1
|
Hydrothermally developed SnO2 nanoparticles and its photocatalytic degradation of Alizarin red S, Brilliant green and Methyl orange dyes and electrochemical performances. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
2
|
Reddy Pallavolu M, Tanaya Das H, Anil Kumar Y, Naushad M, Sambasivam S, Hak Jung J, Joo SW. Marigold flower-like Sn3O4 nanostructures as efficient battery-type electrode material for high-performing asymmetric supercapacitors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
3
|
Sharma M, Adalati R, Kumar A, Mehta M, Chandra R. Composite Assembling of Oxide-Based Optically Transparent Electrodes for High-Performance Asymmetric Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26791-26802. [PMID: 35656926 DOI: 10.1021/acsami.2c05189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Simultaneously achieving a transparent and high-energy density supercapacitor is a major challenge because of the trade-off between energy storage capacity and optical transparency of active electrode materials. Herein, we demonstrate a novel approach to construct an optically transparent asymmetric supercapacitor (Trans-ASC) by assembling positive (ZnO-SnO2) and negative (TiO2-SnO2) composite thin-film electrodes on a conductive indium-doped tin oxide substrate via reactive DC magnetron cosputtering. The optical transmittance for both composite thin films is found to be 68% (ZnO-SnO2) and 64% (TiO2-SnO2). Furthermore, electrochemical kinematics of the primed transparent electrodes are scrutinized in 0.5 M KOH electrolyte without affecting the transparency of active electrodes. The structural reliability of the electrodes aids the superb electrochemical performance to construct a Trans-ASC, TiO2-SnO2//ZnO-SnO2, which works at a voltage of +1.2 V and attains a higher areal capacitance of 44.6 mF cm-2 at 2 mA cm-2. The assembled Trans-ASC delivers a maximum areal energy density of 8.75 μW h cm-2 with an optimal areal power density of 570 μW cm-2. Additionally, the capacitance retention of 81.6% and transparency of both electrodes remain almost the same (up to 60% for ZnO-SnO2 and 62% for TiO2-SnO2) even after 10,000 charging-discharging cycles. These remarkable electrochemical properties and outstanding cycling stability of the designed Trans-ASC device make it a potential candidate for storing energy and for further use in transparent electronic devices.
Collapse
Affiliation(s)
- Meenakshi Sharma
- Nano Science Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ravikant Adalati
- Nano Science Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ashwani Kumar
- Nano Science Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Manan Mehta
- Department of Electrical and Electronics Engineering, University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Ramesh Chandra
- Nano Science Laboratory, Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
4
|
Hamidouche F, Sanad MM, Ghebache Z, Boudieb N. Effect of polymerization conditions on the physicochemical and electrochemical properties of SnO2/polypyrrole composites for supercapacitor applications. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Wei L, Deng W, Li S, Wu Z, Cai J, Luo J. Sandwich-like chitosan porous carbon Spheres/MXene composite with high specific capacitance and rate performance for supercapacitors. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2022. [DOI: 10.1016/j.jobab.2021.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
6
|
Asaithambi S, Balaji V, Karuppaiah M, Sakthivel P, Muhil Eswari K, Yuvakkumar R, Selvakumar P, Velauthapillai D, Ravi G. The electrochemical energy storage and photocatalytic performances analysis of rare earth metal (Tb and Y) doped SnO2@CuS composites. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Yang C, Hong L, Chong P, Li Y, Wei M. Tin-based metal-phosphine complexes nanoparticles as long-cycle life electrodes for high-performance hybrid supercapacitors. J Colloid Interface Sci 2021; 606:148-157. [PMID: 34388567 DOI: 10.1016/j.jcis.2021.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 12/21/2022]
Abstract
New tin-based metal-phosphine complexes of [Sn(OH)4(PPh3)2] and [Sn(OH)2(PPh3)2] have been successfully synthesized and used as supercapacitor electrodes for the first time, exhibiting a high specific capacitance, a good rate capability, and an excellent cycling stability. The specific capacitances (highest specific capacitance for tin-based materials) of 1204F g-1 and 764F g-1 for two samples at a current density of 1 A g-1 in 6 M KOH can respectively be achieved, and their capacitance retention remained at 95.1% and 89.2% even after 15,000 cycles at a current density of 10 A g-1. Furthermore, a flexible quasi-solid-state asymmetric supercapacitor composed of Sn(OH)2(PPh3)2 and activated carbon was assembled and exhibited a specific capacitance of 290.6 mF cm-2 at a current density of 1 mA cm-2. More importantly, this device also displayed excellent cyclic stability of ∼100% for 1800 cycles during the galvanostatic charge/discharge process at 5 mF cm-2.
Collapse
Affiliation(s)
- Chengyu Yang
- Fujian Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Lvyin Hong
- Fujian Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Peidian Chong
- Fujian Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Yafeng Li
- Fujian Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350002, China.
| | - Mingdeng Wei
- Fujian Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350002, China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
8
|
Chen Y, Wang N, Han S, Jensen M, Li X, Zhang X. Synthesis of layered SnOX nanostructure composite carbon hybrid nanofiber mats by blow-spinning for high performance pseodocapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Rani MU, Naresh V, Damodar D, Muduli S, Martha SK, Deshpande AS. In-situ formation of mesoporous SnO2@C nanocomposite electrode for supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137284] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Wang Y, Xu Y, Zhou J, Wang C, Zhang W, Li Z, Guo F, Chen H, Zhang H. Highly dispersed SnO2 nanoparticles confined on xylem fiber-derived carbon frameworks as anodes for lithium-ion batteries. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
|
12
|
Le HTT, Ngo DT, Dang VAD, Hoang TTB, Park CJ. Decoration of mesoporous carbon electrodes with tin oxide to boost their supercapacitive performance. NEW J CHEM 2020. [DOI: 10.1039/d0nj02585b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A unique material comprising mesoporous carbon decorated with tin oxide was synthesised by facile incipient wetness impregnation for enhanced charge storage.
Collapse
Affiliation(s)
- Hang T. T. Le
- School of Chemical Engineering
- Hanoi University of Science and Technology
- Hai Ba Trung
- Vietnam
| | - Duc Tung Ngo
- Research and Development Centre
- Hyundai Aluminum Vina Shareholding Company
- Van Lam
- Vietnam
| | - Viet-Anh-Dung Dang
- School of Chemical Engineering
- Hanoi University of Science and Technology
- Hai Ba Trung
- Vietnam
| | - Thuy T. B. Hoang
- School of Chemical Engineering
- Hanoi University of Science and Technology
- Hai Ba Trung
- Vietnam
| | - Chan-Jin Park
- Department of Materials Science and Engineering
- Chonnam National University
- Gwangju 500-757
- South Korea
| |
Collapse
|
13
|
Ali N, Babar AA, Zhang Y, Iqbal N, Wang X, Yu J, Ding B. Porous, flexible, and core-shell structured carbon nanofibers hybridized by tin oxide nanoparticles for efficient carbon dioxide capture. J Colloid Interface Sci 2019; 560:379-387. [PMID: 31645270 DOI: 10.1016/j.jcis.2019.10.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/21/2019] [Accepted: 10/10/2019] [Indexed: 11/27/2022]
Abstract
HYPOTHESIS Carbon based nanofibrous materials are considered to be promising sorbents for the CO2 capture and storage. However, the precise control of porous structure with flexibility still remains a challenging task. In this research, we report a simple strategy to develop tin oxide (SnO2) embedded, flexible and highly porous core-shell structured carbon nanofibers (CNFs) derived from polyacrylonitrile (PAN)/polyvinylidene fluoride (PVDF) core-shell nanofibers. EXPERIMENT PAN/PVDF core-shell solutions were electrospun using co-axial electrospinning process. The as spun PAN core, and PVDF shell, with an appropriate amount of SnO2, fibers were stabilized followed by carbonization to develop SnO2 embedded highly porous and flexible core-shell structured CNFs. FINDINGS The optimized CNFs membrane shows a prominent CO2 capture capacity of 2.6 mmol g-1 at room temperature, excellent CO2 selectivity than N2, and a remarkable cyclic stability. After 20 adsorption-desorption cycles, the CO2 capture capacity retains >95% of the preliminary value showing the long-term stability and practical worth of the final product. The loading of SnO2 nanoparticles in the carbon matrix not only enhanced the thermal stability of the precursor nanofibers, their surface characteristics, and porous structure to capture CO2 molecules, but also improves the flexibility of the CNFs by serving as a plasticizer for single-fiber-crack connection. Meaningfully, the flexible SnO2 embedded core-shell CNFs with excellent structural stability can prevail the limitations of annihilation and collapse of structures for conventional adsorbents, which makes them strongly useful and applicable. This research introduces a new route to produce highly porous and flexible materials as solid adsorbents for CO2 capture.
Collapse
Affiliation(s)
- Nadir Ali
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Textile Engineering Department, Mehran University of Engineering & Technology, Jamshoro 76060, Pakistan
| | - Aijaz Ahmed Babar
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; Textile Engineering Department, Mehran University of Engineering & Technology, Jamshoro 76060, Pakistan
| | - Yufei Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Nousheen Iqbal
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xianfeng Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| |
Collapse
|
14
|
Porous materials of nitrogen doped graphene oxide@SnO 2 electrode for capable supercapacitor application. Sci Rep 2019; 9:12622. [PMID: 31477759 PMCID: PMC6718653 DOI: 10.1038/s41598-019-48951-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/16/2019] [Indexed: 12/05/2022] Open
Abstract
The porous materials of SnO2@NGO composite was synthesized by thermal reduction process at 550 °C in presence ammonia and urea as catalyst. In this process, the higher electrostatic attraction between the SnO2@NGO nanoparticles were anchored via thermal reduction reaction. These synthesized SnO2@ NGO composites were confirmed by Raman, XRD, XPS, HR-TEM, and EDX results. The SnO2 nanoparticles were anchored in the NGO composite in the controlled nanometer scale proved by FE-TEM and BET analysis. The SnO2@NGO composite was used to study the electrochemical properties of CV, GCD, and EIS analysis for supercapacitor application. The electrochemical properties of SnO2@NGO exhibited the specific capacitance (~378 F/g at a current density of 4 A/g) and increasing the cycle stability up to 5000 cycles. Therefore, the electrochemical results of SnO2@NGO composite could be promising for high-performance supercapacitor applications.
Collapse
|
15
|
Zhu B, Wu X, Liu WJ, Lu HL, Zhang DW, Fan Z, Ding SJ. High-Performance On-Chip Supercapacitors Based on Mesoporous Silicon Coated with Ultrathin Atomic Layer-Deposited In 2O 3 Films. ACS APPLIED MATERIALS & INTERFACES 2019; 11:747-752. [PMID: 30525419 DOI: 10.1021/acsami.8b17093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
On-chip supercapacitors have attracted considerable attention because of their high power density, long cycling life, and compatibility with integrated circuits. One critical drawback that restricts their practical application is the low energy density. In this work, low-resistivity mesoporous silicon with a high aspect ratio is prepared by Pt film-assisted chemical etching and utilized as the scaffold of the supercapacitors. Subsequently, low-resistivity (<0.0015 Ω·cm) and ultrathin In2O3 films are coated on the mesoporous silicon scaffold by atomic layer deposition at 200 °C, serving as the active electrode material. The electrochemical measurements reveal that the coating of the In2O3 film remarkably improves the performance of the supercapacitors compared with those without the In2O3 coating. The supercapacitors with a 4.5 nm In2O3 film coating exhibit a capacitance density of 1.36 mF/cm2 at a scan rate of 10 mV/s as well as a better stability against the scan rate. In addition, it is found that the pristine mesoporous silicon walls are collapsed after 400 times of sweeping while those with the In2O3 film coating are still intact even after 2000 times of sweeping. Meanwhile, a high energy density is also achieved without sacrificing the power performance.
Collapse
|
16
|
Bonu V, Gupta B, Chandra S, Das A, Dhara S, Tyagi A. Electrochemical supercapacitor performance of SnO2 quantum dots. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.03.153] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Sun MH, Huang SZ, Chen LH, Li Y, Yang XY, Yuan ZY, Su BL. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem Soc Rev 2016; 45:3479-563. [DOI: 10.1039/c6cs00135a] [Citation(s) in RCA: 964] [Impact Index Per Article: 107.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A comprehensive review of the recent progress in the applications of hierarchically structured porous materials is given.
Collapse
Affiliation(s)
- Ming-Hui Sun
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Shao-Zhuan Huang
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Li-Hua Chen
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Yu Li
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Zhong-Yong Yuan
- Collaborat Innovat. Ctr. Chem. Sci. & Engn. Tianjin
- Key Lab. Adv. Energy Mat. Chem
- Minist. Educ
- Coll. Chem
- Nankai Univ
| | - Bao-Lian Su
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
- Laboratory of Inorganic Materials Chemistry (CMI)
| |
Collapse
|
18
|
Xu GR, Wen Y, Min XP, Dong WH, Tang AP, Song HS. Construction of MnO2/3-dimensional porous crack Ni for high-performance supercapacitors. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.10.136] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Chen CY, Yokoshima T, Nara H, Momma T, Osaka T. One-Step Hydrothermal Synthesis of SnS2/SnO2/C Hierarchical Heterostructures for Li-ion Batteries Anode with Superior Rate Capabilities. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.05.079] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Ruibin Q, Zhongai H, Yuying Y, Zhimin L, Ning A, Xiaoying R, Haixiong H, Hongying W. Monodisperse carbon microspheres derived from potato starch for asymmetric supercapacitors. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.03.190] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Wang J, Xian H, Peng T, Sun H, Zheng F. Three-dimensional graphene-wrapped PANI nanofiber composite as electrode material for supercapacitors. RSC Adv 2015. [DOI: 10.1039/c4ra14063j] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel method to prepare three-dimensional graphene-wrapped PANI nanofiber composite with high supercapacitive performance is supplied in this work.
Collapse
Affiliation(s)
- Jiande Wang
- Institute of Mineral Materials & Application
- Southwest University of Science and Technology
- Mianyang 621010
- P. R. China
- School of Material Science and Engineering
| | - Haiyang Xian
- Institute of Mineral Materials & Application
- Southwest University of Science and Technology
- Mianyang 621010
- P. R. China
| | - Tongjiang Peng
- Institute of Mineral Materials & Application
- Southwest University of Science and Technology
- Mianyang 621010
- P. R. China
| | - Hongjuan Sun
- Institute of Mineral Materials & Application
- Southwest University of Science and Technology
- Mianyang 621010
- P. R. China
| | - Fengxian Zheng
- Wenshang NO.1 Experimental Middle School
- Jining 272500
- P. R. China
| |
Collapse
|