1
|
Liu M, Li H, Yu J, Zhang S, Chen Q, Lu W, Yuan A, Zhong L, Sun L. Hierarchical structure promoted lithiation/delithiation behavior of a double-carbon microsphere supported nano-Co 3O 4 anode. NANOSCALE 2024; 16:3043-3052. [PMID: 38235520 DOI: 10.1039/d3nr05334b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Due to limited mass loading, high-capacity electrode materials such as transition metal oxides (TMOs) are essential for microscale Li-ion batteries (LIBs) integrated in nano-/micro-electromechanical systems (N/MEMS). Unfortunately, their electrochemical performances are largely plagued by severe mechanical degradation and slow electron transport. Therefore, it is crucial to develop strategies that can improve the structural stability and electronic conductivity of TMO electrodes. In this work, double-carbon (carbon nanotubes and ketjen black) microsphere (DCMS) supported Co3O4 electrodes are fabricated simply through a spray drying and solvothermal method, which are designed to have a mesoporous three-dimensional (3D) hierarchical heterostructure containing well-dispersed Co3O4 nanoparticles within the DCMS framework. An in situ transmission electron microscopy (TEM) study reveals that the DCMS framework can not only provide facile strain accommodation, but also good electronic conductivity, leading to a much improved Li-storage performance compared to other Co3O4-based anodes. The hierarchical electrode exhibits maximum charge capacities of 1205.2 and 678.1 mA h g-1 at current densities of 0.1 and 2 A g-1, respectively, as well as a capacity retention of 92.2% at 0.3 A g-1 after 100 cycles. This study provides a low-cost, simple and general method for developing advanced high-capacity electrodes.
Collapse
Affiliation(s)
- Min Liu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing 210096, China.
| | - Hai Li
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing 210096, China.
| | - Jie Yu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing 210096, China.
| | - Shuo Zhang
- i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| | - Qi Chen
- i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| | - Wei Lu
- i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| | - Anbao Yuan
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Li Zhong
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing 210096, China.
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing 210096, China.
| |
Collapse
|
2
|
Ferreira AC, Martinho JF, Branco JB. Hydrogenation of CO2 over Cobalt‐Lanthanide Bimetallic Oxide Nanofibers. ChemCatChem 2022. [DOI: 10.1002/cctc.202101548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ana C. Ferreira
- IST: Universidade de Lisboa Instituto Superior Tecnico Centro de Química Estrutural CQE, Campus Tecnológico e NuclearEstrada Nacional 10, ao km 139.7 2695-066 Portugal PORTUGAL
| | - Joana F. Martinho
- IST: Universidade de Lisboa Instituto Superior Tecnico Centro de Química Estrutural Campus Tecnológico e NuclearEstrada Nacional 10, ao km 139.7Bobadela 2695-066 Bobadela PORTUGAL
| | - Joaquim B. Branco
- IST: Universidade de Lisboa Instituto Sperior Técnico Departamento de Engenharia e Ciências Nucleares Campus Tecnológico e NuclearEstrada Nacional 10, ao km 139.7Bobadela 2695-066 Bobadela PORTUGAL
| |
Collapse
|
3
|
One-Dimensional (1D) Nanostructured Materials for Energy Applications. MATERIALS 2021; 14:ma14102609. [PMID: 34067754 PMCID: PMC8156553 DOI: 10.3390/ma14102609] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 01/12/2023]
Abstract
At present, the world is at the peak of production of traditional fossil fuels. Much of the resources that humanity has been consuming (oil, coal, and natural gas) are coming to an end. The human being faces a future that must necessarily go through a paradigm shift, which includes a progressive movement towards increasingly less polluting and energetically viable resources. In this sense, nanotechnology has a transcendental role in this change. For decades, new materials capable of being used in energy processes have been synthesized, which undoubtedly will be the cornerstone of the future development of the planet. In this review, we report on the current progress in the synthesis and use of one-dimensional (1D) nanostructured materials (specifically nanowires, nanofibers, nanotubes, and nanorods), with compositions based on oxides, nitrides, or metals, for applications related to energy. Due to its extraordinary surface-volume relationship, tunable thermal and transport properties, and its high surface area, these 1D nanostructures have become fundamental elements for the development of energy processes. The most relevant 1D nanomaterials, their different synthesis procedures, and useful methods for assembling 1D nanostructures in functional devices will be presented. Applications in relevant topics such as optoelectronic and photochemical devices, hydrogen production, or energy storage, among others, will be discussed. The present review concludes with a forecast on the directions towards which future research could be directed on this class of nanostructured materials.
Collapse
|
4
|
|
5
|
Rathore P, Schiffman JD. Beyond the Single-Nozzle: Coaxial Electrospinning Enables Innovative Nanofiber Chemistries, Geometries, and Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48-66. [PMID: 33356093 DOI: 10.1021/acsami.0c17706] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
With an ever increasing scientific, technological, and industrial interest in high surface area, porous nanofiber mats, electrospinning has emerged as a popular method to produce fibrous assemblies for use across biomedical, energy, and environmental applications. However, not all precursor solutions nor complex geometries can be easily fabricated using the traditional single-nozzle apparatus. Therefore, coaxial electrospinning, a modified version of electrospinning that features a concentrically aligned dual nozzle, has been developed. This review will first describe the mechanism of electrospinning two precursor solutions simultaneously and the operational parameters that need to be optimized to fabricate continuous fibers. Modifications that can be made to the coaxial electrospinning process, which enable the fabrication of uniform fibers with improved properties, as well as the fabrication of fibers that are hollow, functionalized, and from "nonspinnable precursors" will be discussed as a means of promoting the advantages of using a coaxial setup. Examples of how coaxially electrospun nanofibers are employed in diverse applications will be provided throughout this review. We conclude with a timely discussion about the current limitations and challenges of coaxial electrospinning.
Collapse
Affiliation(s)
- Prerana Rathore
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| |
Collapse
|
6
|
Xu Y, Ye X, Qiu Y, Gan C, Huang L, Tang X, Luo X. A Novel Co
3
O
4
/MnO
2
/C Electrode with Hierarchical Heterostructure for High‐performance Lithium‐Ion Batteries. ChemistrySelect 2020. [DOI: 10.1002/slct.202003656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ying Xu
- Fujian Key Laboratory of Advanced Materials(Xiamen University) College of Materials Xiamen University Xiamen Fujian 361005 China
| | - Xiongbiao Ye
- Fujian Key Laboratory of Advanced Materials(Xiamen University) College of Materials Xiamen University Xiamen Fujian 361005 China
| | - Yiwei Qiu
- Fujian Key Laboratory of Advanced Materials(Xiamen University) College of Materials Xiamen University Xiamen Fujian 361005 China
| | - Chuanhai Gan
- Fujian Key Laboratory of Advanced Materials(Xiamen University) College of Materials Xiamen University Xiamen Fujian 361005 China
| | - Liuqing Huang
- Fujian Key Laboratory of Advanced Materials(Xiamen University) College of Materials Xiamen University Xiamen Fujian 361005 China
| | - Xueyuan Tang
- Fujian Key Laboratory of Advanced Materials(Xiamen University) College of Materials Xiamen University Xiamen Fujian 361005 China
| | - Xuetao Luo
- Fujian Key Laboratory of Advanced Materials(Xiamen University) College of Materials Xiamen University Xiamen Fujian 361005 China
| |
Collapse
|
7
|
Han D, Steckl AJ. Coaxial Electrospinning Formation of Complex Polymer Fibers and their Applications. Chempluschem 2019; 84:1453-1497. [PMID: 31943926 DOI: 10.1002/cplu.201900281] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/27/2019] [Indexed: 12/12/2022]
Abstract
The formation of fibers by electrospinning has experienced explosive growth in the past decade, recently reaching 4,000 publications and 1,500 patents per year. This impressive growth of interest is due to the ability to form fibers with a variety of materials, which lend themselves to a large and rapidly expanding set of applications. In particular, coaxial electrospinning, which forms fibers with multiple core-sheath layers from different materials in a single step, enables the combination of properties in a single fiber that are not found in nature in a single material. This article is a detailed review of coaxial electrospinning: basic mechanisms, early history and current status, and an in-depth discussion of various applications (biomedical, environmental, sensors, energy, catalysis, textiles). We aim to provide readers who are currently involved in certain aspects of coaxial electrospinning research an appreciation of other applications and of current results.
Collapse
Affiliation(s)
- Daewoo Han
- Department of Electrical Engineering and Computer Science, University of Cincinnati Nanoelectronics Laboratory, Cincinnati, OH 45221-0030, USA
| | - Andrew J Steckl
- Department of Electrical Engineering and Computer Science, University of Cincinnati Nanoelectronics Laboratory, Cincinnati, OH 45221-0030, USA
| |
Collapse
|
8
|
Abstract
Electrospinning is a versatile and viable technique for generating ultrathin fibers. Remarkable progress has been made with regard to the development of electrospinning methods and engineering of electrospun nanofibers to suit or enable various applications. We aim to provide a comprehensive overview of electrospinning, including the principle, methods, materials, and applications. We begin with a brief introduction to the early history of electrospinning, followed by discussion of its principle and typical apparatus. We then discuss its renaissance over the past two decades as a powerful technology for the production of nanofibers with diversified compositions, structures, and properties. Afterward, we discuss the applications of electrospun nanofibers, including their use as "smart" mats, filtration membranes, catalytic supports, energy harvesting/conversion/storage components, and photonic and electronic devices, as well as biomedical scaffolds. We highlight the most relevant and recent advances related to the applications of electrospun nanofibers by focusing on the most representative examples. We also offer perspectives on the challenges, opportunities, and new directions for future development. At the end, we discuss approaches to the scale-up production of electrospun nanofibers and briefly discuss various types of commercial products based on electrospun nanofibers that have found widespread use in our everyday life.
Collapse
Affiliation(s)
- Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Tong Wu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Yunqian Dai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, People’s Republic of China
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
9
|
Zhang S, Wang KY, Cheng L, Wang C. Preparation and characterization of monocobalt-substituted tungstosilicate/aniline/graphene nanocomposite. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.01.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Freeze-drying-assisted Synthesis of Mesoporous CoMoO4 Nanosheets as Anode Electrode Material for Enhanced Lithium Batteries. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-8316-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Cao Y, Geng K, Geng H, Ang H, Pei J, Liu Y, Cao X, Zheng J, Gu H. Metal-Oleate Complex-Derived Bimetallic Oxides Nanoparticles Encapsulated in 3D Graphene Networks as Anodes for Efficient Lithium Storage with Pseudocapacitance. NANO-MICRO LETTERS 2019; 11:15. [PMID: 34137982 PMCID: PMC7770734 DOI: 10.1007/s40820-019-0247-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/01/2019] [Indexed: 05/24/2023]
Abstract
In this manuscript, we have demonstrated the delicate design and synthesis of bimetallic oxides nanoparticles derived from metal-oleate complex embedded in 3D graphene networks (MnO/CoMn2O4 ⊂ GN), as an anode material for lithium ion batteries. The novel synthesis of the MnO/CoMn2O4 ⊂ GN consists of thermal decomposition of metal-oleate complex containing cobalt and manganese metals and oleate ligand, forming bimetallic oxides nanoparticles, followed by a self-assembly route with reduced graphene oxides. The MnO/CoMn2O4 ⊂ GN composite, with a unique architecture of bimetallic oxides nanoparticles encapsulated in 3D graphene networks, rationally integrates several benefits including shortening the diffusion path of Li+ ions, improving electrical conductivity and mitigating volume variation during cycling. Studies show that the electrochemical reaction processes of MnO/CoMn2O4 ⊂ GN electrodes are dominated by the pseudocapacitive behavior, leading to fast Li+ charge/discharge reactions. As a result, the MnO/CoMn2O4 ⊂ GN manifests high initial specific capacity, stable cycling performance, and excellent rate capability.
Collapse
Affiliation(s)
- Yingying Cao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, People's Republic of China
| | - Kaiming Geng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, People's Republic of China
| | - Hongbo Geng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Huixiang Ang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Jie Pei
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, People's Republic of China
| | - Yayuan Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, People's Republic of China
| | - Xueqin Cao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, People's Republic of China
| | - Junwei Zheng
- College of Physics, Optoelectronic and Energy, Soochow University, Suzhou, 215006, People's Republic of China
| | - Hongwei Gu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
12
|
Porous rod-shaped Co3O4 derived from Co-MOF-74 as high-performance anode materials for lithium ion batteries. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Shmatok Y, Globa N, Kirillov S. Microwave-assisted citric acid aided synthesis and electrochemical performance of nanosized Co3O4. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.05.137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
CoO-Co nanocomposite anode with enhanced electrochemical performance for lithium-ion batteries. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2016.12.040] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Yu A, Lee C, Lee NS, Kim MH, Lee Y. Highly Efficient Silver-Cobalt Composite Nanotube Electrocatalysts for Favorable Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2016; 8:32833-32841. [PMID: 27934168 DOI: 10.1021/acsami.6b11073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper reports the synthesis and characterization of silver-cobalt (AgCo) bimetallic composite nanotubes. Cobalt oxide (Co3O4) nanotubes were fabricated by electrospinning and subsequent calcination in air and then reduced to cobalt (Co) metal nanotubes via further calcination under a H2/Ar atmosphere. As-prepared Co nanotubes were then employed as templates for the following galvanic replacement reaction (GRR) with silver (Ag) precursor (AgNO3), which produced AgCo composite nanotubes. Various AgCo nanotubes were readily synthesized with applying different reaction times for the reduction of Co3O4 nanotubes and GRR. One hour reduction was sufficiently long to convert Co3O4 to Co metal, and 3 h GRR was enough to deposit Ag layer on Co nanotubes. The tube morphology and copresence of Ag and Co in AgCo composite nanotubes were confirmed with SEM, HRTEM, XPS, and XRD analyses. Electroactivity of as-prepared AgCo composite nanotubes was characterized for ORR with rotating disk electrode (RDE) voltammetry. Among differently synthesized AgCo composite nanotubes, the one synthesized via 1 h reduction and 3 h GRR showed the best ORR activity (the most positive onset potential, greatest limiting current density, and highest number of electrons transferred). Furthermore, the ORR performance of the optimized AgCo composite nanotubes was superior compared to pure Co nanotubes, pure Ag nanowires, and bare platinum (Pt). High ethanol tolerance of AgCo composite nanotubes was also compared with the commercial Pt/C and then verified its excellent resistance to ethanol contamination.
Collapse
Affiliation(s)
- Areum Yu
- Department of Chemistry and Nano Science, Ewha Womans University , Seoul 03760, Korea
| | - Chongmok Lee
- Department of Chemistry and Nano Science, Ewha Womans University , Seoul 03760, Korea
| | - Nam-Suk Lee
- National Institute for Nanomaterials Technology (NINT), Pohang University of Science and Technology (POSTECH) , Pohang 37673, Korea
| | - Myung Hwa Kim
- Department of Chemistry and Nano Science, Ewha Womans University , Seoul 03760, Korea
| | - Youngmi Lee
- Department of Chemistry and Nano Science, Ewha Womans University , Seoul 03760, Korea
| |
Collapse
|
16
|
Yang Q, Zhao Z, Dong Y, Liu Y, Liu X, Tang Y, Wang Y, Wang X, Qiu J. Synthesis of 3D Flower-like Nanocomposites of Nitrogen-Doped Carbon Nanosheets Embedded with Hollow Cobalt(II,III) Oxide Nanospheres for Lithium Storage. ChemElectroChem 2016. [DOI: 10.1002/celc.201600497] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Qi Yang
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Zongbin Zhao
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Yanfeng Dong
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Yang Liu
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Xu Liu
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Yongchao Tang
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Yuwei Wang
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Xuzhen Wang
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Jieshan Qiu
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| |
Collapse
|
17
|
Wei W, Wang Y, Wu H, Al-Enizi AM, Zhang L, Zheng G. Transition metal oxide hierarchical nanotubes for energy applications. NANOTECHNOLOGY 2016; 27:02LT01. [PMID: 26629880 DOI: 10.1088/0957-4484/27/2/02lt01] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report a general synthetic method for transition metal oxide (TMO) hierarchical nanotube (HNT) structures by a solution-phase cation exchange method from Cu2O nanowire templates. This method leads to the formation of hollow, tubular backbones with secondary, thin nanostructures on the tube surface, which substantially increases the surface reactive sites for electrolyte contacts and electrochemical reactions. As proofs-of-concept, several representative first-row TMO HNTs have been synthesized, including CoOx, NiOx, MnOx, ZnOx and FeOx, with specific surface areas much larger than nanotubes or nanoparticles of corresponding materials. An example of the potential energy storage applications of CoOx HNTs as supercapacitors is also demonstrated.
Collapse
Affiliation(s)
- Wei Wei
- Laboratory of Advanced Materials, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, People's Republic of China
| | | | | | | | | | | |
Collapse
|
18
|
Self-assembled Co 3 O 4 nanostructure with controllable morphology towards high performance anode for lithium ion batteries. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.12.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Qu G, Geng H, Ge D, Zheng J, Gu H. Graphene-coated mesoporous Co3O4 fibers as an efficient anode material for Li-ion batteries. RSC Adv 2016. [DOI: 10.1039/c6ra15404b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The graphene-coating porous cobalt oxide fibers (Co3O4@G) were synthesized using coordination polymers as precursors through calcination and subsequent self-assembly process. The obtained materials exhibit good electrochemical performances.
Collapse
Affiliation(s)
- Genlong Qu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| | - Hongbo Geng
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| | - Danhua Ge
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| | - Junwei Zheng
- College of Physics
- Optoelectronics and Energy
- Soochow University
- Suzhou
- China
| | - Hongwei Gu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| |
Collapse
|
20
|
Wei C, Cheng C, Ma L, Liu M, Kong D, Du W, Pang H. Mesoporous hybrid NiOx–MnOx nanoprisms for flexible solid-state asymmetric supercapacitors. Dalton Trans 2016; 45:10789-97. [DOI: 10.1039/c6dt01025c] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mesoporous hybrid NiOx–MnOx nanoprisms exhibit good performance as electrode materials for flexible solid-state symmetric supercapacitors.
Collapse
Affiliation(s)
- Chengzhen Wei
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang
- P. R. China
| | - Cheng Cheng
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang
- P. R. China
| | - Lan Ma
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang
- P. R. China
| | - Mengna Liu
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang
- P. R. China
| | - Dechen Kong
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang
- P. R. China
| | - Weimin Du
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang
- P. R. China
| | - Huan Pang
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang
- P. R. China
| |
Collapse
|
21
|
Nie G, Lu X, Chi M, Jiang Y, Wang C. CoOx nanoparticles embedded in porous graphite carbon nanofibers derived from electrospun polyacrylonitrile@polypyrrole core–shell nanostructures for high-performance supercapacitors. RSC Adv 2016. [DOI: 10.1039/c6ra08607a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel composite nanostructure of C–CoOx–C with CoOx nanoparticles embedded in N-containing porous graphite carbon nanofibers exhibited a more acceptable specific capacitance, higher rate capability and better cycling stability.
Collapse
Affiliation(s)
- Guangdi Nie
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Maoqiang Chi
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Yanzhou Jiang
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|