1
|
Li S, Shi R, Song J, Jiang X. Structure and Dissociation of Water at the Electrode-Solution Interface Studied by In Situ Vibrational Spectroscopic Techniques. Anal Chem 2025; 97:10535-10549. [PMID: 40359500 DOI: 10.1021/acs.analchem.5c01651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
In aqueous electrochemistry, water in contact with charged surfaces is ubiquitous and indispensable, dictating the binding of solutes to electrode surfaces as well as the transport process of protons and electrons in the interfacial region. A comprehensive understanding of the structure and dissociation of interfacial water at the molecular level is extremely important yet challenging, given its critical role in various physical, chemical, and biological processes. In situ vibrational spectroscopic techniques serve as a powerful tool for acquiring the molecular structure of electrode surfaces and probing interfacial reaction mechanisms in real time. In this review, we briefly summarize the latest advances in the electric double layer model and the experimental methods employed at the electrode-solution interface. Particular emphasis is placed on in situ vibrational spectroscopic techniques that have unveiled new insights into the molecular structure of interfacial water across diverse electrode surfaces under ambient conditions. And then, it also provides an overview of recent progress on the subtle relationship between the structure of interfacial water and its dissociation activity, aiming to provide novel insights into the fields of electrochemistry, energy and catalysis.
Collapse
Affiliation(s)
- Shanshan Li
- School of Physics, Changchun Normal University, Changchun 130032, Jilin, China
- Research Institute for Scientific and Technological Innovation, Changchun Normal University, Changchun 130032, Jilin, China
| | - Ruijia Shi
- School of Physics, Changchun Normal University, Changchun 130032, Jilin, China
| | - Jiaru Song
- School of Physics, Changchun Normal University, Changchun 130032, Jilin, China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Wang H, Abruña HD. Coupled Differential Electrochemical Mass Spectrometry and Surface-Enhanced Infrared Absorption Spectroscopic Studies Unravel the Mechanism of Nitric Oxide Electroreduction on Platinum. J Am Chem Soc 2025; 147:9352-9364. [PMID: 40053888 DOI: 10.1021/jacs.4c16057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
The nitric oxide electroreduction reaction (NORR) has received considerable attention due to its importance in electrochemical denitrification of nitrogen oxides in groundwater and industrial waste gases and electrochemical ammonia synthesis. However, the detailed mechanism and the factors that affect product selectivity are far less understood. Employing coupled differential electrochemical mass spectrometry (DEMS) and attenuated total reflection-surface-enhanced infrared absorption (ATR-SEIRA) spectroscopy, adsorbed species and volatile solution products, during the adsorption of NO and NORR on Pt in both alkaline and acidic media, have been simultaneously studied, enabling us to correlate the potential-dependent product selectivity with the surface ad-species. NOad,M, NOad,B, NOad,L, and NO2,ad were identified using SEIRA spectroscopy as surface ad-species, with their potential-dependent intensities having a strong correlation with the product selectivity. N2O is the only reduction product at potentials beyond the hydrogen region and is attributed to the reduction of weakly adsorbed NO. In contrast, the formation of NH3 and NH2OH occurs only in the hydrogen region and is ascribed to the reaction between strongly adsorbed NO and adsorbed H. N2 is a minor product, and is formed through further reduction of N2O by adsorbed H. The formation of N2 is significantly suppressed in acidic media due to the fast kinetics of NO reduction to NH3/NH2OH, and thus lowering of NO coverage in the hydrogen region. To achieve the selective reduction of NO to NH3/NH2OH, the potential should remain at 0.1-0.2 V (vs RHE) in both acidic and alkaline media while a slow NO supply, and acidic media are preferred over alkaline media due to the faster kinetics. These new spectroscopic results and insights about the NORR could advance the design of more effective NORR catalysts and help develop optimal conditions for selective ammonia synthesis.
Collapse
Affiliation(s)
- Hongsen Wang
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
3
|
Soldo-Olivier Y, Joly Y, De Santis M, Gründer Y, Blanc N, Sibert E. Molecular and Electronic Structures at Electrochemical Interfaces from In Situ Resonant X-Ray Diffraction. J Am Chem Soc 2025; 147:5106-5113. [PMID: 39877997 DOI: 10.1021/jacs.4c15282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
An original approach to characterize electrochemical interfaces at the atomic level, a challenging topic toward the understanding of electrochemical reactivity, is reported. We employed in situ surface resonant X-ray diffraction experiments combined with their simulation using first-principle density functional theory calculations and were thus able to determine the molecular and electronic structures of the partially ionic layer facing the electrode surface, as well as the charge distribution in the surface metal layers. Pt(111) in an acidic medium at an applied potential excluding specific adsorption was studied. The presence of a positively charged counter layer composed of 1.60 water and 0.15 hydronium molecules per platinum surface unit cell at 2.8 Å from the oppositely charged Pt(111) surface was found. Our results give a unique insight into the water-metal interaction at the electrochemical interfaces.
Collapse
Affiliation(s)
| | - Yves Joly
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Maurizio De Santis
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Yvonne Gründer
- Oliver Lodge Laboratory, Department of Physics, University of Liverpool, Liverpool L69 72E, U.K
| | - Nils Blanc
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Eric Sibert
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI 38000 Grenoble, France
| |
Collapse
|
4
|
Li J, Yu S, Qing C, Wang Y, Chen Y. Understanding the Roles and Regulation Methods of Key Adsorption Species on Ni-Based Catalysts for Efficient Hydrogen Oxidation Reactions in Alkaline Media. CHEMSUSCHEM 2025; 18:e202401346. [PMID: 39305053 DOI: 10.1002/cssc.202401346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/03/2024] [Indexed: 11/08/2024]
Abstract
This review focuses on recent advancements in the development and understanding of nickel-based catalysts for the hydrogen oxidation reaction in alkaline media. Given the economic and environmental limitations associated with platinum group metals, nickel-based catalysts have emerged as promising alternatives due to their abundance, lower cost, and comparable catalytic properties. The review begins with an exploration of the fundamental HOR mechanisms, emphasizing the key roles of the reactive species in optimizing the catalytic activity of Ni-based catalysts. Thermodynamic and stability optimizations of nickel-based catalysts are thoroughly examined, focusing on alloying strategies, heteroatom incorporation, and the use of various support materials to enhance their catalytic performance and durability. The review also addresses the challenge of catalyst poisoning, particularly by carbon monoxide, and evaluates the effectiveness of different approaches to improve poison resistance. Finally, the review concludes by summarizing the key findings and proposing future research directions to further enhance the efficiency and stability of nickel-based catalysts for practical applications in anion exchange membrane fuel cells. The insights gained from this comprehensive analysis aim to contribute to the development of cost-effective and sustainable catalysts and facilitate the broader adoption of AEMFCs in the quest for clean energy solutions.
Collapse
Affiliation(s)
- Jinchi Li
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, PR China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu, 610065, PR China
| | - Shuqi Yu
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, PR China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu, 610065, PR China
| | - Chen Qing
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Yao Wang
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, PR China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu, 610065, PR China
| | - Yungui Chen
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, PR China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu, 610065, PR China
| |
Collapse
|
5
|
Schott C, Schneider PM, Song KT, Yu H, Götz R, Haimerl F, Gubanova E, Zhou J, Schmidt TO, Zhang Q, Alexandrov V, Bandarenka AS. How to Assess and Predict Electrical Double Layer Properties. Implications for Electrocatalysis. Chem Rev 2024; 124:12391-12462. [PMID: 39527623 PMCID: PMC11613321 DOI: 10.1021/acs.chemrev.3c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 09/07/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024]
Abstract
The electrical double layer (EDL) plays a central role in electrochemical energy systems, impacting charge transfer mechanisms and reaction rates. The fundamental importance of the EDL in interfacial electrochemistry has motivated researchers to develop theoretical and experimental approaches to assess EDL properties. In this contribution, we review recent progress in evaluating EDL characteristics such as the double-layer capacitance, highlighting some discrepancies between theory and experiment and discussing strategies for their reconciliation. We further discuss the merits and challenges of various experimental techniques and theoretical approaches having important implications for aqueous electrocatalysis. A strong emphasis is placed on the substantial impact of the electrode composition and structure and the electrolyte chemistry on the double-layer properties. In addition, we review the effects of temperature and pressure and compare solid-liquid interfaces to solid-solid interfaces.
Collapse
Affiliation(s)
- Christian
M. Schott
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Peter M. Schneider
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Kun-Ting Song
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Haiting Yu
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Rainer Götz
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Felix Haimerl
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- BMW
AG, Petuelring 130, 80809 München, Germany
| | - Elena Gubanova
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Jian Zhou
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Thorsten O. Schmidt
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Qiwei Zhang
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- State
Key Laboratory of Urban Water Resource and Environment, School of
Environment, Harbin Institute of Technology, Harbin 150090, People’s Republic of China
| | - Vitaly Alexandrov
- Department
of Chemical and Biomolecular Engineering and Nebraska Center for Materials
and Nanoscience, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Aliaksandr S. Bandarenka
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- Catalysis
Research Center, Technical University of
Munich, Ernst-Otto-Fischer-Straße 1, 85748 Garching bei München, Germany
| |
Collapse
|
6
|
Markunas B, Yim T, Snyder J. pH-Mediated Solution-Phase Proton Transfer Drives Enhanced Electrochemical Hydrogenation of Phenol in Alkaline Electrolyte. ACS Catal 2024; 14:16936-16946. [PMID: 39569158 PMCID: PMC11574755 DOI: 10.1021/acscatal.4c04874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024]
Abstract
The faradaic efficiency (FE) of the electrochemical hydrogenation (ECH) of phenol and other biomass-derived model compounds could potentially be improved by operating in alkaline electrolytes, where the parasitic hydrogen evolution reaction rate is significantly slower due to a higher Volmer step barrier. However, this approach is potentially limited by the impact of the higher barrier for adsorbed hydrogen (Had) formation, as hydrocarbon ECH is expected to be limited by a hydrogen atom transfer, progressing through a Langmuir-Hinshelwood-type (LH) mechanism. In this work, we show that there are contrasting pH trends for phenol ECH between Pt and Rh, two common catalysts for ECH reactions. Phenol ECH FE and rate on Pt is highest in acidic electrolytes of pH ≤ 5, while activity on Rh is highest near pH 9-10. While our kinetic analysis supports a LH mechanism for Pt at all pH, phenol ECH on Rh shifts from a LH mechanism at low pH to being limited by a direct proton-coupled electron transfer (Eley-Rideal-type mechanism) in which surface adsorbed phenol is hydrogenated by solution-phase H-transfer. We show that the peak activity on Rh at pH 9-10 is due to the proximity of the pH to the pK a of phenol (pK a = 10.0). The reversibility of protonation/deprotonation of phenol when electrolyte pH matches its pK a helps to mediate H-transfer from solution to adsorbed phenol. We also discuss the role of buffer species in mitigating the local pH change and as a H-donor in phenol ECH on Rh at alkaline pH.
Collapse
Affiliation(s)
- Brianna Markunas
- Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Taber Yim
- Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Joshua Snyder
- Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
7
|
Cui WG, Gao F, Na G, Wang X, Li Z, Yang Y, Niu Z, Qu Y, Wang D, Pan H. Insights into the pH effect on hydrogen electrocatalysis. Chem Soc Rev 2024; 53:10253-10311. [PMID: 39239864 DOI: 10.1039/d4cs00370e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Hydrogen electrocatalytic reactions, including the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR), play a crucial role in a wide range of energy conversion and storage technologies. However, the HER and HOR display anomalous non-Nernstian pH dependent kinetics, showing two to three orders of magnitude sluggish kinetics in alkaline media compared to that in acidic media. Fundamental understanding of the origins of the intrinsic pH effect has attracted substantial interest from the electrocatalysis community. More critically, a fundamental molecular level understanding of this effect is still debatable, but is essential for developing active, stable, and affordable fuel cells and water electrolysis technologies. Against this backdrop, in this review, we provide a comprehensive overview of the intrinsic pH effect on hydrogen electrocatalysis, covering the experimental observations, underlying principles, and strategies for catalyst design. We discuss the strengths and shortcomings of various activity descriptors, including hydrogen binding energy (HBE) theory, bifunctional theory, potential of zero free charge (pzfc) theory, 2B theory and other theories, across different electrolytes and catalyst surfaces, and outline their interrelations where possible. Additionally, we highlight the design principles and research progress in improving the alkaline HER/HOR kinetics by catalyst design and electrolyte optimization employing the aforementioned theories. Finally, the remaining controversies about the pH effects on HER/HOR kinetics as well as the challenges and possible research directions in this field are also put forward. This review aims to provide researchers with a comprehensive understanding of the intrinsic pH effect and inspire the development of more cost-effective and durable alkaline water electrolyzers (AWEs) and anion exchange membrane fuel cells (AMFCs) for a sustainable energy future.
Collapse
Affiliation(s)
- Wen-Gang Cui
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Fan Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Guoquan Na
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Xingqiang Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Zhenglong Li
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Zhiqiang Niu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Yongquan Qu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
| |
Collapse
|
8
|
Levell Z, Le J, Yu S, Wang R, Ethirajan S, Rana R, Kulkarni A, Resasco J, Lu D, Cheng J, Liu Y. Emerging Atomistic Modeling Methods for Heterogeneous Electrocatalysis. Chem Rev 2024; 124:8620-8656. [PMID: 38990563 DOI: 10.1021/acs.chemrev.3c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Heterogeneous electrocatalysis lies at the center of various technologies that could help enable a sustainable future. However, its complexity makes it challenging to accurately and efficiently model at an atomic level. Here, we review emerging atomistic methods to simulate the electrocatalytic interface with special attention devoted to the components/effects that have been challenging to model, such as solvation, electrolyte ions, electrode potential, reaction kinetics, and pH. Additionally, we review relevant computational spectroscopy methods. Then, we showcase several examples of applying these methods to understand and design catalysts relevant to green hydrogen. We also offer experimental views on how to bridge the gap between theory and experiments. Finally, we provide some perspectives on opportunities to advance the field.
Collapse
Affiliation(s)
- Zachary Levell
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jiabo Le
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, China
| | - Saerom Yu
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ruoyu Wang
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sudheesh Ethirajan
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Rachita Rana
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Ambarish Kulkarni
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Joaquin Resasco
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Deyu Lu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Laboratory of AI for Electrochemistry (AI4EC), Tan Kah Kee Innovation Laboratory, Xiamen 361005, China
| | - Yuanyue Liu
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
9
|
Fernández-Vidal J, Koper MTM. Effect of a Physisorbed Tetrabutylammonium Cation Film on Alkaline Hydrogen Evolution Reaction on Pt Single-Crystal Electrodes. ACS Catal 2024; 14:8130-8137. [PMID: 38868101 PMCID: PMC11165451 DOI: 10.1021/acscatal.4c01765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
The addition of tetrabutylammonium (TBA+) to alkaline electrolytes enhances the hydrogen evolution reaction (HER) activity on Pt single-crystal electrodes. The concentration of TBA+ significantly influences the HER on Pt(111). Concentrations of ≤1 mM yield no significant effect on HER currents or the coverage of adsorbed hydrogen (H*) but exhibit an interaction with the OHads on the surface. Conversely, concentrations of >1 mM result in an apparent site-blocking effect for underpotential-deposited H* caused by the physisorption of the organic cation, which counterintuitively leads to an increase in the HER activity. The physisorption of TBA+ is linked to its accumulation in the diffuse layer, as it can be reversibly removed by the addition of nonadsorbing cations such as sodium. Following the previous literature on the TBA+ interaction with electrode surfaces, we ascribe this effect to the formation of a two-dimensional TBA+ film in the double layer. On stepped Pt single-crystal surfaces, TBA+ enhances HER activity at all concentrations, primarily at step sites. Our findings not only highlight the complexities of TBA+ accumulation on Pt electrodes but also offer important molecular-level insights for optimizing the HER by organic film formation on various atomic-level electrode structures.
Collapse
Affiliation(s)
- Julia Fernández-Vidal
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Marc T. M. Koper
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
10
|
Mohandas N, Bawari S, Shibuya JJT, Ghosh S, Mondal J, Narayanan TN, Cuesta A. Understanding electrochemical interfaces through comparing experimental and computational charge density-potential curves. Chem Sci 2024; 15:6643-6660. [PMID: 38725490 PMCID: PMC11077530 DOI: 10.1039/d4sc00746h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/21/2024] [Indexed: 05/12/2024] Open
Abstract
Electrode-electrolyte interfaces play a decisive role in electrochemical charge accumulation and transfer processes. Theoretical modelling of these interfaces is critical to decipher the microscopic details of such phenomena. Different force field-based molecular dynamics protocols are compared here in a view to connect calculated and experimental charge density-potential relationships. Platinum-aqueous electrolyte interfaces are taken as a model. The potential of using experimental charge density-potential curves to transform cell voltage into electrode potential in force-field molecular dynamics simulations, and the need for that purpose of developing simulation protocols that can accurately calculate the double-layer capacitance, are discussed.
Collapse
Affiliation(s)
- Nandita Mohandas
- Tata Institute of Fundamental Research-Hyderabad Hyderabad 500046 India
- Advanced Centre for Energy and Sustainability (ACES), School of Natural and Computing Sciences, University of Aberdeen AB24 3UE Aberdeen Scotland UK
| | - Sumit Bawari
- Tata Institute of Fundamental Research-Hyderabad Hyderabad 500046 India
| | - Jani J T Shibuya
- Advanced Centre for Energy and Sustainability (ACES), School of Natural and Computing Sciences, University of Aberdeen AB24 3UE Aberdeen Scotland UK
| | - Soumya Ghosh
- Tata Institute of Fundamental Research-Hyderabad Hyderabad 500046 India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research-Hyderabad Hyderabad 500046 India
| | | | - Angel Cuesta
- Advanced Centre for Energy and Sustainability (ACES), School of Natural and Computing Sciences, University of Aberdeen AB24 3UE Aberdeen Scotland UK
- Centre for Energy Transition, University of Aberdeen AB24 3FX Aberdeen Scotland UK
| |
Collapse
|
11
|
Shah AH, Zhang Z, Wan C, Wang S, Zhang A, Wang L, Alexandrova AN, Huang Y, Duan X. Platinum Surface Water Orientation Dictates Hydrogen Evolution Reaction Kinetics in Alkaline Media. J Am Chem Soc 2024; 146:9623-9630. [PMID: 38533830 DOI: 10.1021/jacs.3c12934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The fundamental understanding of sluggish hydrogen evolution reaction (HER) kinetics on a platinum (Pt) surface in alkaline media is a topic of considerable debate. Herein, we combine cyclic voltammetry (CV) and electrical transport spectroscopy (ETS) approaches to probe the Pt surface at different pH values and develop molecular-level insights into the pH-dependent HER kinetics in alkaline media. The change in HER Tafel slope from ∼110 mV/decade in pH 7-10 to ∼53 mV/decade in pH 11-13 suggests considerably enhanced kinetics at higher pH. The ETS studies reveal a similar pH-dependent switch in the ETS conductance signal at around pH 10, suggesting a notable change of surface adsorbates. Fixed-potential calculations and chemical bonding analysis suggest that this switch is attributed to a change in interfacial water orientation, shifting from primarily an O-down configuration below pH 10 to a H-down configuration above pH 10. This reorientation weakens the O-H bond in the interfacial water molecules and modifies the reaction pathway, leading to considerably accelerated HER kinetics at higher pH. Our integrated studies provide an unprecedented molecular-level understanding of the nontrivial pH-dependent HER kinetics in alkaline media.
Collapse
Affiliation(s)
- Aamir Hassan Shah
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Zisheng Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Chengzhang Wan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, United States
| | - Sibo Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Ao Zhang
- Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, United States
| | - Laiyuan Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
12
|
Wang X, Liu X, Fang J, Wang H, Liu X, Wang H, Chen C, Wang Y, Zhang X, Zhu W, Zhuang Z. Tuning the apparent hydrogen binding energy to achieve high-performance Ni-based hydrogen oxidation reaction catalyst. Nat Commun 2024; 15:1137. [PMID: 38326293 PMCID: PMC10850486 DOI: 10.1038/s41467-024-45370-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
High-performance platinum-group-metal-free alkaline hydrogen oxidation reaction catalysts are essential for the hydroxide exchange membrane fuel cells, which generally require high Pt loadings on the anode. Herein, we report a highly active hydrogen oxidation reaction catalyst, NiCuCr, indicated by the hydroxide exchange membrane fuel cell with a high peak power density of 577 mW cm-2 (18 times as high as the Ni/C anode) and a stability of more than 150 h (a degradation rate slower by 7 times than the Ni/C anode). The spectroscopies demonstrate that the alloy effect from Cu weakens the hydrogen binding, and the surface Cr2O3 species enhance the interfacial water binding. Both effects bring an optimized apparent hydrogen binding energy and thus lead to the high hydrogen oxidation reaction performance of NiCuCr. These results suggest that the apparent hydrogen binding energy determines the hydrogen oxidation reaction performance and that its tuning is beneficial toward high electrocatalytic performance.
Collapse
Affiliation(s)
- Xingdong Wang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Institute of Petroleum Processing, SINOPEC, Beijing, 100083, China
| | - Xuerui Liu
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jinjie Fang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Houpeng Wang
- Research Institute of Petroleum Processing, SINOPEC, Beijing, 100083, China
| | - Xianwei Liu
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haiyong Wang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chengjin Chen
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yongsheng Wang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xuejiang Zhang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wei Zhu
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
- Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
13
|
Fujita S, Baranton S, Coutanceau C, Jerkiewicz G. Electrochemical Behavior and Shape Evolution of Structured Pd Nanoparticles in Alkaline Media─Influence of Electrochemically Absorbed Hydrogen. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15889-15900. [PMID: 37906432 DOI: 10.1021/acs.langmuir.3c01636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
We report on the electrochemical behavior and shape evolution of Pd nanocubes (Pd NCs) and Pd nanooctahedrons (Pd NOs) with an average size of 9.8 and 6.9 nm, respectively, in aqueous alkaline medium in the potential range of the underpotential deposition of H (UPD H) and H absorption. While the Pd NCs and Pd NOs remain stable in the potential region of the UPD H, H absorption and desorption of absorbed H (Habs) induce structural changes to the Pd NPs, as indicated by the results of electrochemical measurements and identical location-transmission electron microscopy (IL-TEM) analyses. Because both Pd NCs and Pd NOs are known to be stable in the potential region of H absorption and Habs desorption in acidic medium and maintain their structure, the irreversible structural changes are attributed to their interfacial interaction with the aqueous alkaline medium. In the alkaline medium, the nanoparticle surface/electrolyte interfacial structure plays an essential role in the mechanism of Habs desorption that is observed at higher potentials than that in the acidic medium. Hydrogen desorption is substantially hindered due to the structure of the water network adjacent to the Pd nanoparticles or the interaction between hydrated cations and adsorbed OH on the nanoparticle surface, resulting in the trapping of a small amount of H (incomplete Habs desorption). It is proposed that H trapping and associated structural strain lead to the deformation of the Pd nanoparticles and the loss of their initial structure.
Collapse
Affiliation(s)
- Sho Fujita
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Stève Baranton
- IC2MP, UMR CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Christophe Coutanceau
- IC2MP, UMR CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Gregory Jerkiewicz
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
14
|
Li P, Jiao Y, Huang J, Chen S. Electric Double Layer Effects in Electrocatalysis: Insights from Ab Initio Simulation and Hierarchical Continuum Modeling. JACS AU 2023; 3:2640-2659. [PMID: 37885580 PMCID: PMC10598835 DOI: 10.1021/jacsau.3c00410] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023]
Abstract
Structures of the electric double layer (EDL) at electrocatalytic interfaces, which are modulated by the material properties, the electrolyte characteristics (e.g., the pH, the types and concentrations of ions), and the electrode potential, play crucial roles in the reaction kinetics. Understanding the EDL effects in electrocatalysis has attracted substantial research interest in recent years. However, the intrinsic relationships between the specific EDL structures and electrocatalytic kinetics remain poorly understood, especially on the atomic scale. In this Perspective, we briefly review the recent advances in deciphering the EDL effects mainly in hydrogen and oxygen electrocatalysis through a multiscale approach, spanning from the atomistic scale simulated by ab initio methods to the macroscale by a hierarchical approach. We highlight the importance of resolving the local reaction environment, especially the local hydrogen bond network, in understanding EDL effects. Finally, some of the remaining challenges are outlined, and an outlook for future developments in these exciting frontiers is provided.
Collapse
Affiliation(s)
- Peng Li
- Hubei
Key Laboratory of Electrochemical Power Sources, College of Chemistry
and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yuzhou Jiao
- Hubei
Key Laboratory of Electrochemical Power Sources, College of Chemistry
and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jun Huang
- Institute
of Energy and Climate Research, IEK-13: Theory and Computation of
Energy Materials, Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
- Theory
of Electrocatalytic Interfaces, Faculty of Georesources and Materials
Engineering, RWTH Aachen University, 52062 Aachen, Germany
| | - Shengli Chen
- Hubei
Key Laboratory of Electrochemical Power Sources, College of Chemistry
and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
15
|
Wang X, Wang Y, Kuang Y, Le JB. Understanding the Effects of Electrode Material, Single Crystal Facet, and Electrolyte Ion on the Helmholtz Capacitance of Metal/Aqueous Solution Interfaces. J Phys Chem Lett 2023; 14:7833-7839. [PMID: 37624858 DOI: 10.1021/acs.jpclett.3c02108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
The comprehensive interpretation of the measured differential Helmholtz capacitance curve is vital for advancing our understanding of the interfacial structure. While several possible physical effects contributing to the Helmholtz capacitance have been proposed theoretically, combining those factors to explain the experimentally observed potential-dependent capacitance profile remains a significant challenge. In this study, we employ ab initio molecular dynamics simulations to model various metal/solution interfaces. Our investigation primarily emphasizes the substantial effect of water chemisorption on the potential-dependent behavior of the Helmholtz capacitance. Additionally, we identify other critical factors that profoundly impact the Helmholtz capacitance: (1) Ions with low hydration energy hinder the availability of surface sites for water adsorption, resulting in a diminished enhancement of capacitance from water chemisorption. (2) Using large-sized ions leads to an expansion of the Helmholtz layer, causing a decrease in the Helmholtz capacitance. (3) Metal surfaces with higher affinity for water attract water adsorption at lower potentials, resulting in a lower peak potential for the differential Helmholtz capacitance curve.
Collapse
Affiliation(s)
- Xue Wang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Ying Wang
- Institute of Materials, Ningbo University of Technology, Ningbo 315211, China
| | - Yongbo Kuang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jia-Bo Le
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
16
|
Wang H, Abruña HD. Identifying Adsorbed OH Species on Pt and Ru Electrodes with Surface-Enhanced Infrared Absorption Spectroscopy through CO Displacement. J Am Chem Soc 2023; 145:18439-18446. [PMID: 37552880 DOI: 10.1021/jacs.3c04785] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
OH adspecies are involved in numerous electrocatalytic reactions, such as CO, H2, methanol, and ethanol oxidation and oxygen reduction reactions, as a reaction intermediate and/or reactant. In this work, we have, for the first time, identified the OH stretching band of OH adspecies on Pt, Ru, and Pt/Ru electrodes with surface-enhanced infrared absorption spectroscopy (SEIRAS) in a flow cell through potential modulation and CO displacement. We found that while Ru had a relatively constant OH coverage at potentials between 0.1 and 0.8 V, Pt had a maximum OH coverage at 0.6 V in 0.1 M HClO4 and 0.7 V in 0.1 M KOH. CO oxidation kinetics on Ru were sluggish, although adsorbed OH appeared on Ru at very low potentials. Binary Pt/Ru electrodes promote CO oxidation through a synergistic effect in which Ru promotes OH adsorption and Pt catalyzes the reaction between the CO and OH adspecies. In addition, water coadsorbed with CO at Ru sites of Pt/Ru also plays an important role. These new spectroscopic results about OH adspecies could advance the understanding of the mechanism of fuel cell related electrocatalysis.
Collapse
Affiliation(s)
- Hongsen Wang
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
17
|
Badgurjar D, Huynh M, Masters B, Wuttig A. Non-Covalent Interactions Mimic the Covalent: An Electrode-Orthogonal Self-Assembled Layer. J Am Chem Soc 2023; 145:17734-17745. [PMID: 37548952 PMCID: PMC10436282 DOI: 10.1021/jacs.3c04387] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 08/08/2023]
Abstract
Charge-transfer events central to energy conversion and storage and molecular sensing occur at electrified interfaces. Synthetic control over the interface is traditionally accessed through electrode-specific covalent tethering of molecules. Covalent linkages inherently limit the scope and the potential stability window of molecularly tunable electrodes. Here, we report a synthetic strategy that is agnostic to the electrode's surface chemistry to molecularly define electrified interfaces. We append ferrocene redox reporters to amphiphiles, utilizing non-covalent electrostatic and van der Waals interactions to prepare a self-assembled layer stable over a 2.9 V range. The layer's voltammetric response and in situ infrared spectra mimic those reported for analogous covalently bound ferrocene. This design is electrode-orthogonal; layer self-assembly is reversible and independent of the underlying electrode material's surface chemistry. We demonstrate that the design can be utilized across a wide range of electrode material classes (transition metal, carbon, carbon composites) and morphologies (nanostructured, planar). Merging atomically precise organic synthesis of amphiphiles with in situ non-covalent self-assembly at polarized electrodes, our work sets the stage for predictive and non-fouling synthetic control over electrified interfaces.
Collapse
Affiliation(s)
| | | | - Benjamin Masters
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Anna Wuttig
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
18
|
Xu P, von Rueden AD, Schimmenti R, Mavrikakis M, Suntivich J. Optical method for quantifying the potential of zero charge at the platinum-water electrochemical interface. NATURE MATERIALS 2023; 22:503-510. [PMID: 36781952 DOI: 10.1038/s41563-023-01474-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
When an electrode contacts an electrolyte, an interfacial electric field forms. This interfacial field can polarize the electrode's surface and nearby molecules, but its effect can be countered by an applied potential. Quantifying the value of this countering potential ('potential of zero charge' (pzc)) is, however, not straightforward. Here we present an optical method for determining the pzc at an electrochemical interface. Our approach uses phase-sensitive second-harmonic generation to determine the electrochemical potential where the interfacial electric field vanishes at an electrode-electrolyte interface with Pt-water as a model experiment. Our method reveals that the pzc of the Pt-water interface is 0.23 ± 0.08 V versus standard hydrogen electrode (SHE) and is pH independent from pH 1 to pH 13. First-principles calculations with a hybrid explicit-implicit solvent model predict the pzc of the Pt(111)-water interface to be 0.23 V versus SHE and reveal how the interfacial water structure rearranges as the electrode potential is moved above and below the pzc. We further show that pzc is sensitive to surface modification; deposition of Ni on Pt shifts the interfacial pzc in the cathodic direction by ~360 mV. Our work demonstrates a materials-agnostic approach for quantifying the interfacial electrical field and water orientation at an electrochemical interface without requiring probe molecules and confirms the long-held view that the interfacial electric field is more intense during hydrogen electrocatalysis in alkaline than in acid.
Collapse
Affiliation(s)
- Pengtao Xu
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Alexander D von Rueden
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Roberto Schimmenti
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - Jin Suntivich
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
19
|
Chen W, Zhang LL, Wei Z, Zhang MK, Cai J, Chen YX. The electrostatic effect and its role in promoting electrocatalytic reactions by specifically adsorbed anions. Phys Chem Chem Phys 2023; 25:8317-8330. [PMID: 36892566 DOI: 10.1039/d2cp04547h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The adsorption of anions and its impact on electrocatalytic reactions are fundamental topics in electrocatalysis. Previous studies revealed that adsorbed anions display an overall poisoning effect in most cases. However, for a few reactions such as the hydrogen evolution reaction (HER), oxidation of small organic molecules (SOMs), and reduction of CO2 and O2, some specifically adsorbed anions can promote their reaction kinetics under certain conditions. The promotion effect is frequently attributed to the adsorbate induced modification of the nature of the active sites, the change of the adsorption configuration and free energy of the key reactive intermediate which consequently change the activation energy, the pre-exponential factor of the rate determining step etc. In this paper, we will give a mini review of the indispensable role of the classical double layer effect in enhancing the kinetics of electrocatalytic reactions by anion adsorption. The ubiquitous electrostatic interactions change both the potential distribution and the concentration distribution of ionic species across the electric double layer (EDL), which alters the electrochemical driving force and effective concentration of the reactants. The contribution to the overall kinetics is highlighted by taking HER, oxidation of SOMs, reduction of CO2 and O2, as examples.
Collapse
Affiliation(s)
- Wei Chen
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Lu-Lu Zhang
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Zhen Wei
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Meng-Ke Zhang
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Jun Cai
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Yan-Xia Chen
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
20
|
Abstract
This Perspective argues that most redox reactions of materials at an interface with a protic solution involve net proton-coupled electron transfer (PCET) (or other cation-coupled ET). This view contrasts with the traditional electron-transfer-focused view of redox reactions at semiconductors, but redox processes at metal surfaces are often described as PCET. Taking a thermodynamic perspective, transfer of an electron is typically accompanied by a stoichiometric proton, much as the chemistry of lithium-ion batteries involves coupled transfers of e- and Li+. The PCET viewpoint implicates the surface-H bond dissociation free energy (BDFE) as the preeminent energetic parameter and its conceptual equivalents, the electrochemical ne-/nH+ potential versus the reversible hydrogen electrode (RHE) and the free energy of hydrogenation, ΔG°H. These parameters capture the thermochemistry of PCET at interfaces better than electronic parameters such as Fermi energies, electron chemical potentials, flat-band potentials, or band-edge energies. A unified picture of PCET at metal and semiconductor surfaces is presented. Exceptions, limitations, implications, and future directions motivated by this approach are described.
Collapse
Affiliation(s)
- James M Mayer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
21
|
Alkaline hydrogen oxidation reaction on Ni-based electrocatalysts: From mechanistic study to material development. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Dinh TD, Jang JW, Hwang S. Long-Range Electrification of an Air/Electrolyte Interface and Probing Potential of Zero Charge by Conductive Amplitude-Modulated Atomic Force Microscopy. Anal Chem 2023; 95:2901-2908. [PMID: 36691706 DOI: 10.1021/acs.analchem.2c04461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The structure of an electrical double layer (EDL) at the interface of electrode/electrolyte or air/electrode/electrolyte is a fundamental aspect, however not fully understood. The potential of zero charge (PZC) is one of the clues to dictate the EDL, where the excess charge on the electrode surface is zero. Here, a nanoscale configuration of immersion method was proposed by integrating an electrochemical system into conductive atomic force spectroscopy under the amplitude modulation (AM) mode and agarose gel as the solid-liquid electrolyte. The PZC of boron-doped diamond was determined to be at 0.2 V (vs Ag/AgCl). By AM spectroscopy, the capacitive force shows remote electrification without direct electrode/electrolyte contact, which is dependent on the population of ions at the air/electrolyte interface. The surface potential by alignment of water is also evaluated. Prospectively, our study could benefit applications such as PZC measurement and non-electrode electrochemical processes at the air/electrolyte interface.
Collapse
Affiliation(s)
- Thanh Duc Dinh
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Jae-Won Jang
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Korea
| | - Seongpil Hwang
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| |
Collapse
|
23
|
Li M, Li L, Huang X, Qi X, Deng M, Jiang S, Wei Z. Platinum-Water Interaction Induced Interfacial Water Orientation That Governs the pH-Dependent Hydrogen Oxidation Reaction. J Phys Chem Lett 2022; 13:10550-10557. [PMID: 36342770 DOI: 10.1021/acs.jpclett.2c02907] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding the electrode-water interface structure in acid and alkali is crucial to unveiling the underlying mechanism of pH-dependent hydrogen oxidation reaction (HOR) kinetics. In this work, we construct the explicit Pt(111)-H2O interface models in both acid and alkali to investigate the relationship between the HOR mechanism and electrode-electrolyte interface structure using ab initio molecular dynamics and density functional theory. We find that the interfacial water orientation in the outer Helmholtz layer (OHP) induced by the Pt-water interaction governs the pH-dependent HOR kinetics on Pt(111). In alkali, the strong Pt-interfacial water electrostatic interaction behaves as a narrow OHP, which increases the proportion of "H-down" interfacial water and leads to less adsorbed water entering the inner Helmholtz plane (IHP), decreasing the work function of Pt(111). Furthermore, the more "H-down" interfacial water stabilizes the Had adsorption, prevents Had desorption, and suppresses the Volmer step of HOR by forming the solvated [Had···H2O···H2O] complex. Our work provided a visualized molecular-level mechanism to understand the nature of pH-dependent HOR kinetics.
Collapse
Affiliation(s)
- Mengting Li
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing400044, China
| | - Li Li
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing400044, China
| | - Xun Huang
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing400044, China
| | - Xueqiang Qi
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing400054, China
| | - Mingming Deng
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing400044, China
| | - Shangkun Jiang
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing400044, China
| | - Zidong Wei
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing400044, China
| |
Collapse
|
24
|
Liu C, Dong Q, Han Y, Zang Y, Zhang H, Xie X, Yu Y, Liu Z. Understanding fundamentals of electrochemical reactions with tender X-rays: A new lab-based operando X-ray photoelectron spectroscopy method for probing liquid/solid and gas/solid interfaces across a variety of electrochemical systems. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64092-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
25
|
Effect of the interfacial electric field on the HER on Pt(111) modified with iron adatoms in alkaline media. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Zhong G, Cheng T, Shah AH, Wan C, Huang Z, Wang S, Leng T, Huang Y, Goddard WA, Duan X. Determining the hydronium pK[Formula: see text] at platinum surfaces and the effect on pH-dependent hydrogen evolution reaction kinetics. Proc Natl Acad Sci U S A 2022; 119:e2208187119. [PMID: 36122216 PMCID: PMC9522355 DOI: 10.1073/pnas.2208187119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
Electrocatalytic hydrogen evolution reaction (HER) is critical for green hydrogen generation and exhibits distinct pH-dependent kinetics that have been elusive to understand. A molecular-level understanding of the electrochemical interfaces is essential for developing more efficient electrochemical processes. Here we exploit an exclusively surface-specific electrical transport spectroscopy (ETS) approach to probe the Pt-surface water protonation status and experimentally determine the surface hydronium pKa [Formula: see text] 4.3. Quantum mechanics (QM) and reactive dynamics using a reactive force field (ReaxFF) molecular dynamics (RMD) calculations confirm the enrichment of hydroniums (H3O[Formula: see text]) near Pt surface and predict a surface hydronium pKa of 2.5 to 4.4, corroborating the experimental results. Importantly, the observed Pt-surface hydronium pKa correlates well with the pH-dependent HER kinetics, with the protonated surface state at lower pH favoring fast Tafel kinetics with a Tafel slope of 30 mV per decade and the deprotonated surface state at higher pH following Volmer-step limited kinetics with a much higher Tafel slope of 120 mV per decade, offering a robust and precise interpretation of the pH-dependent HER kinetics. These insights may help design improved electrocatalysts for renewable energy conversion.
Collapse
Affiliation(s)
- Guangyan Zhong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Tao Cheng
- Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, People’s Republic of China
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125
| | - Aamir Hassan Shah
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Chengzhang Wan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Zhihong Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095
| | - Sibo Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Tianle Leng
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| | - William A. Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125
- Liquid Sunlight Alliance, California Institute of Technology, Pasadena, CA 91125
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| |
Collapse
|
27
|
Zhao K, Chang X, Su H, Nie Y, Lu Q, Xu B. Enhancing Hydrogen Oxidation and Evolution Kinetics by Tuning the Interfacial Hydrogen‐Bonding Environment on Functionalized Platinum Surfaces. Angew Chem Int Ed Engl 2022; 61:e202207197. [DOI: 10.1002/anie.202207197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Kaiyue Zhao
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Xiaoxia Chang
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Hai‐Sheng Su
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Yiming Nie
- Department of Medicinal Chemistry School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University Jinan Shandong 250012 China
| | - Qi Lu
- State Key Laboratory of Chemical Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
28
|
Medium-independent hydrogen atom binding isotherms of nickel oxide electrodes. Chem 2022. [DOI: 10.1016/j.chempr.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Qin X, Zhu S, Wang Y, Pan D, Shao M. Full atomistic mechanism study of hydrogen evolution reaction on Pt surfaces at universal pHs: Ab initio simulations at electrochemical interfaces. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Zhao K, Chang X, Su HS, Nie Y, Lu Q, Xu B. Enhancing Hydrogen Oxidation and Evolution Kinetics by Tuning Interfacial Hydrogen‐Bonding Environment on Functionalized Pt Surface. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kaiyue Zhao
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Xiaoxia Chang
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Hai-Sheng Su
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Yiming Nie
- Shandong University School of Medicine: Shandong University Cheeloo College of Medicine School of Pharmaceutical Sciences CHINA
| | - Qi Lu
- Tsinghua University Department of Chemical Engineering CHINA
| | - Bingjun Xu
- Peking University College of Chemistry and Molecular Engineering 202 Chengfu Road, Haidian District 100871 Beijing CHINA
| |
Collapse
|
31
|
Kuo DY, Lu X, Hu B, Abruña HD, Suntivich J. Rate and Mechanism of Electrochemical Formation of Surface-Bound Hydrogen on Pt(111) Single Crystals. J Phys Chem Lett 2022; 13:6383-6390. [PMID: 35797962 DOI: 10.1021/acs.jpclett.2c01734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The formation of surface-bound hydrogen from one proton and one electron plays an enabling role in renewable hydrogen production. Quantifying the surface-bound hydrogen formation, however, requires decoupling the delicate interplay of numerous processes. We study cyclic voltammetry (CV) at fast scan rates to characterize the rate constant for the surface-bound hydrogen formation (also known as underpotential deposition hydrogen, UPD Had). We find that the formation of Had on Pt(111) single crystals is ∼100× faster in acid than in base. Reaction-order analysis indicates that the formation of Had occurs as a standard proton-coupled electron transfer (PCET) reaction in acid, whereas in base, it displays a pH-independent rate constant, indicating the presence of a chemical step such as the reorganization of interfacial water. Our results provide a methodology for quantifying the interfacial PCET kinetics and reveal the mechanistic nature of the UPD Had formation as the reason the hydrogen evolution electrocatalysis on Pt is faster in acid than in base.
Collapse
Affiliation(s)
- Ding-Yuan Kuo
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Bintao Hu
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Jin Suntivich
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
32
|
Rizo R, Fernández-Vidal J, Hardwick LJ, Attard GA, Vidal-Iglesias FJ, Climent V, Herrero E, Feliu JM. Investigating the presence of adsorbed species on Pt steps at low potentials. Nat Commun 2022; 13:2550. [PMID: 35538173 PMCID: PMC9090771 DOI: 10.1038/s41467-022-30241-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/22/2022] [Indexed: 11/09/2022] Open
Abstract
The study of the OH adsorption process on Pt single crystals is of paramount importance since this adsorbed species is considered the main intermediate in many electrochemical reactions of interest, in particular, those oxidation reactions that require a source of oxygen. So far, it is frequently assumed that the OH adsorption on Pt only takes place at potentials higher than 0.55 V (versus the reversible hydrogen electrode), regardless of the Pt surface structure. However, by CO displacement experiments, alternating current voltammetry, and Raman spectroscopy, we demonstrate here that OH is adsorbed at more negative potentials on the low coordinated Pt atoms, the Pt steps. This finding opens a new door in the mechanistic study of many relevant electrochemical reactions, leading to a better understanding that, ultimately, can be essential to reach the final goal of obtaining improved catalysts for electrochemical applications of technological interest.
Collapse
Affiliation(s)
- Rubén Rizo
- Instituto de Electroquímica, Universidad de Alicante, Apdo. 99, E-03080, Alicante, Spain.
| | - Julia Fernández-Vidal
- Stephenson Institute for Renewable Energy, University of Liverpool, Peach Street, Liverpool, L69 7ZF, UK
| | - Laurence J Hardwick
- Stephenson Institute for Renewable Energy, University of Liverpool, Peach Street, Liverpool, L69 7ZF, UK
| | - Gary A Attard
- Department of Physics, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | | | - Victor Climent
- Instituto de Electroquímica, Universidad de Alicante, Apdo. 99, E-03080, Alicante, Spain
| | - Enrique Herrero
- Instituto de Electroquímica, Universidad de Alicante, Apdo. 99, E-03080, Alicante, Spain.
| | - Juan M Feliu
- Instituto de Electroquímica, Universidad de Alicante, Apdo. 99, E-03080, Alicante, Spain.
| |
Collapse
|
33
|
Warburton RE, Soudackov AV, Hammes-Schiffer S. Theoretical Modeling of Electrochemical Proton-Coupled Electron Transfer. Chem Rev 2022; 122:10599-10650. [PMID: 35230812 DOI: 10.1021/acs.chemrev.1c00929] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proton-coupled electron transfer (PCET) plays an essential role in a wide range of electrocatalytic processes. A vast array of theoretical and computational methods have been developed to study electrochemical PCET. These methods can be used to calculate redox potentials and pKa values for molecular electrocatalysts, proton-coupled redox potentials and bond dissociation free energies for PCET at metal and semiconductor interfaces, and reorganization energies associated with electrochemical PCET. Periodic density functional theory can also be used to compute PCET activation energies and perform molecular dynamics simulations of electrochemical interfaces. Various approaches for maintaining a constant electrode potential in electronic structure calculations and modeling complex interactions in the electric double layer (EDL) have been developed. Theoretical formulations for both homogeneous and heterogeneous electrochemical PCET spanning the adiabatic, nonadiabatic, and solvent-controlled regimes have been developed and provide analytical expressions for the rate constants and current densities as functions of applied potential. The quantum mechanical treatment of the proton and inclusion of excited vibronic states have been shown to be critical for describing experimental data, such as Tafel slopes and potential-dependent kinetic isotope effects. The calculated rate constants can be used as input to microkinetic models and voltammogram simulations to elucidate complex electrocatalytic processes.
Collapse
Affiliation(s)
- Robert E Warburton
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
34
|
Yang Y, Peltier CR, Zeng R, Schimmenti R, Li Q, Huang X, Yan Z, Potsi G, Selhorst R, Lu X, Xu W, Tader M, Soudackov AV, Zhang H, Krumov M, Murray E, Xu P, Hitt J, Xu L, Ko HY, Ernst BG, Bundschu C, Luo A, Markovich D, Hu M, He C, Wang H, Fang J, DiStasio RA, Kourkoutis LF, Singer A, Noonan KJT, Xiao L, Zhuang L, Pivovar BS, Zelenay P, Herrero E, Feliu JM, Suntivich J, Giannelis EP, Hammes-Schiffer S, Arias T, Mavrikakis M, Mallouk TE, Brock JD, Muller DA, DiSalvo FJ, Coates GW, Abruña HD. Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chem Rev 2022; 122:6117-6321. [PMID: 35133808 DOI: 10.1021/acs.chemrev.1c00331] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen energy-based electrochemical energy conversion technologies offer the promise of enabling a transition of the global energy landscape from fossil fuels to renewable energy. Here, we present a comprehensive review of the fundamentals of electrocatalysis in alkaline media and applications in alkaline-based energy technologies, particularly alkaline fuel cells and water electrolyzers. Anion exchange (alkaline) membrane fuel cells (AEMFCs) enable the use of nonprecious electrocatalysts for the sluggish oxygen reduction reaction (ORR), relative to proton exchange membrane fuel cells (PEMFCs), which require Pt-based electrocatalysts. However, the hydrogen oxidation reaction (HOR) kinetics is significantly slower in alkaline media than in acidic media. Understanding these phenomena requires applying theoretical and experimental methods to unravel molecular-level thermodynamics and kinetics of hydrogen and oxygen electrocatalysis and, particularly, the proton-coupled electron transfer (PCET) process that takes place in a proton-deficient alkaline media. Extensive electrochemical and spectroscopic studies, on single-crystal Pt and metal oxides, have contributed to the development of activity descriptors, as well as the identification of the nature of active sites, and the rate-determining steps of the HOR and ORR. Among these, the structure and reactivity of interfacial water serve as key potential and pH-dependent kinetic factors that are helping elucidate the origins of the HOR and ORR activity differences in acids and bases. Additionally, deliberately modulating and controlling catalyst-support interactions have provided valuable insights for enhancing catalyst accessibility and durability during operation. The design and synthesis of highly conductive and durable alkaline membranes/ionomers have enabled AEMFCs to reach initial performance metrics equal to or higher than those of PEMFCs. We emphasize the importance of using membrane electrode assemblies (MEAs) to integrate the often separately pursued/optimized electrocatalyst/support and membranes/ionomer components. Operando/in situ methods, at multiscales, and ab initio simulations provide a mechanistic understanding of electron, ion, and mass transport at catalyst/ionomer/membrane interfaces and the necessary guidance to achieve fuel cell operation in air over thousands of hours. We hope that this Review will serve as a roadmap for advancing the scientific understanding of the fundamental factors governing electrochemical energy conversion in alkaline media with the ultimate goal of achieving ultralow Pt or precious-metal-free high-performance and durable alkaline fuel cells and related technologies.
Collapse
Affiliation(s)
- Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Cheyenne R Peltier
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Roberto Schimmenti
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Qihao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Zhifei Yan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Georgia Potsi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ryan Selhorst
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mariel Tader
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hanguang Zhang
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Mihail Krumov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ellen Murray
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Pengtao Xu
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy Hitt
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Linxi Xu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hsin-Yu Ko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brian G Ernst
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Colin Bundschu
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Aileen Luo
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Danielle Markovich
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Meixue Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Cheng He
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Andrej Singer
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kevin J T Noonan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bryan S Pivovar
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Piotr Zelenay
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Enrique Herrero
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Juan M Feliu
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Jin Suntivich
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Emmanuel P Giannelis
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | | | - Tomás Arias
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joel D Brock
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Francis J DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Center for Alkaline Based Energy Solutions (CABES), Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
35
|
Soldo-Olivier Y, Sibert E, De Santis M, Joly Y, Gründer Y. Unraveling the Charge Distribution at the Metal-Electrolyte Interface Coupling in Situ Surface Resonant X-Ray Diffraction with Ab Initio Calculations. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Eric Sibert
- LEPMI, Université Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, St. Martin d’Hères 38402, France
| | | | - Yves Joly
- CNRS, Université Grenoble Alpes, Institut Néel, Grenoble 38042, France
| | - Yvonne Gründer
- Oliver Lodge Laboratory, Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom
| |
Collapse
|
36
|
Abstract
Structures and processes at water/metal interfaces play an important technological role in electrochemical energy conversion and storage, photoconversion, sensors, and corrosion, just to name a few. However, they are also of fundamental significance as a model system for the study of solid-liquid interfaces, which requires combining concepts from the chemistry and physics of crystalline materials and liquids. Particularly interesting is the fact that the water-water and water-metal interactions are of similar strength so that the structures at water/metal interfaces result from a competition between these comparable interactions. Because water is a polar molecule and water and metal surfaces are both polarizable, explicit consideration of the electronic degrees of freedom at water/metal interfaces is mandatory. In principle, ab initio molecular dynamics simulations are thus the method of choice to model water/metal interfaces, but they are computationally still rather demanding. Here, ab initio simulations of water/metal interfaces will be reviewed, starting from static systems such as the adsorption of single water molecules, water clusters, and icelike layers, followed by the properties of liquid water layers at metal surfaces. Technical issues such as the appropriate first-principles description of the water-water and water-metal interactions will be discussed, and electrochemical aspects will be addressed. Finally, more approximate but numerically less demanding approaches to treat water at metal surfaces from first-principles will be briefly discussed.
Collapse
Affiliation(s)
- Axel Groß
- Institute of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany.,Electrochemical Energy Storage, Helmholtz Institute Ulm (HIU), 89069 Ulm, Germany
| | - Sung Sakong
- Institute of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany
| |
Collapse
|
37
|
Double-layer structure of the Pt(111)-aqueous electrolyte interface. Proc Natl Acad Sci U S A 2022; 119:2116016119. [PMID: 35042778 PMCID: PMC8784099 DOI: 10.1073/pnas.2116016119] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 11/18/2022] Open
Abstract
We present detailed measurements of the double-layer capacitance of the Pt(111)-electrolyte interface close to the potential of zero charge (PZC) in the presence of several different electrolytes consisting of anions and cations that are considered to be nonspecifically adsorbed. For low electrolyte concentrations, we show strong deviations from traditional Gouy-Chapman-Stern (GCS) behavior that appear to be independent of the nature of the electrolyte ions. Focusing on the capacitance further away from PZC and the trends for increasing ion concentration, we observe ion-specific capacitance effects that appear to be related to the size or hydration strength of the ions. We formulate a model for the structure of the electric double layer of the Pt(111)-electrolyte interface that goes significantly beyond the GCS theory. By combining two existing models, namely, one capturing the water reorganization on Pt close to the PZC and one accounting for an attractive ion-surface interaction not included in the GCS model, we can reproduce and interpret the main features the experimental capacitance of the Pt(111)-electrolyte interface. The model suggests a picture of the double layer with an increased ion concentration close to the interface as a consequence of a weak attractive ion-surface interaction, and a changing polarizability of the Pt(111)-water interface due to the potential-dependent water adsorption and orientation.
Collapse
|
38
|
Agarwal RG, Coste SC, Groff BD, Heuer AM, Noh H, Parada GA, Wise CF, Nichols EM, Warren JJ, Mayer JM. Free Energies of Proton-Coupled Electron Transfer Reagents and Their Applications. Chem Rev 2021; 122:1-49. [PMID: 34928136 DOI: 10.1021/acs.chemrev.1c00521] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We present an update and revision to our 2010 review on the topic of proton-coupled electron transfer (PCET) reagent thermochemistry. Over the past decade, the data and thermochemical formalisms presented in that review have been of value to multiple fields. Concurrently, there have been advances in the thermochemical cycles and experimental methods used to measure these values. This Review (i) summarizes those advancements, (ii) corrects systematic errors in our prior review that shifted many of the absolute values in the tabulated data, (iii) provides updated tables of thermochemical values, and (iv) discusses new conclusions and opportunities from the assembled data and associated techniques. We advocate for updated thermochemical cycles that provide greater clarity and reduce experimental barriers to the calculation and measurement of Gibbs free energies for the conversion of X to XHn in PCET reactions. In particular, we demonstrate the utility and generality of reporting potentials of hydrogenation, E°(V vs H2), in almost any solvent and how these values are connected to more widely reported bond dissociation free energies (BDFEs). The tabulated data demonstrate that E°(V vs H2) and BDFEs are generally insensitive to the nature of the solvent and, in some cases, even to the phase (gas versus solution). This Review also presents introductions to several emerging fields in PCET thermochemistry to give readers windows into the diversity of research being performed. Some of the next frontiers in this rapidly growing field are coordination-induced bond weakening, PCET in novel solvent environments, and reactions at material interfaces.
Collapse
Affiliation(s)
- Rishi G Agarwal
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Scott C Coste
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Benjamin D Groff
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Abigail M Heuer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hyunho Noh
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Giovanny A Parada
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Catherine F Wise
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Eva M Nichols
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - James M Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
39
|
Ringe S, Hörmann NG, Oberhofer H, Reuter K. Implicit Solvation Methods for Catalysis at Electrified Interfaces. Chem Rev 2021; 122:10777-10820. [PMID: 34928131 PMCID: PMC9227731 DOI: 10.1021/acs.chemrev.1c00675] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Implicit solvation
is an effective, highly coarse-grained approach
in atomic-scale simulations to account for a surrounding liquid electrolyte
on the level of a continuous polarizable medium. Originating in molecular
chemistry with finite solutes, implicit solvation techniques are now
increasingly used in the context of first-principles modeling of electrochemistry
and electrocatalysis at extended (often metallic) electrodes. The
prevalent ansatz to model the latter electrodes and the reactive surface
chemistry at them through slabs in periodic boundary condition supercells
brings its specific challenges. Foremost this concerns the difficulty
of describing the entire double layer forming at the electrified solid–liquid
interface (SLI) within supercell sizes tractable by commonly employed
density functional theory (DFT). We review liquid solvation methodology
from this specific application angle, highlighting in particular its
use in the widespread ab initio thermodynamics approach
to surface catalysis. Notably, implicit solvation can be employed
to mimic a polarization of the electrode’s electronic density
under the applied potential and the concomitant capacitive charging
of the entire double layer beyond the limitations of the employed
DFT supercell. Most critical for continuing advances of this effective
methodology for the SLI context is the lack of pertinent (experimental
or high-level theoretical) reference data needed for parametrization.
Collapse
Affiliation(s)
- Stefan Ringe
- Department of Energy Science and Engineering, Daegu Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.,Energy Science & Engineering Research Center, Daegu Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Nicolas G Hörmann
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany.,Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany
| | - Harald Oberhofer
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany.,Chair for Theoretical Physics VII and Bavarian Center for Battery Technology (BayBatt), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Karsten Reuter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| |
Collapse
|
40
|
Baz A, Dix ST, Holewinski A, Linic S. Microkinetic modeling in electrocatalysis: Applications, limitations, and recommendations for reliable mechanistic insights. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Huang B, Rao RR, You S, Hpone Myint K, Song Y, Wang Y, Ding W, Giordano L, Zhang Y, Wang T, Muy S, Katayama Y, Grossman JC, Willard AP, Xu K, Jiang Y, Shao-Horn Y. Cation- and pH-Dependent Hydrogen Evolution and Oxidation Reaction Kinetics. JACS AU 2021; 1:1674-1687. [PMID: 34723270 PMCID: PMC8549054 DOI: 10.1021/jacsau.1c00281] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 06/01/2023]
Abstract
The production of molecular hydrogen by catalyzing water splitting is central to achieving the decarbonization of sustainable fuels and chemical transformations. In this work, a series of structure-making/breaking cations in the electrolyte were investigated as spectator cations in hydrogen evolution and oxidation reactions (HER/HOR) in the pH range of 1 to 14, whose kinetics was found to be altered by up to 2 orders of magnitude by these cations. The exchange current density of HER/HOR was shown to increase with greater structure-making tendency of cations in the order of Cs+ < Rb+ < K+ < Na+ < Li+, which was accompanied by decreasing reorganization energy from the Marcus-Hush-Chidsey formalism and increasing reaction entropy. Invoking the Born model of reorganization energy and reaction entropy, the static dielectric constant of the electrolyte at the electrified interface was found to be significantly lower than that of bulk, decreasing with the structure-making tendency of cations at the negatively charged Pt surface. The physical origin of cation-dependent HER/HOR kinetics can be rationalized by an increase in concentration of cations on the negatively charged Pt surface, altering the interfacial water structure and the H-bonding network, which is supported by classical molecular dynamics simulation and surface-enhanced infrared absorption spectroscopy. This work highlights immense opportunities to control the reaction rates by tuning interfacial structures of cation and solvents.
Collapse
Affiliation(s)
- Botao Huang
- Electrochemical
Energy Laboratory, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Reshma R. Rao
- Electrochemical
Energy Laboratory, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Sifan You
- International
Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People’s Republic
of China
| | - Kyaw Hpone Myint
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yizhi Song
- International
Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People’s Republic
of China
| | - Yanming Wang
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Wendu Ding
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Livia Giordano
- Electrochemical
Energy Laboratory, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yirui Zhang
- Electrochemical
Energy Laboratory, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Tao Wang
- Electrochemical
Energy Laboratory, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Sokseiha Muy
- Electrochemical
Energy Laboratory, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yu Katayama
- Electrochemical
Energy Laboratory, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department
of Applied Chemistry, Graduate School of Sciences and Technology for
Innovation, Yamaguchi University, Ube 755-8611, Japan
| | - Jeffrey C. Grossman
- Department
of Material Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Adam P. Willard
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kang Xu
- Battery
Science Branch, Sensor and Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, Maryland 20783-1197, United States
| | - Ying Jiang
- International
Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People’s Republic
of China
| | - Yang Shao-Horn
- Electrochemical
Energy Laboratory, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department
of Material Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
42
|
Briega-Martos V, Sarabia FJ, Climent V, Herrero E, Feliu JM. Cation Effects on Interfacial Water Structure and Hydrogen Peroxide Reduction on Pt(111). ACS MEASUREMENT SCIENCE AU 2021; 1:48-55. [PMID: 36785745 PMCID: PMC9836069 DOI: 10.1021/acsmeasuresciau.1c00004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The interface between the Pt(111) surface and several MeF/HClO4 (Me+ = Li+, Na+, or Cs+) aqueous electrolytes is investigated by means of cyclic voltammetry and laser-induced temperature jump experiments. Results point out that the effect of the electrolyte on the interfacial water structure is different depending on the nature of the metal alkali cation, with the values of the potential of maximum entropy (pme) following the order pme (Li+) < pme (Na+) < pme (Cs+). In addition, the hydrogen peroxide reduction reaction is studied under these conditions. This reaction is inhibited at low potentials as a consequence of the build up of negative charges on the electrode surface. The potential where this inhibition takes place (E inhibition) follows the same trend as the pme. These results evidence that the activity of an electrocatalytic reaction can depend to great extent on the structure of the interfacial water adlayer and that the latter can be modulated by the nature of the alkali metal cation.
Collapse
|
43
|
Li XY, Chen A, Yang XH, Zhu JX, Le JB, Cheng J. Linear Correlation between Water Adsorption Energies and Volta Potential Differences for Metal/water Interfaces. J Phys Chem Lett 2021; 12:7299-7304. [PMID: 34319117 DOI: 10.1021/acs.jpclett.1c02001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Potential of zero charge (PZC) is an important reference for understanding the interface charge and structure at a given potential, and its difference from the work function of metal surface (ΦM) is defined as the Volta potential difference (ΔΦ). In this work, we model 11 metal/water interfaces with ab initio molecular dynamics. Interestingly, we find ΔΦ is linearly correlated with the adsorption energy of water (Eads) on the metal surface. It is revealed that the size of Eads directly determines the coverage of chemisorbed water on the metal surface and accordingly affects the interface potential change caused by electron redistribution (ΔΦel). Moreover, ΔΦ is dominated by the electronic component ΔΦel with little orientational dipole contributing, which explains the linear correlation between ΔΦ and Eads. Finally, it is expected that this correlation can be helpful for effectively estimating the ΔΦel and PZC of other metal surfaces in the future work.
Collapse
Affiliation(s)
- Xiang-Ying Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ao Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiao-Hui Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jia-Xin Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jia-Bo Le
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
44
|
Surface charge and interfacial acid-base properties: pKa,2 of carbon dioxide at Pt(110)/perchloric acid solution interfaces. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Ding X, Garlyyev B, Watzele SA, Kobina Sarpey T, Bandarenka AS. Spotlight on the Effect of Electrolyte Composition on the Potential of Maximum Entropy: Supporting Electrolytes Are Not Always Inert. Chemistry 2021; 27:10016-10020. [PMID: 34050569 PMCID: PMC8361723 DOI: 10.1002/chem.202101537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 12/02/2022]
Abstract
The influence of electrolyte pH, the presence of alkali metal cations (Na+ , K+ ), and the presence of O2 on the interfacial water structure of polycrystalline gold electrodes has been experimentally studied in detail. The potential of maximum entropy (PME) was determined by the laser-induced current transient (LICT) technique. Our results demonstrate that increasing the electrolyte pH and introducing O2 shift the PME to more positive potentials. Interestingly, the PME exhibits a higher sensitivity to the pH change in the presence of K+ than Na+ . Altering the pH of the K2 SO4 solution from 4 to 6 can cause a drastic shift in the PME. These findings reveal that, for example, K2 SO4 and Na2 SO4 cannot be considered as equal supporting electrolytes: it is not a viable assumption. This can likely be extrapolated to other common "inert" supporting electrolytes. Beyond this, knowledge about the near-ideal electrolyte composition can be used to optimize electrochemical devices such as electrolyzers, fuel cells, batteries, and supercapacitors.
Collapse
Affiliation(s)
- Xing Ding
- Physics of Energy Conversion and StorageTechnical University of MunichJames-Franck-Strasse 185748GarchingGermany
| | - Batyr Garlyyev
- Physics of Energy Conversion and StorageTechnical University of MunichJames-Franck-Strasse 185748GarchingGermany
| | - Sebastian A. Watzele
- Physics of Energy Conversion and StorageTechnical University of MunichJames-Franck-Strasse 185748GarchingGermany
| | - Theophilus Kobina Sarpey
- Physics of Energy Conversion and StorageTechnical University of MunichJames-Franck-Strasse 185748GarchingGermany
| | - Aliaksandr S. Bandarenka
- Physics of Energy Conversion and StorageTechnical University of MunichJames-Franck-Strasse 185748GarchingGermany
- Catalysis Research Center TUMTechnical University of MunichErnst-Otto-Fischer-Strasse 185748GarchingGermany
| |
Collapse
|
46
|
On the relationship between potential of zero charge and solvent dynamics in the reversible hydrogen electrode. J Catal 2021. [DOI: 10.1016/j.jcat.2021.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
New insights into the hydrogen peroxide reduction reaction and its comparison with the oxygen reduction reaction in alkaline media on well-defined platinum surfaces. J Catal 2021. [DOI: 10.1016/j.jcat.2021.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Le JB, Chen A, Li L, Xiong JF, Lan J, Liu YP, Iannuzzi M, Cheng J. Modeling Electrified Pt(111)-H ad/Water Interfaces from Ab Initio Molecular Dynamics. JACS AU 2021; 1:569-577. [PMID: 34467320 PMCID: PMC8395682 DOI: 10.1021/jacsau.1c00108] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 05/08/2023]
Abstract
Unraveling the atomistic structures of electric double layers (EDL) at electrified interfaces is of paramount importance for understanding the mechanisms of electrocatalytic reactions and rationally designing electrode materials with better performance. Despite numerous efforts dedicated in the past, a molecular level understanding of the EDL is still lacking. Combining the state-of-the-art ab initio molecular dynamics (AIMD) and recently developed computational standard hydrogen electrode (cSHE) method, it is possible to realistically simulate the EDL under well-defined electrochemical conditions. In this work, we report extensive AIMD calculation of the electrified Pt(111)-Had/water interfaces at the saturation coverage of adsorbed hydrogen (Had) corresponding to the typical hydrogen evolution reaction conditions. We calculate the electrode potentials of a series of EDL models with various surface charge densities using the cSHE method and further obtain the Helmholtz capacitance that agrees with experiment. Furthermore, the AIMD simulations allow for detailed structural analyses of the electrified interfaces, such as the distribution of adsorbate Had and the structures of interface water and counterions, which can in turn explain the computed dielectric property of interface water. Our calculation provides valuable molecular insight into the electrified interfaces and a solid basis for understanding a variety of electrochemical processes occurring inside the EDL.
Collapse
Affiliation(s)
- Jia-Bo Le
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Ningbo
Institute of Materials Technology and Engineering, Chinese Academy
of Sciences, Ningbo 315201, China
| | - Ao Chen
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lang Li
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jing-Fang Xiong
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jinggang Lan
- Department
of Physical Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Yun-Pei Liu
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Marcella Iannuzzi
- Department
of Physical Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jun Cheng
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
49
|
Huang J, Li CK. Impedance response of electrochemical interfaces: part II-chemisorption. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:164003. [PMID: 33730712 DOI: 10.1088/1361-648x/abef9d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Physical modeling helps to acquire fundamental insights from experimental data when electrochemical impedance spectroscopy is employed for mechanistic understandings of electrocatalytic reactions. Herein, we report an analytical model for chemisorption impedance with a consistent treatment of ion transport in the solution and electron transfer on the electrode surface. Our formulation avoids botha prioridecoupling of double-layer charging and electron transfer reaction, and a strict separation of double-layer charging and ion transport. Ion transport in the entire solution region is described by the Poisson-Nernst-Planck theory and electron transfer kinetics on the electrode surface by the Frumkin-Butler-Volmer theory. Surface dipoles caused by partially charged chemisorbates are considered. The classical Frumkin-Melik-Gaikazyan model for chemisorption is retrieved as a limiting case. The obtained formula is validated using experimental data of hydrogen adsorption at Pt(111). Characteristic frequencies and asymptotic behaviors of chemisorption impedance are analyzed.
Collapse
Affiliation(s)
- Jun Huang
- Institute of Energy and Climate Research, Theory and Computation of Energy Materials (IEK-13), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Chen-Kun Li
- College of Chemistry and Chemical Engineering, Central South University, 410083 Changsha, People's Republic of China
| |
Collapse
|
50
|
Dix ST, Linic S. In-operando surface-sensitive probing of electrochemical reactions on nanoparticle electrocatalysts: Spectroscopic characterization of reaction intermediates and elementary steps of oxygen reduction reaction on Pt. J Catal 2021. [DOI: 10.1016/j.jcat.2021.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|