applications.
Collapse
Affiliation(s)
- Jing Wan
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device (CMD), School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | | | | | | | | |
Collapse
|
20
|
Bollella P. Porous Gold: A New Frontier for Enzyme-Based Electrodes. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E722. [PMID: 32290306 PMCID: PMC7221854 DOI: 10.3390/nano10040722] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 12/23/2022]
Abstract
Porous gold (PG) layers modified electrodes have emerged as valuable enzyme support to realize multiple enzyme-based bioelectrochemical devices like biosensors, enzymatic fuel cells (EFCs), smart drug delivery devices triggered by enzyme catalyzed reactions, etc. PG films can be synthesized by using different methods such as dealloying, electrochemical (e.g., templated electrochemical deposition, self-templated electrochemical deposition, etc.) self-assembly and sputter deposition. This review aims to summarize the recent findings about PG synthesis and electrosynthesis, its characterization and application for enzyme-based electrodes used for biosensors and enzymatic fuel cells (EFCs) development.
Collapse
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, 13699-5810 NY, USA
| |
Collapse
|
21
|
Abstract
We describe a general method for the entrapment of enzymes within bulk metallic gold. This is a new approach for the immobilization of enzymes on metals, which is commonly carried out by 2D adsorption or covalent biding, that is, the enzyme is in contact with the metal at a specific contact zone of the enzyme, while most of the rest of it remains exposed to the environment. The 3D metallic encaging of the enzymes is quite different: the enzyme is in contact with the metallic cage walls all around it and is well protected inside. The porous nature of the metallic matrix enables substrate molecules to diffuse inside, reach the active site, and let product molecules diffuse out. The generality of the approach was proven by the successful entrapment of five enzymes representing different classes and different bio- and medical applications: l-asparaginase (Asp), collagenase, horseradish peroxidase (HRP), laccase and glucose oxidase (GOx). GOx–gold conjugates have been of particular interest in the literature. The main challenge we had to solve was how to keep the enzyme active in the process of gold-synthesis from its cation – this required careful tailoring of reaction conditions, which are detailed in the paper. The gold entrapped enzymes gain thermal stability and protectability against harsh conditions. For instance, we could keep Asp alive at the extreme pH of 13, which normally kills the enzyme instantly. The entrapped enzymes obey the Michaelis–Menten kinetics, and activation energies were determined. Good recyclability for eight cycles was found. Multi-enzymatic reactions by combinations of the off-the-shelf bioactive enzyme@gold powders are possible, as demonstrated for the classical detection of GOx activity with HRP. Detailed material characterization and proposed mechanisms for the 3D protectability of the enzymes are provided. The new enzyme immobilization method is of wide potential uses in medicine, biotechnology, bio-fuel cells and enzymatic (electro)sensing applications. We describe a general method for the entrapment of enzymes within bulk metallic gold.![]()
Collapse
Affiliation(s)
- Yael Baruch-Shpigler
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - David Avnir
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| |
Collapse
|
22
|
Caneppele GL, Reis DD, Goncalves AB, Da Silva GC, Martins CA. Active Porous Electrodes Prepared by Ultrasonic‐bath and their Application in Glucose/O
2
Electrochemical Reactions. ELECTROANAL 2020. [DOI: 10.1002/elan.201900625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Gabriella L. Caneppele
- Institute of Physics Universidade Federal de Mato Grosso do Sul, CP 549 79070-900 Campo Grande, MS Brazil
| | - Diogo D. Reis
- Institute of Physics Universidade Federal de Mato Grosso do Sul, CP 549 79070-900 Campo Grande, MS Brazil
| | - Alem‐Mar B. Goncalves
- Institute of Physics Universidade Federal de Mato Grosso do Sul, CP 549 79070-900 Campo Grande, MS Brazil
| | - Gabriel C. Da Silva
- Instituto de Química de São Carlos Universidade de São Paulo, IQSC-USP C.P. 780 São Carlos, SP Brazil
| | - Cauê A. Martins
- Institute of Physics Universidade Federal de Mato Grosso do Sul, CP 549 79070-900 Campo Grande, MS Brazil
| |
Collapse
|
23
|
Kornecki JF, Carballares D, Tardioli PW, Rodrigues RC, Berenguer-Murcia Á, Alcántara AR, Fernandez-Lafuente R. Enzyme production ofd-gluconic acid and glucose oxidase: successful tales of cascade reactions. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00819b] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review mainly focuses on the use of glucose oxidase in the production ofd-gluconic acid, which is a reactant of undoubtable interest in different industrial areas. As example of diverse enzymatic cascade reactions.
Collapse
Affiliation(s)
- Jakub F. Kornecki
- Departamento de Biocatálisis
- ICP-CSIC
- Campus UAM-CSIC
- 28049 Madrid
- Spain
| | - Diego Carballares
- Departamento de Biocatálisis
- ICP-CSIC
- Campus UAM-CSIC
- 28049 Madrid
- Spain
| | - Paulo W. Tardioli
- Postgraduate Program in Chemical Engineering (PPGEQ)
- Department of Chemical Engineering
- Federal University of São Carlos
- 13565-905 São Carlos
- Brazil
| | - Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology Lab
- Institute of Food Science and Technology
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales
- Universidad de Alicante
- Alicante 03080
- Spain
| | - Andrés R. Alcántara
- Departamento de Química en Ciencias Farmacéuticas
- Facultad de Farmacia
- Universidad Complutense de Madrid
- 28040-Madrid
- Spain
| | | |
Collapse
|
24
|
Jayanthi Kalaivani G, Suja SK. Nanomolar level sensing of glucose in food samples using glucose oxidase confined MWCNT-Inulin-TiO 2 bio-nanocomposite. Food Chem 2019; 298:124981. [PMID: 31260993 DOI: 10.1016/j.foodchem.2019.124981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 11/17/2022]
Abstract
Development of an effective sensor for sensing glucose in commercially available "sugar free" food products is important as people are becoming diabetic health conscious. Although multi-walled carbon nanotubes (MWCNTs) possess interesting electrical properties, their hydrophobic nature limits their applications. Their hydrophilicity can be improved through modification. In the present study, Inulin, that was isolated from Allium sativum L. using hot water diffusion and incorporated with titanium dioxide (TiO2), was used for the modification of MWCNTs. The as-synthesized MWCNT-Inulin-TiO2 bio-nanocomposite immobilized with glucose oxidase (GOx) was incorporated into the carbon paste matrix and was utilized for the sensing of glucose in food products. Differential pulse voltammetric studies revealed that the fabricated electrode demonstrated good linear range (1.6 nM to 1 μM) and was sensitive to nanomolar concentrations of glucose with a very low limit of detection up to 0.82 nM and exhibited a long term stability of 150 days.
Collapse
Affiliation(s)
| | - S K Suja
- Department of Chemistry, Lady Doak College, Madurai, India.
| |
Collapse
|
25
|
Chen K, Chou W, Liu L, Cui Y, Xue P, Jia M. Electrochemical Sensors Fabricated by Electrospinning Technology: An Overview. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3676. [PMID: 31450877 PMCID: PMC6749235 DOI: 10.3390/s19173676] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022]
Abstract
Nanofibers or nanofibrous membranes prepared by electrospinning possess many attractive properties, including excellent mechanical properties, high specific surface area and high porosity, making them attractive for sensor application, especially for the electrochemical sensors. Many nanomaterials are used as additives to improve the conductivity, sensitivity and selectivity of sensors. Based on the different modifiers of electrode materials, electrochemical sensors can be divided into enzyme sensors and non-enzyme sensors. In this review, we summarize the recent progress of the electrochemical sensors fabricated by electrospinning, including hydrogen peroxide (H2O2) sensors, glucose sensors and other sensors. In addition, the sensing mechanisms of various electrochemical sensors are introduced in detail. Finally, future research directions of electrochemical sensors based on electrospinning and the challenges faced by large-scale applications of electrospun electrochemical sensors are presented.
Collapse
Affiliation(s)
- Ke Chen
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weimin Chou
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lichao Liu
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yonghui Cui
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ping Xue
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingyin Jia
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
26
|
Fabrication of Porous Gold Film Using Graphene Oxide as a Sacrificial Layer. MATERIALS 2019; 12:ma12142305. [PMID: 31323903 PMCID: PMC6678361 DOI: 10.3390/ma12142305] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 11/17/2022]
Abstract
An original and simple fabrication process to produce thin porous metal films on selected substrates is reported. The fabrication process includes the deposition of a thin layer of gold on a substrate, spin coating of a graphene oxide dispersion, etching the gold film through the graphene oxide layer, and removing the graphene oxide layer. The porosity of the thin gold film is controlled by varying the etching time, the thickness of the gold film, and the concentration of the graphene oxide dispersion. Images by scanning electron and metallurgical microscopes show a continuous gold film with random porosity formed on the substrate with a porosity size ranging between hundreds of nanometers to tens of micrometers. This general approach enables the fabrication of porous metal films using conventional microfabrication techniques. The proposed process is implemented to fabricate electrodes with patterned porosity that are used in a microfluidic system to manipulate living cells under dielectrophoresis. Porous electrodes are found to enhance the magnitude and spatial distribution of the dielectrophoretic force.
Collapse
|
27
|
Mugo SM, Berg D, Bharath G. Integrated Microcentrifuge Carbon Entrapped Glucose Oxidase Poly (N-Isopropylacrylamide) (pNIPAm) Microgels for Glucose Amperometric Detection. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1499027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Samuel M. Mugo
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, Alberta T5J 4S2, Canada
| | - Darren Berg
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, Alberta T5J 4S2, Canada
| | - G. Bharath
- Department of Chemical Engineering, Khalifa University for Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
28
|
Arango Gutierrez E, Wallraf A, Balaceanu A, Bocola M, Davari MD, Meier T, Duefel H, Schwaneberg U. How to engineer glucose oxidase for mediated electron transfer. Biotechnol Bioeng 2018; 115:2405-2415. [DOI: 10.1002/bit.26785] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/12/2018] [Accepted: 06/26/2018] [Indexed: 01/21/2023]
Affiliation(s)
| | | | - Alexandra Balaceanu
- Lehrstuhl für BiotechnologieRWTH Aachen University Aachen Germany
- The Barcelona Institute of Science and TechnologyInstitute for Research in Biomedicine (IRB Barcelona) Barcelona Spain
- Joint BSC‐IRB Research Program in Computational Biology Barcelona Spain
| | - Marco Bocola
- Lehrstuhl für BiotechnologieRWTH Aachen University Aachen Germany
| | - Mehdi D. Davari
- Lehrstuhl für BiotechnologieRWTH Aachen University Aachen Germany
| | - Thomas Meier
- Roche Diagnostics GmbH, Enzyme Technology DXREAF.6164 Penzberg Germany
| | - Hartmut Duefel
- Roche Diagnostics GmbH, Enzyme Technology DXREAF.6164 Penzberg Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für BiotechnologieRWTH Aachen University Aachen Germany
- DWI an der RWTH Aachen e.V. Aachen Germany
| |
Collapse
|
29
|
Preparation, Modification, Characterization, and Biosensing Application of Nanoporous Gold Using Electrochemical Techniques. NANOMATERIALS 2018; 8:nano8030171. [PMID: 29547580 PMCID: PMC5869662 DOI: 10.3390/nano8030171] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 12/21/2022]
Abstract
Nanoporous gold (np-Au), because of its high surface area-to-volume ratio, excellent conductivity, chemical inertness, physical stability, biocompatibility, easily tunable pores, and plasmonic properties, has attracted much interested in the field of nanotechnology. It has promising applications in the fields of catalysis, bio/chemical sensing, drug delivery, biomolecules separation and purification, fuel cell development, surface-chemistry-driven actuation, and supercapacitor design. Many chemical and electrochemical procedures are known for the preparation of np-Au. Recently, researchers are focusing on easier and controlled ways to tune the pores and ligaments size of np-Au for its use in different applications. Electrochemical methods have good control over fine-tuning pore and ligament sizes. The np-Au electrodes that are prepared using electrochemical techniques are robust and are easier to handle for their use in electrochemical biosensing. Here, we review different electrochemical strategies for the preparation, post-modification, and characterization of np-Au along with the synergistic use of both electrochemistry and np-Au for applications in biosensing.
Collapse
|
30
|
Liu Y, Zhang J, Cheng Y, Jiang SP. Effect of Carbon Nanotubes on Direct Electron Transfer and Electrocatalytic Activity of Immobilized Glucose Oxidase. ACS OMEGA 2018; 3:667-676. [PMID: 30023785 PMCID: PMC6044782 DOI: 10.1021/acsomega.7b01633] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/05/2018] [Indexed: 05/29/2023]
Abstract
Carbon nanotubes (CNTs) are excellent supports for electrocatalysts because of their large surface area, excellent electronic conductivity, and high chemical and structural stability. In the present study, the activity of CNTs on direct electron transfer (DET) and on immobilized glucose oxidase (GOX) is studied as a function of number of walls of CNTs. The results indicate that the GOX immobilized by the CNTs maintains its electrocatalytic activity toward glucose; however, the DET and electrocatalytic activity of GOX depend strongly on the number of inner tubes of CNTs. The GOX immobilized on triple-walled CNTs (TWNTs) has the highest electron-transfer rate constant, 1.22 s-1, for DET, the highest sensitivity toward glucose detection, 66.11 ± 5.06 μA mM-1 cm-2, and the lowest apparent Michaelis-Menten constant, 6.53 ± 0.58 mM, as compared to GOX immobilized on single-walled and multiwalled CNTs. The promotion effect of CNTs on the GOX electrocatalytic activity and DET is most likely due to the electron-tunneling effect between the outer wall and inner tubes of TWNTs. The results of this study have general implications for the fundamental understanding of the role of CNT supports in DET processes and can be used for the better design of more effective electrocatalysts for biological processes including biofuel cells and biosensors.
Collapse
Affiliation(s)
- Yuxiang Liu
- College
of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Fuels
and Energy Technology Institute & Department of Chemical Engineering, Curtin University, Perth, Western Australia 6102, Australia
| | - Jin Zhang
- Fuels
and Energy Technology Institute & Department of Chemical Engineering, Curtin University, Perth, Western Australia 6102, Australia
| | - Yi Cheng
- Fuels
and Energy Technology Institute & Department of Chemical Engineering, Curtin University, Perth, Western Australia 6102, Australia
| | - San Ping Jiang
- Fuels
and Energy Technology Institute & Department of Chemical Engineering, Curtin University, Perth, Western Australia 6102, Australia
| |
Collapse
|
31
|
Gonzalez-Solino C, Lorenzo MD. Enzymatic Fuel Cells: Towards Self-Powered Implantable and Wearable Diagnostics. BIOSENSORS 2018; 8:E11. [PMID: 29382147 PMCID: PMC5872059 DOI: 10.3390/bios8010011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/18/2022]
Abstract
With the rapid progress in nanotechnology and microengineering, point-of-care and personalised healthcare, based on wearable and implantable diagnostics, is becoming a reality. Enzymatic fuel cells (EFCs) hold great potential as a sustainable means to power such devices by using physiological fluids as the fuel. This review summarises the fundamental operation of EFCs and discusses the most recent advances for their use as implantable and wearable self-powered sensors.
Collapse
Affiliation(s)
| | - Mirella Di Lorenzo
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
32
|
Stine KJ. Enzyme Immobilization on Nanoporous Gold: A Review. BIOCHEMISTRY INSIGHTS 2017; 10:1178626417748607. [PMID: 29308011 PMCID: PMC5751899 DOI: 10.1177/1178626417748607] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/24/2017] [Indexed: 11/21/2022]
Abstract
Nanoporous gold (referred to as np-Au or NPG) has emerged over the past 10 years as a new support for enzyme immobilization. The material has appealing features of ease of preparation, tunability of pore size, high surface to volume ratio, and compatibility with multiple strategies for enzyme immobilization. The np-Au material is especially of interest for immobilization of redox enzymes for biosensor and biofuel cell applications given the ability to construct electrodes of high surface area and stability. Adjustment of the pore size of np-Au can yield enhancements in enzyme thermal stability. Glucose oxidase immobilization on np-Au has been a focus for development of glucose sensors. Immobilization of laccase and related enzymes has demonstrated the utility of np-Au for construction of biofuel cells. Np-Au has been used to immobilize other redox enzymes, enzyme conjugates for use in bioassays, and enzymes of interest for industrial processes.
Collapse
Affiliation(s)
- Keith J Stine
- Department of Chemistry and Biochemistry, Center for Nanoscience, University of Missouri–St. Louis, St. Louis, MO, USA
| |
Collapse
|
33
|
Chen Q, Yu S, Myung N, Chen W. DNA-guided assembly of a five-component enzyme cascade for enhanced conversion of cellulose to gluconic acid and H 2 O 2. J Biotechnol 2017; 263:30-35. [DOI: 10.1016/j.jbiotec.2017.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/25/2017] [Accepted: 10/09/2017] [Indexed: 01/17/2023]
|
34
|
Affiliation(s)
- Nicolas Mano
- CNRS, CRPP, UPR 8641, 33600 Pessac, France
- University of Bordeaux, CRPP, UPR 8641, 33600 Pessac, France
| | - Anne de Poulpiquet
- Aix Marseille Univ., CNRS, BIP, 31, chemin Aiguier, 13402 Marseille, France
| |
Collapse
|
35
|
Ultrasensitive and highly selective sandpaper-supported copper framework for non-enzymatic glucose sensor. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.07.142] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
36
|
Clark J, Chen Y, Hinder S, Silva SRP. Highly Sensitive Dopamine Detection Using a Bespoke Functionalised Carbon Nanotube Microelectrode Array. ELECTROANAL 2017. [DOI: 10.1002/elan.201700248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- James Clark
- Advanced Technology Institute; University of Surrey; Guildford, Surrey GU2 7XH United Kingdom
| | - Ying Chen
- Department of Biochemistry & Physiology; University of Surrey; Guildford, Surrey GU2 7XH United Kingdom
- Present address: Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park; Denmark Hill; London SE5 8AF United Kingdom
| | - Steven Hinder
- Department of Mechanical Engineering Sciences; University of Surrey; Guildford, Surrey GU2 7XH U.K
| | - S. Ravi P. Silva
- Advanced Technology Institute; University of Surrey; Guildford, Surrey GU2 7XH United Kingdom
| |
Collapse
|
37
|
Dubey MK, Zehra A, Aamir M, Meena M, Ahirwal L, Singh S, Shukla S, Upadhyay RS, Bueno-Mari R, Bajpai VK. Improvement Strategies, Cost Effective Production, and Potential Applications of Fungal Glucose Oxidase (GOD): Current Updates. Front Microbiol 2017; 8:1032. [PMID: 28659876 PMCID: PMC5468390 DOI: 10.3389/fmicb.2017.01032] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/23/2017] [Indexed: 01/15/2023] Open
Abstract
Fungal glucose oxidase (GOD) is widely employed in the different sectors of food industries for use in baking products, dry egg powder, beverages, and gluconic acid production. GOD also has several other novel applications in chemical, pharmaceutical, textile, and other biotechnological industries. The electrochemical suitability of GOD catalyzed reactions has enabled its successful use in bioelectronic devices, particularly biofuel cells, and biosensors. Other crucial aspects of GOD such as improved feeding efficiency in response to GOD supplemental diet, roles in antimicrobial activities, and enhancing pathogen defense response, thereby providing induced resistance in plants have also been reported. Moreover, the medical science, another emerging branch where GOD was recently reported to induce several apoptosis characteristics as well as cellular senescence by downregulating Klotho gene expression. These widespread applications of GOD have led to increased demand for more extensive research to improve its production, characterization, and enhanced stability to enable long term usages. Currently, GOD is mainly produced and purified from Aspergillus niger and Penicillium species, but the yield is relatively low and the purification process is troublesome. It is practical to build an excellent GOD-producing strain. Therefore, the present review describes innovative methods of enhancing fungal GOD production by using genetic and non-genetic approaches in-depth along with purification techniques. The review also highlights current research progress in the cost effective production of GOD, including key advances, potential applications and limitations. Therefore, there is an extensive need to commercialize these processes by developing and optimizing novel strategies for cost effective GOD production.
Collapse
Affiliation(s)
- Manish K. Dubey
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Andleeb Zehra
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Mohd Aamir
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Mukesh Meena
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Laxmi Ahirwal
- Laboratory of Molecular Biology, Department of Botany, Dr. Hari Singh Gour UniversitySagar, India
| | - Siddhartha Singh
- Laboratory of Molecular Biology, Department of Botany, Dr. Hari Singh Gour UniversitySagar, India
| | - Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk UniversitySeoul, South Korea
| | - Ram S. Upadhyay
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Ruben Bueno-Mari
- Research and Development (R+D) Department, Laboratorios LokímicaValencia, Spain
| | - Vivek K. Bajpai
- Department of Applied Microbiology and Biotechnology, Yeungnam UniversityGyeongsan, South Korea
| |
Collapse
|
38
|
Flower-like MoS 2 decorated with Cu 2O nanoparticles for non-enzymatic amperometric sensing of glucose. Talanta 2017; 167:593-599. [PMID: 28340766 DOI: 10.1016/j.talanta.2017.03.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/26/2017] [Accepted: 03/02/2017] [Indexed: 11/21/2022]
Abstract
In this study, a novel nanohybrid consisting of flower-like MoS2 decorated with Cu2O nanoparticles has been successfully synthesized for non-enzymatic amperometric sensing of glucose. Structural characterizations revealed that Cu2O nanoparticles were highly dispersed on MoS2 nanosheets. Electrochemical performances were investigated by cyclic voltammetry (CV) and chronoamperometry. Compared to single Cu2O component, the-synthesized Cu2O/MoS2 nanohybrid showed superior electrocatalysis to the oxidation of glucose. The fabricated non-enzymatic amperometric glucose sensor exhibited a wide linear range from 0.01 to 4.0mM with a low detection limit of 1.0µM (S/N =3) and a high sensitivity of 3108.87μAmM-1cm-2. Meanwhile, the non-enzymatic sensor also possesses satisfactory stability, good reproducibility and high selectivity to interfering components of uric acid, dopamine and ascorbic acid. The excellent analytical performances are resulted from the synergistic effect provided by the Cu2O nanoparticals and MoS2 nanosheets.
Collapse
|
39
|
Electrospun polyaniline/polyvinyl alcohol/multiwalled carbon nanotubes nanofibers as promising bioanode material for biofuel cells. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.02.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Sanzó G, Taurino I, Antiochia R, Gorton L, Favero G, Mazzei F, De Micheli G, Carrara S. Bubble electrodeposition of gold porous nanocorals for the enzymatic and non-enzymatic detection of glucose. Bioelectrochemistry 2016; 112:125-31. [DOI: 10.1016/j.bioelechem.2016.02.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 11/30/2022]
|
41
|
Nanoporous Gold for Enzyme Immobilization. Methods Mol Biol 2016. [PMID: 27770413 DOI: 10.1007/978-1-4939-6499-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Nanoporous gold (NPG) is a material of emerging interest for immobilization of biomolecules, especially enzymes. The material provides a high surface area form of gold that is suitable for physisorption or for covalent modification by self-assembled monolayers. The material can be used as a high surface area electrode and with immobilized enzymes can be used for amperometric detection schemes. NPG can be prepared in a variety of formats from alloys containing between 20 and 50 % atomic composition of gold and less noble element(s) by dealloying procedures. Materials resembling NPG can be prepared by hydrothermal and electrodeposition methods. Related high surface area gold structures have been prepared using templating approaches. Covalent enzyme immobilization can be achieved by first forming a self-assembled monolayer on NPG bearing a terminal reactive functional group followed by conjugation to the enzyme through amide linkages to lysine residues. Enzymes can also be entrapped by physisorption or immobilized by electrostatic interactions.
Collapse
|
42
|
Lotowska WA, Rutkowska IA, Seta E, Szaniawska E, Wadas A, Sek S, Raczkowska A, Brzostek K, Kulesza PJ. Bacterial-biofilm enhanced design for improved electrocatalytic reduction of oxygen in neutral medium. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.07.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Towards timely Alzheimer diagnosis: A self-powered amperometric biosensor for the neurotransmitter acetylcholine. Biosens Bioelectron 2016; 87:607-614. [PMID: 27616286 DOI: 10.1016/j.bios.2016.08.104] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/19/2016] [Accepted: 08/29/2016] [Indexed: 11/23/2022]
Abstract
Serious brain disorders, such as the Alzheimer's Disease (AD), are associated with a marked drop in the levels of important neurotransmitters, such as acetylcholine (ACh). Real time monitoring of such biomarkers can therefore play a critical role in enhancing AD therapies by allowing timely diagnosis, verifications of treatment effectiveness, and developments of new medicines. In this study, we present the first acetylcholine/oxygen hybrid enzymatic fuel cell for the self-powered on site detection of ACh in plasma, which is based on the combination of an enzymatic anode with a Pt cathode. Firstly, an effective acetylcholinesterase immobilized electrode was developed and its electrochemical performance evaluated. Highly porous gold was used as the electrode material, and the enzyme was immobilized via a one step rapid and simple procedure that does not require the use of harsh chemicals or any electrode/enzyme pre-treatments. The resulting enzymatic electrode was subsequently used as the anode of a miniature flow-through membrane-less fuel cell and showed excellent response to varying concentrations of ACh. The peak power generated by the fuel cell was 4nW at a voltage of 260mV and with a current density of 9μAcm-2. The limit of detection of the fuel cell sensor was 10μM, with an average response time as short as 3min. These exciting results open new horizons for point-of-care Alzheimer diagnosis and provide an attractive potential alternative to established methods that require laborious and time-consuming sample treatments and expensive instruments.
Collapse
|
44
|
Falk M, Sultana R, Swann MJ, Mount AR, Freeman NJ. Nanoband array electrode as a platform for high sensitivity enzyme-based glucose biosensing. Bioelectrochemistry 2016; 112:100-5. [PMID: 27118384 DOI: 10.1016/j.bioelechem.2016.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 03/29/2016] [Accepted: 04/08/2016] [Indexed: 02/04/2023]
Abstract
We describe a novel glucose biosensor based on a nanoband array electrode design, manufactured using standard semiconductor processing techniques, and bio-modified with glucose oxidase immobilized at the nanoband electrode surface. The nanoband array architecture allows for efficient diffusion of glucose and oxygen to the electrode, resulting in a thousand-fold improvement in sensitivity and wide linear range compared to a conventional electrode. The electrode constitutes a robust and manufacturable sensing platform.
Collapse
Affiliation(s)
- Magnus Falk
- NanoFlex Limited, iTac, Daresbury Laboratory, Sci-Tech Daresbury, Keckwick Lane, Daresbury WA4 4AD, United Kingdom.
| | - Reshma Sultana
- NanoFlex Limited, iTac, Daresbury Laboratory, Sci-Tech Daresbury, Keckwick Lane, Daresbury WA4 4AD, United Kingdom
| | - Marcus J Swann
- NanoFlex Limited, iTac, Daresbury Laboratory, Sci-Tech Daresbury, Keckwick Lane, Daresbury WA4 4AD, United Kingdom
| | - Andrew R Mount
- EaStCHEM, School of Chemistry, The University of Edinburgh, Joseph Black Building, King's Buildings, Edinburgh, Scotland EH9 3JJ, United Kingdom
| | - Neville J Freeman
- NanoFlex Limited, iTac, Daresbury Laboratory, Sci-Tech Daresbury, Keckwick Lane, Daresbury WA4 4AD, United Kingdom
| |
Collapse
|
45
|
du Toit H, Rashidi R, Ferdani DW, Delgado-Charro MB, Sangan CM, Di Lorenzo M. Generating power from transdermal extracts using a multi-electrode miniature enzymatic fuel cell. Biosens Bioelectron 2016; 78:411-417. [DOI: 10.1016/j.bios.2015.11.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/09/2015] [Accepted: 11/24/2015] [Indexed: 01/01/2023]
|
46
|
Hervás Pérez J, López-Ruiz B, López-Cabarcos E. Synthesis and characterization of microparticles based on poly-methacrylic acid with glucose oxidase for biosensor applications. Talanta 2016; 149:310-318. [DOI: 10.1016/j.talanta.2015.11.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/14/2015] [Accepted: 11/20/2015] [Indexed: 12/17/2022]
|
47
|
Korkut S, Kilic MS, Uzuncar S, Hazer B. Novel Graphene-Modified Poly(styrene-b-isoprene-b-styrene) Enzymatic Fuel Cell with Operation in Plant Leaves. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1143478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Hua Z, Qin Q, Bai X, Huang X, Zhang Q. An electrochemical biosensing platform based on 1-formylpyrene functionalized reduced graphene oxide for sensitive determination of phenol. RSC Adv 2016. [DOI: 10.1039/c5ra27563f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A novel electrochemical biosensing platform is proposed. New tyrosinase-based biosensor can be used to detect phenols.
Collapse
Affiliation(s)
- Zulin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education
- College of Environment
- Hohai University
- Nanjing 210098
- China
| | - Qin Qin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education
- College of Environment
- Hohai University
- Nanjing 210098
- China
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education
- College of Environment
- Hohai University
- Nanjing 210098
- China
| | - Xin Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education
- College of Environment
- Hohai University
- Nanjing 210098
- China
| | - Qi Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education
- College of Environment
- Hohai University
- Nanjing 210098
- China
| |
Collapse
|
49
|
Senthamizhan A, Balusamy B, Uyar T. Glucose sensors based on electrospun nanofibers: a review. Anal Bioanal Chem 2015; 408:1285-306. [DOI: 10.1007/s00216-015-9152-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/20/2015] [Accepted: 10/27/2015] [Indexed: 12/26/2022]
|
50
|
Molina J, Fernández J, García C, del Río A, Bonastre J, Cases F. Electrochemical characterization of electrochemically reduced graphene coatings on platinum. Electrochemical study of dye adsorption. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.03.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|