1
|
Schneider E, Tita MD, Guerreiro JL, Duarte AJ, Moreira FTC. Prussian blue nanocubes with peroxidase-like activity for polyphenol detection in commercial beverages. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3663-3674. [PMID: 38804266 DOI: 10.1039/d4ay00201f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The present study describes an efficient method for the determination of polyphenol content in beverages based on a composite material of graphene oxide decorated with Prussian blue nanocubes (rGO/PBNCs). In this method, rGO/PBNCs act as a nanoenzyme with peroxidase-like catalytic activity and produce a colorimetric product in the presence of hydrogen peroxide and tetramethylbenzidine (TMB). To verify the effectiveness of the method, we used two model standards for antioxidants: gallic acid (GA) and tannic acid (TA). The method validation included a comparison of the performance of a natural enzyme and an artificial one (rGO/PBNCs) and two polyphenols in the analysis of commercial beverage samples. After optimization, a pH of 4, ambient temperature (22 °C), a reaction time of 2 minutes and an rGO/PBNCs concentration of 0.01 μg mL-1 were found to be the most favorable conditions. The detection limits obtained were 5.6 μmol L-1 for GA and 1.5 μmol L-1 for TA. Overall, rGO/PBNCs offer advantages over natural enzymes in terms of stability, versatility, scalability and durability, making them attractive candidates for a wide range of catalytic and sensory applications.
Collapse
Affiliation(s)
- Eduarda Schneider
- CIETI-LabRISE, School of Engineering, Polytechnic of Porto, R. Dr António Bernardino de Almeida, 431, 4200-072, Porto, Portugal.
| | - Marta D Tita
- CIETI-LabRISE, School of Engineering, Polytechnic of Porto, R. Dr António Bernardino de Almeida, 431, 4200-072, Porto, Portugal.
| | - Joana L Guerreiro
- CIETI-LabRISE, School of Engineering, Polytechnic of Porto, R. Dr António Bernardino de Almeida, 431, 4200-072, Porto, Portugal.
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Abel J Duarte
- CIETI-LabRISE, School of Engineering, Polytechnic of Porto, R. Dr António Bernardino de Almeida, 431, 4200-072, Porto, Portugal.
| | - Felismina T C Moreira
- CIETI-LabRISE, School of Engineering, Polytechnic of Porto, R. Dr António Bernardino de Almeida, 431, 4200-072, Porto, Portugal.
| |
Collapse
|
2
|
Liu B, Zhu H, Liu J, Wang M, Pan J, Feng R, Hu P, Niu X. Alkali-Etched Imprinted Mn-Based Prussian Blue Analogues with Superior Oxidase-Mimetic Activity and Precise Recognition for Tetracycline Colorimetric Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24736-24746. [PMID: 37163688 DOI: 10.1021/acsami.3c02207] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
As a typical antibiotic pollutant, tetracycline (TC) is producing increasing threats to the ecosystem and human health, and exploring convenient means for monitoring of TC is needed. Here, we proposed alkali-etched imprinted Mn-based Prussian blue analogues featuring superior oxidase-mimetic activity and precise recognition for the colorimetric sensing of TC. Simply etching Mn-based Prussian blue analogues (Mn-PBAs) with NaOH could expose the sites and surfaces to significantly improve their catalytic activity. Density functional theory calculations were employed to screen the molecularly imprinted polymer (MIP) layer for target identification. Consequently, the designed Mn-PBANaOH@MIP possessed the rich channels for substrates to get in touch with the active Mn-PBANaOH core, showing an excellent catalytic capacity to trigger the chromogenic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) without the use of H2O2. If TC was introduced, it would be recognized selectively by the MIP shell and masked the channels for TMB access, resulting in the obstruction of the chromogenic reaction. According to this mechanism, selective optical detection of TC was achieved, and performance stability, reusability, and reliability as well as practicability were also verified, promising potential for TC monitoring in complex matrices. Our work not only presents an effective way to enhance the enzyme-like activity of Prussian blue analogues but also provides a facile approach for TC sensing. Additionally, the work will inspire the exploration of molecularly imprinted nanozymes for various applications.
Collapse
Affiliation(s)
- Bangxiang Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hengjia Zhu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jinjin Liu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Mengzhu Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianming Pan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rulin Feng
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Panwang Hu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiangheng Niu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
3
|
Tran VA, Doan VD, Le VT, Nguyen TQ, Don TN, Vien V, Luan NT, Vo GNL. Metal–Organic Frameworks-Derived Material for Electrochemical Biosensors: Recent Applications and Prospects. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Vy Anh Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Van Dat Doan
- The Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Danang, 550000, Vietnam
| | - Thanh-Quang Nguyen
- Department of External Relations and Project Development, Institute of Applied Science and Technology (IAST), Van Lang University, Ho Chi Minh City, 700000, Vietnam
| | - Ta Ngoc Don
- Ministry of Education and Training, Ha Noi City, 100000, Vietnam
| | - Vo Vien
- Applied Research Institute for Science and Technology, Quy Nhon University, Quy Nhon, 820000, Vietnam
| | - Nguyen Thanh Luan
- Department of Science and Technology, HUTECH University, Ho Chi Minh City 700000, Vietnam
| | - Giang N. L. Vo
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| |
Collapse
|
4
|
Design of hollow nanostructured photocatalysts for clean energy production. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
5
|
Wang J, Chen C, Xiong D, Lu C, Liu T, Ying S, Kong Y, Yi FY. Prussian blue analogue fabricated one-dimensional hollow tube for high-performance detection of glucose. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Muslu E, Eren E, Oksuz AU. Prussian Blue-Based Flexible Thin Film Nanoarchitectonics for Non-enzymatic Electrochemical Glucose Sensor. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02290-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Chalil Oglou R, Ulusoy Ghobadi TG, Ozbay E, Karadas F. Selective Glucose Sensing under Physiological pH with Flexible and Binder‐Free Prussian Blue Coated Carbon Cloth Electrodes. ChemElectroChem 2022. [DOI: 10.1002/celc.202101355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ramadan Chalil Oglou
- Institute of Material Science and Nanotechnology, UNAM – National Nanotechnology Research Center Bilkent University Ankara 06800 Turkey
| | | | - Ekmel Ozbay
- NANOTAM – Nanotechnology Research Center, Department of Electrical and Electronics Engineering Department of Physics Bilkent University Ankara 06800 Turkey
| | - Ferdi Karadas
- Department of Chemistry Bilkent University Ankara 06800 Turkey
- Institute of Material Science and Nanotechnology, UNAM – National Nanotechnology Research Center Bilkent University Ankara 06800 Turkey
| |
Collapse
|
8
|
Chalil Oglou R, Ulusoy Ghobadi TG, Ozbay E, Karadas F. Electrodeposited cobalt hexacyanoferrate electrode as a non-enzymatic glucose sensor under neutral conditions. Anal Chim Acta 2021; 1188:339188. [PMID: 34794574 DOI: 10.1016/j.aca.2021.339188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
A CoFe Prussian blue analogue (CoFe PB) modified FTO electrode, prepared via a facile electrodeposition method, is investigated as a non-enzymatic glucose sensor under neutral conditions. The electrode exhibits a linear detection of glucose in the 0.1-8.2 mmol/L range with a detection limit of 67 μM, a sensitivity of 18.69 μA/mM.cm2, and a fast response time of less than 7 s under neutral conditions. Its stability is confirmed with both electrochemical experiments and characterization studies performed on the pristine and post-mortem electrode. We also conducted a comprehensive electrochemical analysis to elucidate the identity of the active site and the glucose oxidation mechanism on the Prussian blue surface.
Collapse
Affiliation(s)
- Ramadan Chalil Oglou
- UNAM - National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | | | - Ekmel Ozbay
- NANOTAM - Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey; Department of Electrical and Electronics Engineering, Bilkent University, Ankara, 06800, Turkey; Department of Physics, Faculty of Science Bilkent University, 06800, Ankara, Turkey
| | - Ferdi Karadas
- UNAM - National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey; Department of Chemistry, Faculty of Science, Bilkent University, 06800, Ankara, Turkey.
| |
Collapse
|
9
|
Keßler S, Reinalter ER, Schmidt J, Cölfen H. Environmentally Benign Formation of Nickel Hexacyanoferrate-Derived Mesoframes for Heterogeneous Catalysis. NANOMATERIALS 2021; 11:nano11102756. [PMID: 34685196 PMCID: PMC8537782 DOI: 10.3390/nano11102756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 12/03/2022]
Abstract
The tetramethylammonium hydroxide (TMAH)-controlled alkaline etching of nickel hexacyanoferrate (NiHCF) mesocrystals is explored. The alkaline etching enables the formation of hollow framework structures with an increased surface area, the exposure of active Ni and Fe sites and the retention of morphology. The ambient reaction conditions enable the establishment of a sustainable production. Our work reveals novel perspectives on the eco-friendly synthesis of hollow and colloidal superstructures for the efficient degradation of the organic contaminants rhodamine-B and bisphenol-A. In the case of peroxomonosulfate (PMS)-mediated bisphenol-A degradation, the rate constant of the etched mesoframes was 10,000 times higher indicating their significant catalytic activity.
Collapse
Affiliation(s)
- Sascha Keßler
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany; (S.K.); (E.R.R.)
| | - Elrike R. Reinalter
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany; (S.K.); (E.R.R.)
| | - Johannes Schmidt
- Department of Chemistry, Technical University of Berlin, Hardenbergstrasse 40, D-10623 Berlin, Germany;
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany; (S.K.); (E.R.R.)
- Correspondence:
| |
Collapse
|
10
|
Keßler S, González-Rubio G, Reinalter ER, Kovermann M, Cölfen H. Synthesis of nickel hexacyanoferrate nanocubes with tuneable dimensions via temperature-controlled Ni 2+-citrate complexation. Chem Commun (Camb) 2020; 56:14439-14442. [PMID: 33146182 DOI: 10.1039/d0cc04628k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The citrate-assisted growth of nickel hexacyanoferrate (NiHCF) nanocubes was investigated. Control over the complexation of Ni2+ ions with citrate at different temperatures enabled fine tuning of the nanocrystal (NC) dimensions and their self-assembly into mesocrystals. Our results introduce new concepts towards the synthesis of NiHCF NCs, potentially applicable to other members of the Prussian blue analogues family.
Collapse
Affiliation(s)
- Sascha Keßler
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany.
| | | | | | | | | |
Collapse
|
11
|
Kang L, Ren H, Xing Z, Zhao Y, Ju Z. Hierarchical porous Co xFe 3−xO 4 nanocubes obtained by calcining Prussian blue analogues as anodes for lithium-ion batteries. NEW J CHEM 2020. [DOI: 10.1039/d0nj01027h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prussian blue analogue derived hierarchical porous CoxFe3−xO4 nanocubes applied as LIBs anode material can provide large space to buffer volume expansion during the Li+ insertion/extraction processes and enhanced electrochemical performance.
Collapse
Affiliation(s)
- Libin Kang
- The Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipments
- School of Materials Science and Physics
- China University of Mining and Technology
- Xuzhou 221116
- P. R. China
| | | | - Zheng Xing
- The Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipments
- School of Materials Science and Physics
- China University of Mining and Technology
- Xuzhou 221116
- P. R. China
| | - Yulong Zhao
- The Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipments
- School of Materials Science and Physics
- China University of Mining and Technology
- Xuzhou 221116
- P. R. China
| | - Zhicheng Ju
- The Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipments
- School of Materials Science and Physics
- China University of Mining and Technology
- Xuzhou 221116
- P. R. China
| |
Collapse
|
12
|
Cano A, Reguera L, Avila M, Velasco-Arias D, Reguera E. Charge Redistribution Effects in Hexacyanometallates Evaluated from XPS Data. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900907] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Arely Cano
- Instituto Politécnico Nacional; Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada; Unidad Legaria; Ciudad México México
| | - Leslie Reguera
- Instituto Politécnico Nacional; Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada; Unidad Legaria; Ciudad México México
- Facultad de Química; Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria; Universidad de La Habana; La Habana Cuba
| | - Manuel Avila
- Instituto Politécnico Nacional; Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada; Unidad Legaria; Ciudad México México
| | - Donaji Velasco-Arias
- CONACyT- Instituto Politécnico Nacional; Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada; Unidad Legaria; Ciudad México México
| | - Edilso Reguera
- Instituto Politécnico Nacional; Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada; Unidad Legaria; Ciudad México México
| |
Collapse
|
13
|
Azhar A, Li Y, Cai Z, Zakaria MB, Masud MK, Hossain MSA, Kim J, Zhang W, Na J, Yamauchi Y, Hu M. Nanoarchitectonics: A New Materials Horizon for Prussian Blue and Its Analogues. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180368] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Alowasheeir Azhar
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yucen Li
- School of Physics and Materials Science, East China Normal University, Shanghai 200241, P. R. China
| | - Zexing Cai
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Mohamed Barakat Zakaria
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mostafa Kamal Masud
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Md. Shahriar A. Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Mechanical & Mining Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jeonghun Kim
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Wei Zhang
- School of Physics and Materials Science, East China Normal University, Shanghai 200241, P. R. China
| | - Jongbeom Na
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Chemical Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Plant and Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Korea
| | - Ming Hu
- School of Physics and Materials Science, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
14
|
Cano A, Rodríguez‐Hernández J, Reguera L, Rodríguez‐Castellón E, Reguera E. On the Scope of XPS as Sensor in Coordination Chemistry of Transition Metal Hexacyanometallates. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801556] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Arely Cano
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria Instituto Politécnico Nacional Ciudad de México México
| | | | - Leslie Reguera
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria Instituto Politécnico Nacional Ciudad de México México
- Facultad de Química Universidad de La Habana La Habana Cuba
| | - Enrique Rodríguez‐Castellón
- Departamento de Química Inorgánica, Cristalografía y Mineralogía Facultad de Ciencias Universidad de Málaga 29071 España
| | - Edilso Reguera
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria Instituto Politécnico Nacional Ciudad de México México
| |
Collapse
|
15
|
Antuch M, Matos‐Peralta Y, Llanes D, Echevarría F, Rodríguez‐Hernández J, Marin MH, Díaz‐García AM, Reguera L. Bimetallic Co
2+
and Mn
2+
Hexacyanoferrate for Hydrogen Peroxide Electrooxidation and Its Application in a Highly Sensitive Cholesterol Biosensor. ChemElectroChem 2019. [DOI: 10.1002/celc.201900190] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Manuel Antuch
- Universidad de la HabanaFacultad de Química Zapata y G 10400 La Habana Cuba
- Current address: Équipe de Recherche et Innovation en Électrochimie pour l'Énergie (ERIEE)Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) UMR CNRS 8182Université Paris-SudUniversité Paris Saclay 91400 Orsay France
| | | | - Dayma Llanes
- Universidad de la HabanaFacultad de Química Zapata y G 10400 La Habana Cuba
| | - Frank Echevarría
- Instituto Politécnico NacionalCentro de Investigación en Ciencia Aplicada y Tecnología Avanzada, U. Legaria Ciudad México México
| | | | - Milenen Hernández Marin
- Departmento de BiosensoresCentro de Inmunoensayo Calle 134 y Ave. 25, Reparto Cubanacán Municipio Playa CP 11600 La Habana Cuba
| | | | - Leslie Reguera
- Universidad de la HabanaFacultad de Química Zapata y G 10400 La Habana Cuba
- Universidad de La HabanaInstituto de Ciencia y Tecnología de Materiales La Habana Cuba
| |
Collapse
|
16
|
Synthesis of the crystalline porous copper oxide architectures derived from metal-organic framework for electrocatalytic oxidation and sensitive detection of glucose. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.10.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Zhu D, Zuo J, Tan L, Pang H, Ma H. Enzymeless electrochemical determination of hydrogen peroxide at a heteropolyanion-based composite film electrode. NEW J CHEM 2019. [DOI: 10.1039/c8nj04570d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the first time, a sensitive and efficient composite film of [PB/WV–Pt@Pd]6was constructed for H2O2detection.
Collapse
Affiliation(s)
- Di Zhu
- School of Materials Science and Engineering
- College of Chemical and Environmental Engineering
- Harbin University of Science and Technology
- Harbin 150040
- China
| | - Jingwei Zuo
- School of Materials Science and Engineering
- College of Chemical and Environmental Engineering
- Harbin University of Science and Technology
- Harbin 150040
- China
| | - Lichao Tan
- School of Materials Science and Engineering
- College of Chemical and Environmental Engineering
- Harbin University of Science and Technology
- Harbin 150040
- China
| | - Haijun Pang
- School of Materials Science and Engineering
- College of Chemical and Environmental Engineering
- Harbin University of Science and Technology
- Harbin 150040
- China
| | - Huiyuan Ma
- School of Materials Science and Engineering
- College of Chemical and Environmental Engineering
- Harbin University of Science and Technology
- Harbin 150040
- China
| |
Collapse
|
18
|
Yuan RM, Li HJ, Yin XM, Wang HQ, Lu JH, Zhang LL. Coral-like Cu-Co-mixed oxide for stable electro-properties of glucose determination. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Abstract
Mesostructure engineering is a potential avenue towards the property control of coordination polymers in addition to the traditional structure design on an atomic/molecular scale. Mesoframes, as a class of mesostructures, have short diffusion pathways for guest species and thus can be an ideal platform for fast storage of guest ions. We report a synthesis of Prussian Blue analogue mesoframes by top-down etching of cubic crystals. Scanning and transmission electron microscopy revealed that the surfaces of the cubic crystals were selectively removed by HCl, leaving the corners, edges, and the cores connected together. The mesoframes were used as a host for the reversible insertion of sodium ions with the help of electrochemistry. The electrochemical intercalation/de-intercalation of Na+ ions in the mesoframes was highly reversible even at a high rate (166.7 C), suggesting that the mesoframes could be a promising cathode material for aqueous sodium ion batteries with excellent rate performance and cycling stability.
Collapse
|
20
|
Wang L, Xu L, Zhang Y, Yang H, Miao L, Peng C, Song Y. Copper Oxide−Cobalt Nanostructures/Reduced Graphene Oxide/Biomass-Derived Macroporous Carbon for Glucose Sensing. ChemElectroChem 2017. [DOI: 10.1002/celc.201701062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Li Wang
- Key Laboratory of Functional Small Organic Molecules; Ministry of Education; College of Chemistry and Chemical Engineering; Jiangxi Normal University; 99 Ziyang Road Nanchang 330022 People's Republic of China
| | - Lijuan Xu
- Key Laboratory of Functional Small Organic Molecules; Ministry of Education; College of Chemistry and Chemical Engineering; Jiangxi Normal University; 99 Ziyang Road Nanchang 330022 People's Republic of China
| | - Yayun Zhang
- Key Laboratory of Functional Small Organic Molecules; Ministry of Education; College of Chemistry and Chemical Engineering; Jiangxi Normal University; 99 Ziyang Road Nanchang 330022 People's Republic of China
| | - Han Yang
- Key Laboratory of Functional Small Organic Molecules; Ministry of Education; College of Chemistry and Chemical Engineering; Jiangxi Normal University; 99 Ziyang Road Nanchang 330022 People's Republic of China
| | - Longfei Miao
- Key Laboratory of Functional Small Organic Molecules; Ministry of Education; College of Chemistry and Chemical Engineering; Jiangxi Normal University; 99 Ziyang Road Nanchang 330022 People's Republic of China
| | - Canwei Peng
- Key Laboratory of Functional Small Organic Molecules; Ministry of Education; College of Chemistry and Chemical Engineering; Jiangxi Normal University; 99 Ziyang Road Nanchang 330022 People's Republic of China
| | - Yonghai Song
- Key Laboratory of Functional Small Organic Molecules; Ministry of Education; College of Chemistry and Chemical Engineering; Jiangxi Normal University; 99 Ziyang Road Nanchang 330022 People's Republic of China
| |
Collapse
|
21
|
Gan T, Wang Z, Wang Y, Li X, Sun J, Liu Y. Flexible graphene oxide−wrapped SnO2 hollow spheres with high electrochemical sensing performance in simultaneous determination of 4−aminophenol and 4−chlorophenol. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
22
|
Mai HD, Rafiq K, Yoo H. Nano Metal-Organic Framework-Derived Inorganic Hybrid Nanomaterials: Synthetic Strategies and Applications. Chemistry 2017; 23:5631-5651. [PMID: 27862482 DOI: 10.1002/chem.201604703] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Indexed: 12/21/2022]
Abstract
Nano- (or micro-scale) metal-organic frameworks (NMOFs), also known as coordination polymer particles (CPPs), have received much attention because of their structural diversities and tunable properties. Besides the direct use, NMOFs can be alternatively used as sacrificial templates/precursors for the preparation of a wide range of hybrid inorganic nanomaterials in straightforward and controllable manners. Distinct advantages of using NMOF templates are correlated to their structural and functional tailorability at molecular levels that is rarely acquired in any other conventional template/precursor. In addition, NMOF-derived inorganic nanomaterials with distinct chemical and physical properties are inferred to dramatically expand the scope of their utilization in many fields. In this review, we aim to provide readers with a comprehensive summary of recent progress in terms of synthetic approaches for the production of diverse inorganic hybrid nanostructures from as-synthesized NMOFs and their promising applications.
Collapse
Affiliation(s)
- Hien Duy Mai
- Department of Chemistry, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Khezina Rafiq
- Department of Chemistry, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Hyojong Yoo
- Department of Chemistry, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea
| |
Collapse
|
23
|
Zhou C, Tang X, Xia Y, Li Z. Electrochemical Fabrication of Cobalt Oxides/Nanoporous Gold Composite Electrode and its Nonenzymatic Glucose Sensing Performance. ELECTROANAL 2016. [DOI: 10.1002/elan.201501177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chaohui Zhou
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules; Hunan Normal University; Changsha, Hunan 410081 P. R. China
| | - Xueyong Tang
- Hunan Province Hospital of Traditional Chinese Medicine, Changsha; Hunan 410005 P. R. China
| | - Yue Xia
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules; Hunan Normal University; Changsha, Hunan 410081 P. R. China
| | - Zelin Li
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules; Hunan Normal University; Changsha, Hunan 410081 P. R. China
| |
Collapse
|
24
|
Velmurgan S, Devasenathipathy R, Chen SM, Wang SF. A Facile Chemical Synthesis of Cu2O Nanocubes Covered with Co3O4Nanohexagons for the Sensitive Detection of Glucose. ELECTROANAL 2016. [DOI: 10.1002/elan.201501145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sakthi Velmurgan
- Electroanalysis and Bioelectrochemistry Lab; Department of Chemical Engineering and Biotechnology; National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao; East Road Taipei 106 Taiwan, ROC
| | - Rajkumar Devasenathipathy
- Department of Materials and Mineral Resources Engineering, No. 1, Section 3, Chung-Hsiao; East Road Taipei 106 Taiwan, ROC
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab; Department of Chemical Engineering and Biotechnology; National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao; East Road Taipei 106 Taiwan, ROC
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, No. 1, Section 3, Chung-Hsiao; East Road Taipei 106 Taiwan, ROC
| |
Collapse
|