1
|
Wetzl C, Silvestri A, Garrido M, Hou HL, Criado A, Prato M. The Covalent Functionalization of Surface-Supported Graphene: An Update. Angew Chem Int Ed Engl 2023; 62:e202212857. [PMID: 36279191 DOI: 10.1002/anie.202212857] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 12/12/2022]
Abstract
In the last decade, the use of graphene supported on solid surfaces has broadened its scope and applications, and graphene has acquire a promising role as a major component of high-performance electronic devices. In this context, the chemical modification of graphene has become essential. In particular, covalent modification offers key benefits, including controllability, stability, and the facility to be integrated into manufacturing operations. In this Review, we critically comment on the latest advances in the covalent modification of supported graphene on substrates. We analyze the different chemical modifications with special attention to radical reactions. In this context, we review the latest achievements in reactivity control, tailoring electronic properties, and introducing active functionalities. Finally, we extended our analysis to other emerging 2D materials supported on surfaces, such as transition metal dichalcogenides, transition metal oxides, and elemental analogs of graphene.
Collapse
Affiliation(s)
- Cecilia Wetzl
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia, San Sebastián, Spain.,University of the Basque Country UPV-EHU, 20018, Donostia-San Sebastián, Spain
| | - Alessandro Silvestri
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia, San Sebastián, Spain
| | - Marina Garrido
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Hui-Lei Hou
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia, San Sebastián, Spain
| | - Alejandro Criado
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA), Rúa as Carballeiras, 15071, A Coruña, Spain
| | - Maurizio Prato
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia, San Sebastián, Spain.,Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy.,Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| |
Collapse
|
2
|
Pilan L. Tailoring the performance of electrochemical biosensors based on carbon nanomaterials via aryldiazonium electrografting. Bioelectrochemistry 2020; 138:107697. [PMID: 33486222 DOI: 10.1016/j.bioelechem.2020.107697] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023]
Abstract
Carbon nanomaterials (CNs) offer some of the most valuable properties for electrochemical biosensing applications, such as good electrical conductivity, wide electrochemical stability, high specific surface area, and biocompatibility. Regardless the envisioned sensing application, endowing CNs with specific functions through controlled chemical functionalization is fundamental for promoting the specific binding of the analyte. As a versatile and straightforward method of surface functionalization, aryldiazonium chemistry have been successfully used to accommodate in a stable and reproducible way different functionalities, while the electrochemical route has become the favourite choice since the deposition conditions can be readily controlled and adapted to the substrate. In particular, the modification of CNs by electrochemical reduction of aryl diazonium salts is established as a powerful tool which allows tailoring the chemical and electronic properties of the sensing platform. By outlining the stimulating results disclosed in the last years, this article provides not only a comprehensively review, but also a rational assessment on contribution of aryldiazonium electrografting in developing CNs-based electrochemical biosensors. Furthermore, some of the emerging challenges to be surpassed to effectively implement this methodology for in vivo and point of care analysis are also highlighted.
Collapse
Affiliation(s)
- Luisa Pilan
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania.
| |
Collapse
|
3
|
Bellunato A, Schneider GF. Electrophilic radical coupling at the edge of graphene. NANOSCALE 2018; 10:12011-12017. [PMID: 29905345 DOI: 10.1039/c8nr03429j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report the selective functionalization of an edge of graphene via the electrografting of 4-nitrobenzene diazonium tetrafluoroborate. The edge - a single line of carbon atoms - forms during the process of cutting a graphene monolayer with an atomically sharp microtome knife. Embedded in a polymeric matrix, the just cut bare graphene edge efficiently transfers electrons to a ferricyanide probe in solution. By monitoring the electron exchange reactions of the edge upon functionalization, we observe an annihilation of the reduction and oxidation peaks of the ferricyanide probe, characteristic of the formation of a nitroaryl passivation layer on the edge of graphene. For the first time, the chemical state of a single line of carbon atoms is influenced and monitored using an electrochemical cell, therefore bypassing the usual requirements of atomic resolution characterization techniques, which often demand very clean graphene samples and vacuum processing.
Collapse
Affiliation(s)
- Amedeo Bellunato
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands.
| | | |
Collapse
|
4
|
Mooste M, Kibena-Põldsepp E, Marandi M, Matisen L, Sammelselg V, Podvorica FI, Tammeveski K. Surface and electrochemical characterization of aryl films grafted on polycrystalline copper from the diazonium compounds using the rotating disk electrode method. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.03.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Zhang S, Zhang J, Li M, Zhang W, Cao L. Grafting and properties of a porous poly(methyl methacrylate) film on a silicon surface by a one-step dipping method. J Appl Polym Sci 2017. [DOI: 10.1002/app.44930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shanshan Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| | - Junhong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| | - Ming Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| | - Wenqi Zhang
- National Center for Advanced Packaging Company, Limited; 200 Linghu Boulevard Wuxi 214000 China
| | - Liqiang Cao
- National Center for Advanced Packaging Company, Limited; 200 Linghu Boulevard Wuxi 214000 China
| |
Collapse
|
6
|
Fu W, Jiang L, van Geest EP, Lima LMC, Schneider GF. Sensing at the Surface of Graphene Field-Effect Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1603610. [PMID: 27896865 DOI: 10.1002/adma.201603610] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/18/2016] [Indexed: 05/21/2023]
Abstract
Recent research trends now offer new opportunities for developing the next generations of label-free biochemical sensors using graphene and other two-dimensional materials. While the physics of graphene transistors operated in electrolyte is well grounded, important chemical challenges still remain to be addressed, namely the impact of the chemical functionalizations of graphene on the key electrical parameters and the sensing performances. In fact, graphene - at least ideal graphene - is highly chemically inert. The functionalizations and chemical alterations of the graphene surface - both covalently and non-covalently - are crucial steps that define the sensitivity of graphene. The presence, reactivity, adsorption of gas and ions, proteins, DNA, cells and tissues on graphene have been successfully monitored with graphene. This review aims to unify most of the work done so far on biochemical sensing at the surface of a (chemically functionalized) graphene field-effect transistor and the challenges that lie ahead. The authors are convinced that graphene biochemical sensors hold great promise to meet the ever-increasing demand for sensitivity, especially looking at the recent progresses suggesting that the obstacle of Debye screening can be overcome.
Collapse
Affiliation(s)
- Wangyang Fu
- Leiden University, Faculty of Science, Leiden Institute of Chemistry, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Lin Jiang
- Leiden University, Faculty of Science, Leiden Institute of Chemistry, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Erik P van Geest
- Leiden University, Faculty of Science, Leiden Institute of Chemistry, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Lia M C Lima
- Leiden University, Faculty of Science, Leiden Institute of Chemistry, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Grégory F Schneider
- Leiden University, Faculty of Science, Leiden Institute of Chemistry, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| |
Collapse
|
7
|
Mooste M, Kibena-Põldsepp E, Matisen L, Tammeveski K. Oxygen Reduction on Anthraquinone Diazonium Compound Derivatised Multi-walled Carbon Nanotube and Graphene Based Electrodes. ELECTROANAL 2016. [DOI: 10.1002/elan.201600451] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marek Mooste
- Institute of Chemistry; University of Tartu; Ravila 14a 50411 Tartu Estonia
| | | | - Leonard Matisen
- Institute of Physics; University of Tartu; W. Ostwald Str. 1 50411 Tartu Estonia
| | - Kaido Tammeveski
- Institute of Chemistry; University of Tartu; Ravila 14a 50411 Tartu Estonia
| |
Collapse
|
8
|
Zhang J, Li M, Zhang W, Cao L. One-Step Dipping Method for Covalently Grafting Polymer Films onto a Si Surface from Aqueous Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8709-8716. [PMID: 27441573 DOI: 10.1021/acs.langmuir.6b01931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A facile and one-pot dipping method was proposed in this article for the first time to prepare vinylic polymer films on a silicon (Si) surface. This novel process was conducted in acidic aqueous media containing 4-nitrobenzene diazonium (NBD) tetrafluoroborate, hydrofluoric acid (HF), and vinylic monomers at room temperature in the open air and without any apparatus requirement. The formation of the polyvinyl film was confirmed by corroborating evidence from ellipsometry, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscope (AFM) analysis. The results revealed that both polymers of poorly water soluble methyl methacrylate (MMA) and water-soluble acrylic acid (AA) monomers were covalently grafted onto the Si surface via this simple process. The polyvinyl film was composed of polynitrophenyl (PNP) and polyvinyl, where PNP was doped into polyvinyl chains throughout the entire film. From a mechanistic point of view, the simple dipping method took advantage of the ability of the NBD cation to be spontaneously reduced at the Si surface at open circuit potential, providing aryl radicals. These radicals can be covalently bonded to the Si surface to form the PNP primer layer. Although the PNP sublayer was thinner and difficult to detect, it was necessary to graft polyvinyl chains. Furthermore, the aryl radicals were used to initiate the polymerization of vinylic monomers. The radical-terminated polyvinyl chains formed in the solution were then added to the aromatic rings of the primer layer to form the expected polyvinyl film.
Collapse
Affiliation(s)
- Junhong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University , No. 800 Dongchuan Road, Shanghai 200240, China
| | - Ming Li
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University , No. 800 Dongchuan Road, Shanghai 200240, China
| | - Wenqi Zhang
- National Center for Advanced Packaging Co., LTD., 200 Linghu Boulevard, Wuxi 214000, China
| | - Liqiang Cao
- National Center for Advanced Packaging Co., LTD., 200 Linghu Boulevard, Wuxi 214000, China
| |
Collapse
|
9
|
Koefoed L, Pedersen EB, Thyssen L, Vinther J, Kristiansen T, Pedersen SU, Daasbjerg K. Functionalizing Arrays of Transferred Monolayer Graphene on Insulating Surfaces by Bipolar Electrochemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6289-96. [PMID: 27299175 DOI: 10.1021/acs.langmuir.6b01309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Development of versatile methods for graphene functionalization is necessary before use in applications such as composites or as catalyst support. In this study, bipolar electrochemistry is used as a wireless functionalization method to graft 4-bromobenzenediazonium on large (10 × 10 mm(2)) monolayer graphene sheets supported on SiO2. Using this technique, transferred graphene can be electrochemically functionalized without the need of a metal support or the deposition of physical contacts. X-ray photoelectron spectroscopy and Raman spectroscopy are used to map the chemical changes and modifications of graphene across the individual sheets. Interestingly, the defect density is similar between samples, independent of driving potential, whereas the grafting density is increased upon increasing the driving potential. It is observed that the 2D nature of the electrode influences the electrochemistry and stability of the electrode compared to conventional electrografting using a three-electrode setup. On one side, the graphene will be blocked by the attached organic film, but the conductivity is also altered upon functionalization, which makes the graphene electrode different from a normal metal electrode. Furthermore, it is shown that it is possible to simultaneously modify an array of many small graphene electrodes (1 × 1 mm(2)) on SiO2.
Collapse
Affiliation(s)
- Line Koefoed
- Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Emil Bjerglund Pedersen
- Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Lena Thyssen
- Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Jesper Vinther
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Thomas Kristiansen
- Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Steen U Pedersen
- Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Kim Daasbjerg
- Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
- Carbon Dioxide Activation Center, Aarhus University , Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|
10
|
Mooste M, Kibena-Põldsepp E, Marandi M, Matisen L, Sammelselg V, Tammeveski K. Electrochemical properties of gold and glassy carbon electrodes electrografted with an anthraquinone diazonium compound using the rotating disc electrode method. RSC Adv 2016. [DOI: 10.1039/c6ra05609a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The RDE method was combined with the electrografting procedure to prepare thick AQ films on Au and glassy carbon electrodes.
Collapse
Affiliation(s)
- M. Mooste
- Institute of Chemistry
- University of Tartu
- 50411 Tartu
- Estonia
| | | | - M. Marandi
- Institute of Physics
- University of Tartu
- 50411 Tartu
- Estonia
| | - L. Matisen
- Institute of Physics
- University of Tartu
- 50411 Tartu
- Estonia
| | - V. Sammelselg
- Institute of Chemistry
- University of Tartu
- 50411 Tartu
- Estonia
- Institute of Physics
| | - K. Tammeveski
- Institute of Chemistry
- University of Tartu
- 50411 Tartu
- Estonia
| |
Collapse
|
11
|
Gold-organic thin films from the reductive grafting of diazonium gold(III) salts. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|