1
|
Kazeem R, Fadare D, Akande I, Jen TC, Akinlabi S, Akinlabi E. Evaluation of crude watermelon oil as lubricant in cylindrical turning of AISI 1525 steel employing Taguchi and grey relational analyses techniques. Heliyon 2024; 10:e25349. [PMID: 38333839 PMCID: PMC10850602 DOI: 10.1016/j.heliyon.2024.e25349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Cutting fluids are used for cooling and lubricating the machining area of components used in manufacturing industries such as aerospace, automotive, petroleum, and heavy machinery. Mineral oils derived from petroleum are commonly utilized as cutting fluids. Mineral oil is hazardous to the health of workers and damaging to the environment. There is a need for a substitute for mineral oil. Vegetable oil is increasingly being used as a cutting fluid. Vegetable oils are easily accessible and have benefits including excellent biodegradability, resistance to fire, low humidity rates, and a low coefficient of expansion under heat. This study adopts watermelon oil as a lubricant in MQL machining of AISI 1525 steel using tungsten tools. In the experiment, the feed rate, depth of cut (DC) and spindle speed were varied using the Taguchi L9 orthogonal array. Grey relational analysis was conducted to obtain optimum cutting parameters for surface roughness, machine vibration, and cutting temperature. Hardness and microstructural analysis of the workpiece were also conducted. Results showed that vegetable oil performed much more effectively than mineral oil in most experiments. The DC was shown to be the most efficient cutting parameter after applying ANOVA analysis based on the parameters that were evaluated. Additionally, models for cutting temperature, machine vibration, and surface roughness values have been developed with accuracy between 69.73 % and 99.05 %. The hardness of the workpiece increases with an increase in diameter, which was attributed to the increase in the steel rod (workpiece) cross-sectional area and the likelihood of a more uniform stress distribution. Moreover, finer grain sizes were observed at 70 mm diameter, with the predominant presence of pearlites. These characteristics were reportedly beneficial to the material's toughness and strength.
Collapse
Affiliation(s)
- R.A. Kazeem
- Department of Mechanical Engineering, University of Ibadan, Ibadan, 200005, Nigeria
- Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | - D.A. Fadare
- Department of Mechanical Engineering, University of Ibadan, Ibadan, 200005, Nigeria
| | - I.G. Akande
- Department of Automotive Engineering, University of Ibadan, Ibadan, 200005, Nigeria
| | - T-C. Jen
- Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | - S.A. Akinlabi
- Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle, NE7 7XA, United Kingdom
| | - E.T. Akinlabi
- Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle, NE7 7XA, United Kingdom
| |
Collapse
|
2
|
A Two-Step Approach to Tune the Micro and Nanoscale Morphology of Porous Niobium Oxide to Promote Osteointegration. MATERIALS 2022; 15:ma15020473. [PMID: 35057189 PMCID: PMC8778385 DOI: 10.3390/ma15020473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/17/2022]
Abstract
We present a two-step surface modification process to tailor the micro and nano morphology of niobium oxide layers. Niobium was firstly anodized in spark regime in a Ca- and P-containing solution and subsequently treated by acid etching. The effects of anodizing time and applied potential on the surface morphology is investigated with SEM and AFM, complemented by XPS compositional analysis. Anodizing with a limiting potential of 250 V results in the fast growth of oxide layers with a homogeneous distribution of micro-sized pores. Cracks are, however, observed on 250 V grown layers. Limiting the anodizing potential to 200 V slows down the oxide growth, increasing the anodizing time needed to achieve a uniform pore coverage but produces fracture-free oxide layers. The surface nano morphology is further tuned by a subsequent acid etching process that leads to the formation of nano-sized pits on the anodically grown oxide surface. In vitro tests show that the etching-induced nanostructure effectively promotes cell adhesion and spreading onto the niobium oxide surface.
Collapse
|
3
|
Phosphate Porous Coatings Enriched with Selected Elements via PEO Treatment on Titanium and Its Alloys: A Review. MATERIALS 2020; 13:ma13112468. [PMID: 32481746 PMCID: PMC7321118 DOI: 10.3390/ma13112468] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Abstract
This paper shows that the subject of porous coatings fabrication by Plasma Electrolytic Oxidation (PEO), known also as Micro Arc Oxidation (MAO), is still current, inter alia because metals and alloys, which can be treated by the PEO method, for example, titanium, niobium, tantalum and their alloys, are increasingly available for sale. On the international market, apart from scientific works/activity developed at universities, scientific research on the PEO coatings is also underway in companies such as Keronite (Great Britain), Magoxid-Coat (Germany), Mofratech (France), Machaon (Russia), as well as CeraFuse, Tagnite, Microplasmic (USA). In addition, it should be noted that the development of the space industry and implantology will force the production of trouble-free micro- and macro-machines with very high durability. Another aspect in favor of this technique is the rate of part treatment, which does not exceed several dozen minutes, and usually only lasts a few minutes. Another advantage is functionalization of fabricated surface through thermal or hydrothermal modification of fabricated coatings, or other methods (Physical vapor deposition (PVD), chemical vapor deposition (CVD), sol-gel), including also reoxidation by PEO treatment in another electrolyte. In the following chapters, coatings obtained both in aqueous solutions and electrolytes based on orthophosphoric acid will be presented; therein, dependent on the PEO treatment and the electrolyte used, they are characterized by different properties associated with their subsequent use. The possibilities for using coatings produced by means of plasma electrolytic oxidation are very wide, beginning from various types of catalysts, gas sensors, to biocompatible and antibacterial coatings, as well as hard wear coatings used in machine parts, among others, used in the aviation and aerospace industries.
Collapse
|
4
|
Rokosz K, Hryniewicz T, Gaiaschi S, Chapon P, Raaen S, Matýsek D, Dudek Ł, Pietrzak K. Novel Porous Phosphorus⁻Calcium⁻Magnesium Coatings on Titanium with Copper or Zinc Obtained by DC Plasma Electrolytic Oxidation: Fabrication and Characterization. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1680. [PMID: 30208598 PMCID: PMC6164096 DOI: 10.3390/ma11091680] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 02/03/2023]
Abstract
In this paper, the characteristics of new porous coatings fabricated at three voltages in electrolytes based on H₃PO₄ with calcium nitrate tetrahydrate, magnesium nitrate hexahydrate, and copper(II) nitrate trihydrate are presented. The SEM, energy dispersive spectroscopy (EDS), glow discharge optical emission spectroscopy (GDOES), X-ray photoelectron spectroscopy (XPS), and XRD techniques for coating identification were used. It was found that the higher the plasma electrolytic oxidation (PEO) (micro arc oxidation (MAO)) voltage, the thicker the porous coating with higher amounts of built-in elements coming from the electrolyte and more amorphous phase with signals from crystalline Ca(H₂PO₄)₂∙H₂O and/or Ti(HPO₄)₂∙H₂O. Additionally, the external parts of the obtained porous coatings formed on titanium consisted mainly of Ti4+, Ca2+, Mg2+ and PO₄3-, HPO₄2-, H₂PO₄-, P₂O₇4- as well as Zn2+ or copper Cu⁺/Cu2+. The surface should be characterized by high biocompatibility, due to the presence of structures based on calcium and phosphates, and have bactericidal properties, due to the presence of zinc and copper ions. Furthermore, the addition of magnesium ions should accelerate the healing of postoperative wounds, which could lead to faster patient recovery.
Collapse
Affiliation(s)
- Krzysztof Rokosz
- Division of BioEngineering and Surface Electrochemistry, Department of Engineering and Informatics Systems, Koszalin University of Technology, Racławicka 15-17, PL 75-620 Koszalin, Poland.
| | - Tadeusz Hryniewicz
- Division of BioEngineering and Surface Electrochemistry, Department of Engineering and Informatics Systems, Koszalin University of Technology, Racławicka 15-17, PL 75-620 Koszalin, Poland.
| | - Sofia Gaiaschi
- HORIBA FRANCE S.A.S., Avenue de la Vauve, Passage Jobin Yvon, 91120 Palaiseau, France.
| | - Patrick Chapon
- HORIBA FRANCE S.A.S., Avenue de la Vauve, Passage Jobin Yvon, 91120 Palaiseau, France.
| | - Steinar Raaen
- Department of Physics, Norwegian University of Science and Technology (NTNU), Realfagbygget E3-124 Høgskoleringen 5, 7491 NO Trondheim, Norway.
| | - Dalibor Matýsek
- Institute of Geological Engineering, Faculty of Mining and Geology, VŠB-Technical University of Ostrava, 708 33 Ostrava, Czech Republic.
| | - Łukasz Dudek
- Division of BioEngineering and Surface Electrochemistry, Department of Engineering and Informatics Systems, Koszalin University of Technology, Racławicka 15-17, PL 75-620 Koszalin, Poland.
| | - Kornel Pietrzak
- Division of BioEngineering and Surface Electrochemistry, Department of Engineering and Informatics Systems, Koszalin University of Technology, Racławicka 15-17, PL 75-620 Koszalin, Poland.
| |
Collapse
|
5
|
Rokosz K, Hryniewicz T, Gaiaschi S, Chapon P, Raaen S, Malorny W, Matýsek D, Pietrzak K. Development of Porous Coatings Enriched with Magnesium and Zinc Obtained by DC Plasma Electrolytic Oxidation. MICROMACHINES 2018; 9:mi9070332. [PMID: 30424265 PMCID: PMC6082254 DOI: 10.3390/mi9070332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/24/2018] [Accepted: 06/27/2018] [Indexed: 11/20/2022]
Abstract
Coatings with developed surface stereometry, being based on a porous system, may be obtained by plasma electrolytic oxidation, PEO (micro arc oxidation, MAO). In this paper, we present novel porous coatings, which may be used, e.g., in micromachine’s biocompatible sensors’ housing, obtained in electrolytes containing magnesium nitrate hexahydrate Mg(NO3)2·6H2O and/or zinc nitrate hexahydrate Zn(NO3)2·6H2O in concentrated phosphoric acid H3PO4 (85% w/w). Complementary techniques are used for coatings’ surface characterization, such as scanning electron microscopy (SEM), for surface imaging as well as for chemical semi-quantitative analysis via energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), glow discharge optical emission spectroscopy (GDOES), and X-ray powder diffraction (XRD). The results have shown that increasing contents of salts (here, 250 g/L Mg(NO3)2·6H2O and 250 g/L Zn(NO3)2·6H2O) in electrolyte result in increasing of Mg/P and Zn/P ratios, as well as coating thickness. It was also found that by increasing the PEO voltage, the Zn/P and Mg/P ratios increase as well. In addition, the analysis of XPS spectra revealed the existence in 10 nm top of coating magnesium (Mg2+), zinc (Zn2+), titanium (Ti4+), and phosphorus compounds (PO43−, or HPO42−, or H2PO4−, or P2O74−).
Collapse
Affiliation(s)
- Krzysztof Rokosz
- Division of BioEngineering and Surface Electrochemistry, Department of Engineering and Informatics Systems, Koszalin University of Technology, Racławicka 15-17, PL 75-620 Koszalin, Poland.
| | - Tadeusz Hryniewicz
- Division of BioEngineering and Surface Electrochemistry, Department of Engineering and Informatics Systems, Koszalin University of Technology, Racławicka 15-17, PL 75-620 Koszalin, Poland.
| | - Sofia Gaiaschi
- HORIBA France S.A.S., Avenue de la Vauve-Passage Jobin Yvon, 91120 Palaiseau, France.
| | - Patrick Chapon
- HORIBA France S.A.S., Avenue de la Vauve-Passage Jobin Yvon, 91120 Palaiseau, France.
| | - Steinar Raaen
- Department of Physics, Norwegian University of Science and Technology (NTNU), Realfagbygget, E3-124 Høgskoleringen 5, 7491 NO Trondheim, Norway.
| | - Winfried Malorny
- Faculty of Engineering, Hochschule Wismar-University of Applied Sciences Technology, Business and Design, DE 23966 Wismar, Germany.
| | - Dalibor Matýsek
- Institute of Geological Engineering, Faculty of Mining and Geology, VŠB-Technical University of Ostrava, 708 33 Ostrava, Czech Republic.
| | - Kornel Pietrzak
- Division of BioEngineering and Surface Electrochemistry, Department of Engineering and Informatics Systems, Koszalin University of Technology, Racławicka 15-17, PL 75-620 Koszalin, Poland.
| |
Collapse
|
6
|
Kollender JP, Mardare CC, Mardare AI, Hassel AW. Downstream analytics quantification of ion release during high-voltage anodisation of niobium. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-3957-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Sowa M, Simka W. Electrochemical Impedance and Polarization Corrosion Studies of Tantalum Surface Modified by DC Plasma Electrolytic Oxidation. MATERIALS 2018; 11:ma11040545. [PMID: 29614014 PMCID: PMC5951429 DOI: 10.3390/ma11040545] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/25/2018] [Accepted: 04/02/2018] [Indexed: 01/10/2023]
Abstract
Tantalum has recently become an actively researched biomaterial for the bone reconstruction applications because of its excellent corrosion resistance and successful clinical records. However, a bare Ta surface is not capable of directly bonding to the bone upon implantation and requires some method of bioactivation. In this study, this was realized by direct current (DC) plasma electrolytic oxidation (PEO). Susceptibility to corrosion is a major factor determining the service-life of an implant. Therefore, herein, the corrosion resistance of the PEO coatings on Ta was investigated in Ringer’s solution. The coatings were formed by galvanostatic anodization up to 200, 300 and 400 V, after which the treatment was conducted potentiostatically until the total process time amounted to 5 min. Three solutions containing Ca(H2PO2)2, Ca(HCOO)2 and Mg(CH3COO)2 were used in the treatment. For the corrosion characterization, electrochemical impedance spectroscopy and potentiodynamic polarization techniques were chosen. The coatings showed the best corrosion resistance at voltages low enough so that the intensive sparking was absent, which resulted in the formation of thin films. The impedance data were fitted to the equivalent electrical circuits with two time constants, namely R(Q[R(QR)]) and R(Q[R(Q[RW])]). The inclusion of W in the circuit helped to fit the low-frequency part of the samples PEO-ed at 400 V, hinting at the important role of diffusion in the corrosion resistance of the PEO coatings described in the research.
Collapse
Affiliation(s)
- Maciej Sowa
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice, Poland.
| | - Wojciech Simka
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice, Poland.
| |
Collapse
|
8
|
Niobium treated by Plasma Electrolytic Oxidation with calcium and phosphorus electrolytes. J Mech Behav Biomed Mater 2018; 77:347-352. [DOI: 10.1016/j.jmbbm.2017.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 12/11/2022]
|
9
|
Civantos A, Martínez-Campos E, Ramos V, Elvira C, Gallardo A, Abarrategi A. Titanium Coatings and Surface Modifications: Toward Clinically Useful Bioactive Implants. ACS Biomater Sci Eng 2017; 3:1245-1261. [DOI: 10.1021/acsbiomaterials.6b00604] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ana Civantos
- Tissue
Engineering Group, Institute of Biofunctional Studies, Associated
Unit to the Institute of Polymer Science and Technology (CSIC), Pharmacy
Faculty, Complutense University of Madrid (UCM), Paseo Juan XXIII 1, 28040 Madrid, Spain
- Polymer
Functionalization Group, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Enrique Martínez-Campos
- Tissue
Engineering Group, Institute of Biofunctional Studies, Associated
Unit to the Institute of Polymer Science and Technology (CSIC), Pharmacy
Faculty, Complutense University of Madrid (UCM), Paseo Juan XXIII 1, 28040 Madrid, Spain
- Polymer
Functionalization Group, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Viviana Ramos
- Tissue
Engineering Group, Institute of Biofunctional Studies, Associated
Unit to the Institute of Polymer Science and Technology (CSIC), Pharmacy
Faculty, Complutense University of Madrid (UCM), Paseo Juan XXIII 1, 28040 Madrid, Spain
- Noricum S.L., San Sebastián
de los Reyes, Av. Fuente Nueva, 14, 28703 Madrid, Spain
| | - Carlos Elvira
- Polymer
Functionalization Group, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Alberto Gallardo
- Polymer
Functionalization Group, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Ander Abarrategi
- Haematopoietic
Stem Cell Laboratory, The Francis Crick Institute, 1 Midland
Road, NW1 1AT London, U.K
| |
Collapse
|