1
|
Song T, Gao G, Cui D, Wang C, Zhang H, Liang F, Yang B, Zhang K, Yao Y. Achieving ultrastability and efficient lithium storage capacity with high-energy iron(II) oxalate anode materials by compositing Ge nano-conductive sites. NANOSCALE 2023; 15:2700-2713. [PMID: 36651867 DOI: 10.1039/d2nr06422g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Transition metal oxalates (TMOxs, represented by iron oxalate) have attracted considerable interest in anode materials due to their excellent lithium storage properties and consistent cyclic performance. Although investigations into their electrochemical capabilities and lithium storage mechanisms are gradually deepening, the complex and varied electrochemical reactions in the initial cycle, poor inherent conductivity, and high irreversible capacity constrain their further development. Herein, to solve the above-mentioned problems, we controlled the hydrothermal synthesis conditions of iron oxalate with the assistance of organic solvents, which induced the growth of iron oxalate crystals with nano Ge metal as the core. The metal Ge space sites compounded to the stacked iron oxalate particles act as conductive nodes and metal frames, which enhances both the strength of iron oxalate samples and electronic conductivity and lithium-ion diffusion inside the electrode materials. This special structure enhances the electrochemical activity of iron oxalates and improves their lithium storage capability. The iron oxalate @ nano Ge metal composite (FCO@Ge-1) exhibits an excellent cycling performance and an appreciable reversible specific capacity (1090 mA h g-1 after 200 cycles at 1 A g-1). The obvious polarization and variation of the electrochemical reaction in the initial cycle of iron oxalate are reduced by compositing nano Ge metal. It is demonstrated that nano Ge metal can promote reversible capacity retention from 67.72% to 80.69% in the early cycles. The distinctive structure of iron oxalate @ nano Ge metal composite provides a fresh pathway to enhance oxalate electrochemical reversible lithium storage activity and develop high-energy electrode material by constructing composite space conductive sites.
Collapse
Affiliation(s)
- Tingyu Song
- National Engineering Research Center of Vacuum Metallurgy, Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.
- National Local Joint Engineering Laboratory of Lithium Ion Battery and Material Preparation Technology, Kunming University of Science and Technology, Kunming 650093, China
| | - Geng Gao
- National Engineering Research Center of Vacuum Metallurgy, Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.
- National Local Joint Engineering Laboratory of Lithium Ion Battery and Material Preparation Technology, Kunming University of Science and Technology, Kunming 650093, China
| | - Dingfang Cui
- Yunnan Chihong International Germanium Industry Co., Ltd, Qujing 655011, China
| | - Chong Wang
- Yunnan Chihong International Germanium Industry Co., Ltd, Qujing 655011, China
| | - Hui Zhang
- National Engineering Research Center of Vacuum Metallurgy, Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.
- National Local Joint Engineering Laboratory of Lithium Ion Battery and Material Preparation Technology, Kunming University of Science and Technology, Kunming 650093, China
| | - Feng Liang
- National Engineering Research Center of Vacuum Metallurgy, Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.
- National Local Joint Engineering Laboratory of Lithium Ion Battery and Material Preparation Technology, Kunming University of Science and Technology, Kunming 650093, China
| | - Bin Yang
- National Engineering Research Center of Vacuum Metallurgy, Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.
| | - Keyu Zhang
- National Engineering Research Center of Vacuum Metallurgy, Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.
- National Local Joint Engineering Laboratory of Lithium Ion Battery and Material Preparation Technology, Kunming University of Science and Technology, Kunming 650093, China
| | - Yaochun Yao
- National Engineering Research Center of Vacuum Metallurgy, Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.
- National Local Joint Engineering Laboratory of Lithium Ion Battery and Material Preparation Technology, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
2
|
Zhou Z, Lin P, Zhao S, Jin H, Qian Y, Chen XA, Tang X, Zhang Q, Guo D, Wang S. High Pseudocapacitance-Driven CoC 2 O 4 Electrodes Exhibiting Superior Electrochemical Kinetics and Reversible Capacities for Lithium-Ion and Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205887. [PMID: 36344416 DOI: 10.1002/smll.202205887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/25/2022] [Indexed: 06/16/2023]
Abstract
In this study, cuboid-like anhydrous CoC2 O4 particles (CoC2 O4 -HK) are synthesized through a potassium citrate-assisted hydrothermal method, which possess well-crystallized structure for fast Li+ transportation and efficient Li+ intercalation pseudocapacitive behaviors. When being used in lithium-ion batteries, the as-prepared CoC2 O4 -HK delivers a high reversible capacity (≈1360 mAh g-1 at 0.1 A g-1 ), good rate capability (≈650 mAh g-1 at 5 A g-1 ) and outstanding cycling stability (835 mAh g-1 after 1000 cycles at 1 A g-1 ). Characterizations illustrate that the Li+ -intercalation pseudocapacitance dominates the charge storage of CoC2 O4 -HK electrode, together with the reversible reaction of CoC2 O4 +2Li+ +2e- →Co+Li2 C2 O4 on discharging and charging. In addition, CoC2 O4 -HK particles are also used together with carbon-sulfur composite materials as the electrocatalysts for lithium-sulfur (Li-S) battery, which displays a gratifying sulfur electrochemistry with a high reversibility of 1021.5 mAh g-1 at 2 C and a low decay rate of 0.079% per cycle after 500 cycles. The density functional theory (DFT) calculations show that CoC2 O4 /C can regulate the adsorption-activation of reaction intermediates and therefore boost the catalytic conversion of polysulfides. Therefore, this work presents a new prospect of applying CoC2 O4 as the high-performance electrode materials for rechargeable Li-ion and Li-S batteries.
Collapse
Affiliation(s)
- Zhiming Zhou
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang, 325035, China
| | - Peirong Lin
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang, 325035, China
| | - Shiqiang Zhao
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Huile Jin
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Yudan Qian
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang, 325035, China
| | - Xi An Chen
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Xinyue Tang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang, 325035, China
| | - Qingcheng Zhang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Daying Guo
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Shun Wang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
3
|
Urchin like inverse spinel manganese doped NiCo2O4 microspheres as high performances anode for lithium-ion batteries. J Colloid Interface Sci 2022; 616:509-519. [DOI: 10.1016/j.jcis.2022.02.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022]
|
4
|
Duan Y, Huang Z, Dong X, Ren J, Lin L, Wu S, Jia R, Xu X. A comprehensive evaluation of Co, Ni, Cu and Zn doped manganese oxalate for lithium storage. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Zhang YN, Li SS, Kuai HX, Long YF, Lv XY, Su J, Wen YX. Proton solvent-controllable synthesis of manganese oxalate anode material for lithium-ion batteries. RSC Adv 2021; 11:23259-23269. [PMID: 35479803 PMCID: PMC9036545 DOI: 10.1039/d1ra03669f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/15/2021] [Indexed: 11/21/2022] Open
Abstract
Manganese oxalates with different structures and morphologies were prepared by the precipitation method in a mixture of dimethyl sulfoxide (DMSO) and proton solvents. The proton solvents play a key role in determining the structures and morphologies of manganese oxalate. Monoclinic MnC2O4·2H2O microrods are prepared in H2O-DMSO, while MnC2O4·H2O nanorods and nanosheets with low crystallinity are synthesized in ethylene glycol-DMSO and ethanol-DMSO, respectively. The corresponding dehydrated products are mesoporous MnC2O4 microrods, nanorods, and nanosheets, respectively. When used as anode material for Li-ion batteries, mesoporous MnC2O4 microrods, nanorods, and nanosheets deliver a capacity of 800, 838, and 548 mA h g-1 after 120 cycles at 8C, respectively. Even when charged/discharged at 20C, mesoporous MnC2O4 nanorods still provide a reversible capacity of 647 mA h g-1 after 600 cycles, exhibiting better rater performance and cycling stability. The electrochemical performance is greatly influenced by the synergistic effect of surface area, morphology, and size. Therefore, the mesoporous MnC2O4 nanorods are a promising anode material for Li-ion batteries due to their good cycle stability and rate performance.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University Nanning Guangxi 530004 China
| | - Shu-Shu Li
- School of Chemistry and Chemical Engineering, Guangxi University Nanning Guangxi 530004 China
| | - Hong-Xiang Kuai
- School of Chemistry and Chemical Engineering, Guangxi University Nanning Guangxi 530004 China
| | - Yun-Fei Long
- School of Chemistry and Chemical Engineering, Guangxi University Nanning Guangxi 530004 China
| | - Xiao-Yan Lv
- The New Rural Development Research Institute, Guangxi University Nanning 530004 Guangxi China
| | - Jing Su
- School of Chemistry and Chemical Engineering, Guangxi University Nanning Guangxi 530004 China
| | - Yan-Xuan Wen
- School of Chemistry and Chemical Engineering, Guangxi University Nanning Guangxi 530004 China
- Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, Guangxi University Nanning 530004 China
| |
Collapse
|
6
|
Hierarchical structure constructed by manganese oxalate framework with accurate iron doping for ultra-efficient lithium storage. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Liang J, Huang Y, Huang Y, Xu M, Lei J, Tao H, Wu X, Wu W. Hydrothermal synthesis of urchin-like NiCo2O4/stereotaxically constructed graphene microspheres for ultrahigh-rate lithium and sodium storage. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
|
9
|
Kim H, Choi W, Yoon J, Um JH, Lee W, Kim J, Cabana J, Yoon WS. Exploring Anomalous Charge Storage in Anode Materials for Next-Generation Li Rechargeable Batteries. Chem Rev 2020; 120:6934-6976. [DOI: 10.1021/acs.chemrev.9b00618] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hyunwoo Kim
- Department of Energy Science, Sungkyunkwan University (SKKU), Natural Sciences Campus, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Woosung Choi
- Department of Energy Science, Sungkyunkwan University (SKKU), Natural Sciences Campus, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Jaesang Yoon
- Department of Energy Science, Sungkyunkwan University (SKKU), Natural Sciences Campus, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Ji Hyun Um
- Department of Energy Science, Sungkyunkwan University (SKKU), Natural Sciences Campus, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Wontae Lee
- Department of Energy Science, Sungkyunkwan University (SKKU), Natural Sciences Campus, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Jaeyoung Kim
- Department of Energy Science, Sungkyunkwan University (SKKU), Natural Sciences Campus, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Jordi Cabana
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Won-Sub Yoon
- Department of Energy Science, Sungkyunkwan University (SKKU), Natural Sciences Campus, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| |
Collapse
|
10
|
Yang Y, He L, Lu J, Liu Z, Wang N, Su J, Long Y, Lv X, Wen Y. Rapid Assemble of MnC2O4 Microtubes Using a Microchannel Reactor and Their Use as an Anode Material for Lithium-ion Batteries. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134673] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Li N, Li Q, Yuan M, Guo X, Zheng S, Pang H. Synthesis of Co 0.5 Mn 0.1 Ni 0.4 C 2 O 4 ⋅n H 2 O Micropolyhedrons: Multimetal Synergy for High-Performance Glucose Oxidation Catalysis. Chem Asian J 2019; 14:2259-2265. [PMID: 30977269 DOI: 10.1002/asia.201900361] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/09/2019] [Indexed: 01/21/2023]
Abstract
Owing to the synergy between metals, trimetal oxalate micropolyhedrons have been synthesized by means of a room-temperature coprecipitation strategy. The effect of their nanoscale size on their electrochemical performance toward glucose oxidation was investigated. In particular, the Co0.5 Mn0.1 Ni0.4 C2 O4 ⋅n H2 O micropolyhedrons illustrated prominent electrocatalytic activity for the glucose oxidation reaction. Additionally, the Co0.5 Mn0.1 Ni0.4 C2 O4 ⋅n H2 O micropolyhedrons, when used as an electrode material, illustrated an excellent lower limit of detection (1.5 μm), a wide detection concentration range (0.5-5065.5 μm), and a high sensitivity (493.5 μA mm-1 cm-2 ). Further analysis indicated that the effectively improved conductivity may have been due to the small size of the materials, and it was easier to form a flat film when Nafion was coated onto the glassy carbon electrode.
Collapse
Affiliation(s)
- Nan Li
- School of Chemistry and Chemical Engineering, Guanglin College, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Qing Li
- School of Chemistry and Chemical Engineering, Guanglin College, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Meijuan Yuan
- School of Chemistry and Chemical Engineering, Guanglin College, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Xiaotian Guo
- School of Chemistry and Chemical Engineering, Guanglin College, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Shasha Zheng
- School of Chemistry and Chemical Engineering, Guanglin College, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Guanglin College, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| |
Collapse
|
12
|
Jo CH, Yashiro H, Yuan S, Shi L, Myung ST. Conversion Chemistry of Cobalt Oxalate for Sodium Storage. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40523-40530. [PMID: 30371051 DOI: 10.1021/acsami.8b13641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Conversion electrodes, which can realize high capacities by employing the wider valence states of transition metals, are investigated for sodium storage and applied for rechargeable sodium-ion batteries (SIBs). Importantly, this work is a first report for the sodium storage ability and related storage mechanism in oxalate compounds, specifically cobalt oxalate (CoC2O4) nanorods. The nanorods are intimately blended with acetylene black powders to achieve sufficient electrical conductivity (∼10-3 S cm-1). The resulting C-CoC2O4 electrode delivers an initial capacity of about 330 mA h (g-CoC2O4)-1 at a rate of 0.2 C (60 mA g-1) and preserves 75% of the initial capacity over 200 cycles. A high charge (oxidation) capacity, ∼111 mA h g-1, was achieved even at 30 C (9000 mA g-1). This remarkable electrode performance is reported for the first time for metal oxalate compounds tested for Na cells, to the best of our knowledge. X-ray diffraction, transmission electron microscopy, and time-of-flight secondary-ion mass spectroscopy analyses lead to the proposal of a new sodium storage mechanism. For this mechanism, CoC2O4 is converted into Co metal involving with the creation of Na2C2O4 on discharge (reduction), and the Co metal is recovered to CoC2O4 on charge. The employed electroconducting carbon is likely to provide good electron conduction paths, which enables fast conversion on both discharge and charge. A full cell comprised of the C-CoC2O4 anode and carbon-coated NaCrO2 cathode exhibits good retention capacity over prolonged cycling, with retention of about 84.7% of the first capacity [107 mA h (g-NaCrO2)-1] for 300 cycles, and is active at a rate of 5 C (550 mA g-1), with a capacity of 79.5 mA h g-1. This result demonstrates the potential of applying C-CoC2O4 as an anode material for rechargeable SIBs.
Collapse
Affiliation(s)
- Chang-Heum Jo
- Department of Nano Technology and Advanced Materials Engineering & Sejong Battery Institute , Sejong University , Gunja-dong , Gwangjin-gu, Seoul 143-747 , Republic of Korea
| | - Hitoshi Yashiro
- Department of Chemistry and Bioengineering , Iwate University , Ueda 4-3-5 , Morioka , Iwate 020-8551 , Japan
| | - Shuai Yuan
- Research Centre of Nanoscience and Nanotechnology , Shanghai University , Shanghai 200444 , China
| | - Liyi Shi
- Research Centre of Nanoscience and Nanotechnology , Shanghai University , Shanghai 200444 , China
| | - Seung-Taek Myung
- Department of Nano Technology and Advanced Materials Engineering & Sejong Battery Institute , Sejong University , Gunja-dong , Gwangjin-gu, Seoul 143-747 , Republic of Korea
| |
Collapse
|
13
|
Alonso-Domínguez D, Pico MP, Álvarez-Serrano I, López ML. New Fe₂O₃-Clay@C Nanocomposite Anodes for Li-Ion Batteries Obtained by Facile Hydrothermal Processes. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E808. [PMID: 30304803 PMCID: PMC6215114 DOI: 10.3390/nano8100808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 11/24/2022]
Abstract
New iron-oxide-based anodes are prepared by an environmentally-friendly and low-cost route. The analysis of the composition, structure, and microstructure of the samples reveals the presence of a major hematite phase, which is accompanied by a certain concentration of an oxyhydroxide phase, which can act as a "lithium-reservoir". By using sodium alginate as a binder, the synthesized anodes display superior electrochemical response, i.e., high specific capacity values and high stability, not only versus Li but also versus a high voltage cathode in a full cell. From these bare materials, clay-supported anodes are further obtained using sepiolite and bentonite natural silicates. The electrochemical performance of such composites is improved, especially for the sepiolite-containing one treated at 400 °C. The thermal treatment at this temperature provides the optimal conditions for a synergic nano-architecture to develop between the clay and the hematite nanoparticles. High capacity values of ~2500 mA h g-1 after 30 cycles at 1 A g-1 and retentions close to 92% are obtained. Moreover, after 450 cycles at 2 A g-1 current rate, this composite electrode displays values as high as ~700 mA h g-1. These results are interpreted taking into account the interactions between the iron oxide nanoparticles and the sepiolite surface through hydrogen bonds. The electrochemical performance is not only dependent on the oxidation state and particle morphology, but the composition is revealed as a key feature.
Collapse
Affiliation(s)
- Daniel Alonso-Domínguez
- Department of Inorganic Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, Av. Complutense, E-28040 Madrid, Spain.
| | - María Pilar Pico
- Department of R&D, Sepiolsa, Av. Acero, 14-16, Pol. UP-1 (Miralcampo), 19200 Azuqueca de Henares, Guadalajara, Spain.
| | - Inmaculada Álvarez-Serrano
- Department of Inorganic Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, Av. Complutense, E-28040 Madrid, Spain.
| | - María Luisa López
- Department of Inorganic Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, Av. Complutense, E-28040 Madrid, Spain.
| |
Collapse
|
14
|
Recent Progress and Challenges of Micro-/Nanostructured Transition Metal Carbonate Anodes for Lithium Ion Batteries. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800853] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Yan C, Fang Z, Lv C, Zhou X, Chen G, Yu G. Significantly Improving Lithium-Ion Transport via Conjugated Anion Intercalation in Inorganic Layered Hosts. ACS NANO 2018; 12:8670-8677. [PMID: 30020773 DOI: 10.1021/acsnano.8b04614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Layered hydroxides (LHs) have emerged as an important class of functional materials owing to their unusual physicochemical properties induced by various intercalated species. While both the electrochemistry and interlayer engineering of the materials have been reported, the role of interlayer engineering in improving the Li-ion storage of these materials remains unclear. Here, we rationally introduce pillar ions with conjugated anion dicarboxylate groups, cobalt oxalate ions ([CoOx2]2-), into the interlayers of Co(OH)2 nanosheets [denoted as I-Co(OH)2 NSs]. The pillar ion guarantees excellent structural stability, high electrical conductivity, and accelerated Li-ion diffusion. The structure delivers high-rate cycling performance for lithium-ion batteries. This work provides insights for the design of LH-based high-performance electrode materials by a rational interlayer-engineering strategy.
Collapse
Affiliation(s)
- Chunshuang Yan
- Materials Science and Engineering Program and Department of Mechanical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , PR China
| | - Zhiwei Fang
- Materials Science and Engineering Program and Department of Mechanical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Chade Lv
- Materials Science and Engineering Program and Department of Mechanical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , PR China
| | - Xin Zhou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , PR China
| | - Gang Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , PR China
| | - Guihua Yu
- Materials Science and Engineering Program and Department of Mechanical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
16
|
Yang G, Zhang B, Feng J, Wang H, Ma M, Huang K, Liu J, Madhavi S, Shen Z, Huang Y. High-Crystallinity Urchin-like VS 4 Anode for High-Performance Lithium-Ion Storage. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14727-14734. [PMID: 29624045 DOI: 10.1021/acsami.8b01876] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
VS4 anode materials with controllable morphologies from hierarchical microflower, octopus-like structure, seagrass-like structure to urchin-like structure have been successfully synthesized by a facile solvothermal synthesis approach using different alcohols as solvents. Their structures and electrochemical properties with various morphologies are systematically investigated, and the structure-property relationship is established. Experimental results reveal that Li+ ion storage behavior in VS4 significantly depends on physical features such as the morphology, crystallite size, and specific surface area. According to this study, electrochemical performance degrades on the order of urchin-like VS4 > octopus-like VS4 > seagrass-like VS4 > flower-like VS4. Among them, urchin-like VS4 demonstrates the best electrochemical performance benefiting from its peculiar structure which possesses large surface area that accommodates the volume change to a certain extent, and single-crystal thorns that provide fast electron transportation. Kinetic parameters derived from EIS spectra and sweep-rate-dependent CV curves, such as charge-transfer resistances, Li+ ion apparent diffusion coefficients and stored charge ratio of capacitive and intercalation contributions, both support this claim well. In addition, the EIS measurement was conducted during the first discharge/charge process to study the solid electrolyte interface (SEI) formation on urchin-like VS4 and kinetics behavior of Li+ ion diffusion. A better fundamental understanding on Li+ storage behavior in VS4 is promoted, which is applicable to other vanadium-based materials as well. This study also provides invaluable guidance for morphology-controlled synthesis tailored for optimal electrochemical performance.
Collapse
Affiliation(s)
- Guang Yang
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Bowei Zhang
- Energy Research Institute @ NTU (ERI@N) , Nanyang Technological University , ResearchTechno Plaza, 50 Nanyang Drive , 637553 , Singapore
| | - Jianyong Feng
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Huanhuan Wang
- CINTRA CNRS/NTU/Thales, UMI 3288 , 50 Nanyang Drive , 637553 , Singapore
| | - Mingbo Ma
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Kang Huang
- Institute of Advanced Materials and Technology , University of Science and Technology Beijing , Beijing 100083 , China
| | - Jilei Liu
- College of Materials Science and Engineering , Hunan University , Changsha 410082 , China
| | - Srinivasan Madhavi
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
- Energy Research Institute @ NTU (ERI@N) , Nanyang Technological University , ResearchTechno Plaza, 50 Nanyang Drive , 637553 , Singapore
| | - Zexiang Shen
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
- Energy Research Institute @ NTU (ERI@N) , Nanyang Technological University , ResearchTechno Plaza, 50 Nanyang Drive , 637553 , Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences , Nanyang Technological University , 637371 , Singapore
| | - Yizhong Huang
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| |
Collapse
|
17
|
Li Q, Liu Z, Wang C, Zhao Y, Che R. Doping of Ni and Zn Elements in MnCO 3 : High-Power Anode Material for Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1702574. [PMID: 29251416 DOI: 10.1002/smll.201702574] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Herein, Ni and Zn elements are doped simultaneously in MnCO3 and microspheric Mnx Niy Znz CO3 is successfully obtained. Atomic mapping images reveal that the Ni and Zn elements have been successfully doped in MnCO3 and thus the prepared sample is not a mixture of MnCO3 , NiCO3 , and ZnCO3 . It is the first time that the atomic mapping images of ternary transition metal carbonates have been demonstrated so far. The scanning transmission electron microscopy - annular bright field (STEM-ABF) image successfully confirms the formation of oxygen vacancies in Mnx Niy Znz CO3 , which is beneficial to improve the electrical conductivity. The evolution of the microstructure from crystal to amorphization during cycling process confirmed by the fast Fourier transform patterns effectively lowers the overpotential of the conversion reaction and accelerates the conversion between Mn2+ and much higher valence of Mn element, contributing to the superior capacity of Mnx Niy Znz CO3 electrode. As anode material for lithium-ion batteries, the prepared Mnx Niy Znz CO3 exhibits excellent long-term cycling stability and outstanding rate performance, delivering the superior reversible discharge capacities of 1066 mA h g-1 at 500 mA g-1 after 500 cycles and 760 mA h g-1 at 1 A g-1 after 1000 cycles. It is the first time that Mnx Niy Znz CO3 has been synthesized and used as anode for lithium-ion batteries so far.
Collapse
Affiliation(s)
- Qing Li
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Zhengwang Liu
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Chao Wang
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Yunhao Zhao
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
18
|
Liu L, Lu C, Xiang M, Zhang Y, Liu H, Wu H. Template-Assisted Synthesis of a One-Dimensional Hierarchical Li1.2
Mn0.54
Ni0.13
Co0.13
O2
Microrod Cathode Material for Lithium-Ion Batteries. ChemElectroChem 2016. [DOI: 10.1002/celc.201600607] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lan Liu
- Department of Advanced Energy Materials; College of Materials Science and Engineering; Sichuan University; Chengdu 610064 P.R. China
| | - Chao Lu
- Chengdu Polytechnic; Chengdu 610041 P.R. China
| | - Mingwu Xiang
- Department of Advanced Energy Materials; College of Materials Science and Engineering; Sichuan University; Chengdu 610064 P.R. China
| | - Yun Zhang
- Department of Advanced Energy Materials; College of Materials Science and Engineering; Sichuan University; Chengdu 610064 P.R. China
| | - Heng Liu
- Department of Advanced Energy Materials; College of Materials Science and Engineering; Sichuan University; Chengdu 610064 P.R. China
| | - Hao Wu
- Department of Advanced Energy Materials; College of Materials Science and Engineering; Sichuan University; Chengdu 610064 P.R. China
| |
Collapse
|
19
|
Lamiel C, Nguyen VH, Roh C, Kang C, Shim JJ. Synthesis of mesoporous RGO@(Co,Mn)3O4 nanocomposite by microwave-assisted method for supercapacitor application. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.05.171] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Li Q, Wang C, Li Q, Che R. The role of graphene in nano-layered structure and long-term cycling stability of MnxCoyNizCO3 as an anode material for lithium-ion batteries. RSC Adv 2016. [DOI: 10.1039/c6ra23554a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The prepared nano-layered MnxCoyNizCO3/graphene composite as an anode material for lithium-ion batteries demonstrated long-term cycling stability and perfect rate performance.
Collapse
Affiliation(s)
- Qing Li
- Laboratory of Advanced Materials
- Fudan University
- Shanghai 200433
- P. R. China
| | - Chao Wang
- Laboratory of Advanced Materials
- Fudan University
- Shanghai 200433
- P. R. China
| | - Qingqing Li
- Laboratory of Advanced Materials
- Fudan University
- Shanghai 200433
- P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials
- Fudan University
- Shanghai 200433
- P. R. China
| |
Collapse
|