1
|
Fahemi N, Angizi S, Hatamie A. Integration of Ultrathin Bubble Walls and Electrochemistry: Innovation in Microsensing for Forensic Nitrite Detection and Microscale Metallic Film Deposition. Anal Chem 2024. [PMID: 38324919 DOI: 10.1021/acs.analchem.3c04488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
We present a strategy for electrochemical measurements using a durable minute bubble wall with a thickness of 27 μm (D = 1.8 cm) as an innovative electrochemical medium. The composition, thickness, and volume of the tiny bubble film were investigated and estimated using the spectroscopic method and the Beer-Lambert law. A carbon microelectrode (D = 10 μm) was then employed as the working electrode, inserted through the bubble wall to function as the solution interface. First, the potential of this method for microelectrodeposition of metallic Ag and Pd films in a tiny bubble was investigated. Interestingly, microscopic images of the deposited film clearly demonstrated that the bubble thickness determines and confines the electrochemical deposition zone. In other words, innovative template-free microelectrodeposition was achieved. In the second phase of our work, microelectroanalysis of trace levels of nitrite ions was performed within the bubble wall and on a foam-covered hand, between the fingers directly, with a low limit of detection of 28 μM. This technique holds significance in criminal investigations, as the presence of NO2- ions on the hand indicates the potential presence of gunshot residue and aids in identifying suspects. In comparison to current methods, this approach is rapid, simple, cost-effective, and amenable to on-site applications, eliminating the need for sample treatment. Ultimately, the utilization of a bubble wall as a novel electrochemical microreactor can open new ways in microelectrochemical analysis, presenting novel opportunities and applications in the field of electrochemical sensors.
Collapse
Affiliation(s)
- Nikoo Fahemi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, P.O. Box 45195-1159, Zanjan 45137-66731, Iran
| | - Shayan Angizi
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Amir Hatamie
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, P.O. Box 45195-1159, Zanjan 45137-66731, Iran
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, Gothenburg 412 96, Sweden
| |
Collapse
|
2
|
Kozhina E, Panov D, Kovalets N, Apel P, Bedin S. A thin-film polymer heating element with a continuous silver nanowires network embedded inside. NANOTECHNOLOGY 2023; 35:035601. [PMID: 37820633 DOI: 10.1088/1361-6528/ad0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023]
Abstract
This study presents a method for fabricating a film-based heating element using a polymer material with an array of intersecting conductive elements embedded within it. Track-etched membranes (TM) with a thickness of 10μm were used as the template, and their pores were filled with metal, forming a three-dimensional grid. Due to the unique manufacturing process of TM, the pores inside intersect with each other, allowing for contacts between individual nanowires (NWs) when filled with metal. Experimental results demonstrated that filling the TM pores with silver allows for heating temperatures up to 78 degrees without deformation or damage to the heating element. The resulting flexible heating element can be utilized in medical devices for heating purposes or as a thermal barrier coating.
Collapse
Affiliation(s)
- Elizaveta Kozhina
- Department of Advanced Photonics and Sensorics, Lebedev Physical Institute RAS, Moscow, Russia
- Plasmonics Laboratory, The Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Dmitry Panov
- Thin Film Growth Laboratories and Inorganic Nanostructures, Center of Crystallography and Photonics of RAS, Moscow, Russia
| | - Nataliya Kovalets
- Department of Advanced Photonics and Sensorics, Lebedev Physical Institute RAS, Moscow, Russia
- Laboratory of Advanced Materials Physics, Moscow Pedagogical State University, Moscow, Russia
| | - Pavel Apel
- Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, Russia
| | - Sergey Bedin
- Department of Advanced Photonics and Sensorics, Lebedev Physical Institute RAS, Moscow, Russia
- Thin Film Growth Laboratories and Inorganic Nanostructures, Center of Crystallography and Photonics of RAS, Moscow, Russia
- Laboratory of Advanced Materials Physics, Moscow Pedagogical State University, Moscow, Russia
| |
Collapse
|
3
|
Drault F, Ferain E, Lisboa MC, Hermans S, Demoustier-Champagne S. Tuning Au/SiO 2 nanostructures from 1D to 3D interconnected nanotube networks using polycarbonate porous templates. NANOSCALE 2023; 15:14981-14993. [PMID: 37661913 DOI: 10.1039/d3nr03783e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
We report a simple process, based on the combination of sol-gel deposition and nano-templating with polycarbonate membranes, for the synthesis of 1D to 3D free-standing silica (SiO2) interconnected nanotube (NT) networks. The thickness and porosity of the SiO2 nanotube walls can be, respectively, controlled by adjusting the ethanol amount in the sol-gel reaction mixture and by the addition or not of a porogen agent during the synthesis. Internal functionalization of 1D and 3D porous and non-porous SiO2 NTs by Au nanoparticles (NPs) was then performed using electroless deposition leading to particle sizes ranging from 15 to 20 nm. Characterization of all these systems by SEM-EDX, TEM, ICP and XPS clearly demonstrated the impact of the porosity of SiO2 on the amount and localization of Au NPs. Selective functionalization of the inner or the inner + outer surfaces of SiO2 NTs was achieved by keeping or freeing the SiO2 NTs from the template prior to electroless deposition, respectively. Moreover, UV-visible analysis confirmed plasmon resonance associated with Au NPs in all functionalized systems, paving the way to applications in many fields such as nano-medicine or (photo-)catalysis. In particular, the free-standing interconnected silica-based nanotube systems provide unique features of great interest for use in nanoscale fluidic bioseparation, sensing, and flow (photo)-catalytic chemistry, as demonstrated herein for the photodegradation of methylene blue.
Collapse
Affiliation(s)
- Fabien Drault
- Institute of Condensed Matter and Nanosciences (BSMA division), UCLouvain, Croix du Sud 1, B-1348, Louvain-la-Neuve, Belgium.
- Institute of Condensed Matter and Nanosciences (MOST division), UCLouvain, 1 Place Louis Pasteur, B-1348 Louvain-la- Neuve, Belgium.
| | - Etienne Ferain
- Institute of Condensed Matter and Nanosciences (BSMA division), UCLouvain, Croix du Sud 1, B-1348, Louvain-la-Neuve, Belgium.
- Institute of Condensed Matter and Nanosciences (MOST division), UCLouvain, 1 Place Louis Pasteur, B-1348 Louvain-la- Neuve, Belgium.
- it4ip S.A., Avenue Jean-Etienne Lenoir 1, B-1348 Louvain-la-Neuve, Belgium
| | - Milena Chagas Lisboa
- Institute of Condensed Matter and Nanosciences (BSMA division), UCLouvain, Croix du Sud 1, B-1348, Louvain-la-Neuve, Belgium.
| | - Sophie Hermans
- Institute of Condensed Matter and Nanosciences (MOST division), UCLouvain, 1 Place Louis Pasteur, B-1348 Louvain-la- Neuve, Belgium.
| | - Sophie Demoustier-Champagne
- Institute of Condensed Matter and Nanosciences (BSMA division), UCLouvain, Croix du Sud 1, B-1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
4
|
Hossain UH, Jantsen G, Muench F, Kunz U, Ensinger W. Increasing the structural and compositional diversity of ion-track templated 1D nanostructures through multistep etching, plastic deformation, and deposition. NANOTECHNOLOGY 2022; 33:245603. [PMID: 35235910 DOI: 10.1088/1361-6528/ac59e5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Ion-track etching represents a highly versatile way of introducing artificial pores with diameters down into the nm-regime into polymers, which offers considerable synthetic flexibility in template-assisted nanofabrication schemes. While the mechanistic foundations of ion-track technology are well understood, its potential for creating structurally and compositionally complex nano-architectures is far from being fully tapped. In this study, we showcase different strategies to expand the synthetic repertoire of ion-track membrane templating by creating several new 1D nanostructures, namely metal nanotubes of elliptical cross-section, funnel-shaped nanotubes optionally overcoated with titania or nickel nanospike layers, and concentrical as well as stacked metal nanotube-nanowire heterostructures. These nano-architectures are obtained solely by applying different wet-chemical deposition methods (electroless plating, electrodeposition, and chemical bath deposition) to ion-track etched polycarbonate templates, whose pore geometry is modified through plastic deformation, consecutive etching steps under differing conditions, and etching steps intermitted by spatially confined deposition, providing new motifs for nanoscale replication.
Collapse
Affiliation(s)
- U H Hossain
- Technische Universität Darmstadt, Department of Materials Science, Materials Analysis, Alarich-Weiss-Str.2, D-64287 Darmstadt, Germany
| | - G Jantsen
- Technische Universität Darmstadt, Department of Materials Science, Materials Analysis, Alarich-Weiss-Str.2, D-64287 Darmstadt, Germany
| | - F Muench
- Technische Universität Darmstadt, Department of Materials Science, Materials Analysis, Alarich-Weiss-Str.2, D-64287 Darmstadt, Germany
| | - U Kunz
- Technische Universität Darmstadt, Department of Materials Science, Materials Analysis, Alarich-Weiss-Str.2, D-64287 Darmstadt, Germany
| | - W Ensinger
- Technische Universität Darmstadt, Department of Materials Science, Materials Analysis, Alarich-Weiss-Str.2, D-64287 Darmstadt, Germany
| |
Collapse
|
5
|
Affiliation(s)
- Falk Muench
- Department of Materials and Earth Sciences Technical University of Darmstadt Alarich-Weiss-Straße 2 64287 Darmstadt Germany
| |
Collapse
|
6
|
Walbert T, Muench F, Yang Y, Kunz U, Xu BX, Ensinger W, Molina-Luna L. In Situ Transmission Electron Microscopy Analysis of Thermally Decaying Polycrystalline Platinum Nanowires. ACS NANO 2020; 14:11309-11318. [PMID: 32806050 DOI: 10.1021/acsnano.0c03342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Owing to their large surface area, continuous conduction paths, high activity, and pronounced anisotropy, nanowires are pivotal for a wide range of applications, yet far from thermodynamic equilibrium. Their susceptibility toward degradation necessitates an in-depth understanding of the underlying failure mechanisms to ensure reliable performance under operating conditions. In this study, we present an in-depth analysis of the thermally triggered Plateau-Rayleigh-like morphological instabilities of electrodeposited, polycrystalline, 20-40 nm thin platinum nanowires using in situ transmission electron microscopy in a controlled temperature regime, ranging from 25 to 1100 °C. Nanowire disintegration is heavily governed by defects, while the initially present, frequent but small thickness variations do not play an important role and are overridden later during reshaping. Changes of the exterior wire morphology are preceded by shifts in the internal nanostructure, including grain boundary straightening, grain growth, and the formation of faceted voids. Surprisingly, the nanowires segregate into two domain types, one being single-crystalline and essentially void-free, while the other preserves void-pinned grain boundaries. While the single-crystalline domains exhibit fast Pt transport, the void-containing domains are unexpectedly stable, accumulate platinum by surface diffusion, and act as nuclei for the subsequent nanowire splitting. This study highlights the vital role of defects in Plateau-Rayleigh-like thermal transformations, whose evolution not only accompanies but guides the wire reshaping. Thus, defects represent strong parameters for controlling the nanowire decay and must be considered for devising accurate models and simulations.
Collapse
Affiliation(s)
- Torsten Walbert
- Department of Materials and Earth Sciences, Materials Analysis Group, Technical University of Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
| | - Falk Muench
- Department of Materials and Earth Sciences, Materials Analysis Group, Technical University of Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
| | - Yangyiwei Yang
- Department of Materials and Earth Sciences, Mechanics of Functional Materials Group, Technical University of Darmstadt, Otto-Berndt-Straße 3, 64287 Darmstadt, Germany
| | - Ulrike Kunz
- Department of Materials and Earth Sciences, Physical Metallurgy Group, Technical University of Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
| | - Bai-Xiang Xu
- Department of Materials and Earth Sciences, Mechanics of Functional Materials Group, Technical University of Darmstadt, Otto-Berndt-Straße 3, 64287 Darmstadt, Germany
| | - Wolfgang Ensinger
- Department of Materials and Earth Sciences, Materials Analysis Group, Technical University of Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
| | - Leopoldo Molina-Luna
- Department of Materials and Earth Sciences, Advanced Electron Microscopy Group, Technical University of Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
| |
Collapse
|
7
|
Scheuerlein MC, Muench F, Kunz U, Hellmann T, Hofmann JP, Ensinger W. Electroless Nanoplating of Iridium: Template‐Assisted Nanotube Deposition for the Continuous Flow Reduction of 4‐Nitrophenol. ChemElectroChem 2020. [DOI: 10.1002/celc.202000811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Martin Christoph Scheuerlein
- Technical University of DarmstadtDepartment of Materials and Earth Sciences Alarich-Weiss-Strasse 2 64287 Darmstadt Germany
| | - Falk Muench
- Technical University of DarmstadtDepartment of Materials and Earth Sciences Alarich-Weiss-Strasse 2 64287 Darmstadt Germany
| | - Ulrike Kunz
- Technical University of DarmstadtDepartment of Materials and Earth Sciences Alarich-Weiss-Strasse 2 64287 Darmstadt Germany
| | - Tim Hellmann
- Technical University of DarmstadtSurface Science LaboratoryDepartment of Materials and Earth Sciences Otto-Berndt-Strasse 3 64287 Darmstadt Germany
| | - Jan P. Hofmann
- Technical University of DarmstadtSurface Science LaboratoryDepartment of Materials and Earth Sciences Otto-Berndt-Strasse 3 64287 Darmstadt Germany
| | - Wolfgang Ensinger
- Technical University of DarmstadtDepartment of Materials and Earth Sciences Alarich-Weiss-Strasse 2 64287 Darmstadt Germany
| |
Collapse
|
8
|
Wang J, Yu H, Walbert T, Antoni M, Wang C, Xi W, Muench F, Yang J, Chen Y, Ensinger W. Electrical and thermal conductivities of polycrystalline platinum nanowires. NANOTECHNOLOGY 2019; 30:455706. [PMID: 31370046 DOI: 10.1088/1361-6528/ab37a7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding the electrical and thermal transport properties of polycrystalline metallic nanostructures is of great interest for applications in microelectronics. In view of the diverse experimental results in polycrystalline metallic nanowires and nanofilms, it is a long-standing question whether their electrical and thermal properties can be well predicted by a practical model. By eliminating the effects of electrical and thermal contact resistances, we measure the electrical and thermal conductivities of three different polycrystalline Pt nanowires. The electron scattering at the surface is found to be diffusive, and the charge reflection coefficient at grain boundaries is proved to be a function of the melting point. The Lorenz number is observed to be suppressed from the free-electron value by about 30%, which can be explained by introducing a thermal reflection coefficient in calculating the thermal conductivity to account for the small angle scattering effect involving phonons at the grain boundaries. Using this model, both the electrical and thermal conductivities of the polycrystalline Pt nanowires are calculated at different diameters and temperatures.
Collapse
Affiliation(s)
- Jianli Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Department of Mechanical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Electron Beam Induced Enhancement of the Catalytic Properties of Ion-Track Membranes Supported Copper Nanotubes in the Reaction of the P-Nitrophenol Reduction. Catalysts 2019. [DOI: 10.3390/catal9090737] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This study considers the effect of various doses of electron irradiation on the crystal structure and properties of composite catalysts based on polyethylene terephthalate track-etched membranes and copper nanotubes. Copper nanotubes were obtained by electroless template synthesis and irradiated with electrons with 3.8 MeV energy in the dose range of 100–250 kGy in increments of 50 kGy. The original and irradiated samples of composites were investigated by X-ray diffraction technique (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The improved catalytic activity of composite membranes with copper nanotubes was demonstrated by the example of the reduction reaction of p-nitrophenol in the presence of sodium borohydride. Irradiation with electrons at doses of 100 and 150 kGy led to reaction rate constant increases by 35 and 59%, respectively, compared to the non-irradiated sample. This enhancing catalytic activity could be attributed to the changing of the crystallite size of copper, as well as the surface roughness of the composite membrane.
Collapse
|
10
|
Boettcher T, Schaefer S, Antoni M, Stohr T, Kunz U, Dürrschnabel M, Molina-Luna L, Ensinger W, Muench F. Shape-Selective Electroless Plating within Expanding Template Pores: Etching-Assisted Deposition of Spiky Nickel Nanotube Networks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4246-4253. [PMID: 30811941 DOI: 10.1021/acs.langmuir.9b00030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nano-objects are favored structures for applications such as catalysis and sensing. Although they already provide a large surface-to-volume ratio, this ratio can be further increased by shape-selective plating of the nanostructure surfaces. This process combines the conformity of autocatalytic deposition with the defined nucleation and growth characteristics of colloidal nanoparticle syntheses. However, many aspects of such reactions are still not fully understood. In this study, we investigate in detail the growth of spiky nickel nanotubes in polycarbonate template membranes. One distinctive feature of our synthesis is the simultaneous growth of nanospikes on both the inside and outside of nanotubes while the tubes are still embedded in the polymer. This is achieved by combining the plating process with locally enhanced in situ etching of the poylmer template, for which we propose a theory. Electron microscopy investigations reveal twinning defects as the driving force for the growth of crystalline nanospikes. Deposit crystallinity is ensured by the reducing agent hydrazine. Iminodiacetic acid is not only used as a complexing agent during synthesis but apparently also acts as a capping agent and limits random nucleation on the spike facets. Finally, we apply our synthesis to templates with interconnected pores to obtain free-standing spiky nickel nanotube networks, demonstrating its ability to homogeneously coat substrates with extended inner surfaces and to operate in nanoscale confinement.
Collapse
Affiliation(s)
- Tim Boettcher
- Department of Materials and Geoscience , Technische Universität Darmstadt , Alarich-Weiss-Straße 2 , 64287 Darmstadt , Germany
| | - Sandra Schaefer
- Department of Materials and Geoscience , Technische Universität Darmstadt , Alarich-Weiss-Straße 2 , 64287 Darmstadt , Germany
- CEST Kompetenzzentrum für elektrochemische Oberflächentechnologie GmbH , Viktor-Kaplan-Straße 2 , 2700 Wiener Neustadt , Austria
| | - Markus Antoni
- Department of Materials and Geoscience , Technische Universität Darmstadt , Alarich-Weiss-Straße 2 , 64287 Darmstadt , Germany
| | - Tobias Stohr
- Department of Materials and Geoscience , Technische Universität Darmstadt , Alarich-Weiss-Straße 2 , 64287 Darmstadt , Germany
| | - Ulrike Kunz
- Department of Materials and Geoscience , Technische Universität Darmstadt , Alarich-Weiss-Straße 2 , 64287 Darmstadt , Germany
| | - Michael Dürrschnabel
- Department of Materials and Geoscience , Technische Universität Darmstadt , Alarich-Weiss-Straße 2 , 64287 Darmstadt , Germany
- Karlsruher Institut für Technologie (KIT) , Institut für Angewandte Materialien , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany
| | - Leopoldo Molina-Luna
- Department of Materials and Geoscience , Technische Universität Darmstadt , Alarich-Weiss-Straße 2 , 64287 Darmstadt , Germany
| | - Wolfgang Ensinger
- Department of Materials and Geoscience , Technische Universität Darmstadt , Alarich-Weiss-Straße 2 , 64287 Darmstadt , Germany
| | - Falk Muench
- Department of Materials and Geoscience , Technische Universität Darmstadt , Alarich-Weiss-Straße 2 , 64287 Darmstadt , Germany
| |
Collapse
|
11
|
Muench F, Solomonov A, Bendikov T, Molina-Luna L, Rubinstein I, Vaskevich A. Empowering Electroless Plating to Produce Silver Nanoparticle Films for DNA Biosensing Using Localized Surface Plasmon Resonance Spectroscopy. ACS APPLIED BIO MATERIALS 2019; 2:856-864. [PMID: 35016289 DOI: 10.1021/acsabm.8b00702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To facilitate the implementation of biosensors based on the localized surface plasmon resonance (LSPR) of metal nanostructures, there is a great need for cost-efficient, flexible, and tunable methods for producing plasmonic coatings. Due to its simplicity and excellent conformity, electroless plating (EP) is well suited for this task. However, it is traditionally optimized to produce continuous metal films, which cannot be employed in LSPR sensors. Here, we outline the development of an EP strategy for depositing island-like silver nanoparticle (NP) films on glass with distinct LSPR bands. The fully wet-chemical process only employs standard chemicals and proceeds within minutes at room temperature. The key step for producing spread-out NP films is an accelerated ripening of the silver seed layer in diluted hydrochloric acid, which reduces the nucleation density during plating. The reaction kinetics and mechanisms are investigated with scanning (transmission) electron microscopy (SEM/STEM), X-ray photoelectron spectroscopy (XPS), and UV-vis spectroscopy, with the latter enabling a convenient live monitoring of the deposition, allowing its termination at a stage of desired optical properties. The sensing capabilities of chemically deposited NP films as LSPR transducers are exemplified in DNA biosensing. To this end, a sensing interface is prepared using layer-by-layer (LbL) buildup of polyelectrolytes (PE), followed by adsorption and covalent immobilization of ssDNA. The obtained LSPR transducers demonstrate robustness and selectivity in sensing experiments with binding complementary and unrelated DNA strands.
Collapse
Affiliation(s)
- Falk Muench
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 7610001, Israel.,Department of Materials and Earth Sciences, Technische Universität Darmstadt, Darmstadt 64287, Germany
| | - Aleksei Solomonov
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tatyana Bendikov
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Leopoldo Molina-Luna
- Department of Materials and Earth Sciences, Technische Universität Darmstadt, Darmstadt 64287, Germany
| | - Israel Rubinstein
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alexander Vaskevich
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
12
|
Abstract
Combining 1D metal nanotubes and nanowires into cross-linked 2D and 3D architectures represents an attractive design strategy for creating tailored unsupported catalysts. Such materials complement the functionality and high surface area of the nanoscale building blocks with the stability, continuous conduction pathways, efficient mass transfer, and convenient handling of a free-standing, interconnected, open-porous superstructure. This review summarizes synthetic approaches toward metal nano-networks of varying dimensionality, including the assembly of colloidal 1D nanostructures, the buildup of nanofibrous networks by electrospinning, and direct, template-assisted deposition methods. It is outlined how the nanostructure, porosity, network architecture, and composition of such materials can be tuned by the fabrication conditions and additional processing steps. Finally, it is shown how these synthetic tools can be employed for designing and optimizing self-supported metal nano-networks for application in electrocatalysis and related fields.
Collapse
|
13
|
Dendisová M, Jeništová A, Parchaňská-Kokaislová A, Matějka P, Prokopec V, Švecová M. The use of infrared spectroscopic techniques to characterize nanomaterials and nanostructures: A review. Anal Chim Acta 2018; 1031:1-14. [DOI: 10.1016/j.aca.2018.05.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 01/25/2023]
|
14
|
Ni Y, Liu H, Dai D, Mu X, Xu J, Shao S. Chromogenic, Fluorescent, and Redox Sensors for Multichannel Imaging and Detection of Hydrogen Peroxide in Living Cell Systems. Anal Chem 2018; 90:10152-10158. [PMID: 30058328 DOI: 10.1021/acs.analchem.7b04435] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydrogen peroxide (H2O2) is an important reactive oxygen species (ROS). Maintaining the H2O2 concentration at a normal level is critical to achieve the normal physiological activities of cells, which otherwise might trigger various diseases. Therefore, it is necessary to develop new and practical multisignaling sensors for both visualization of intracellular H2O2 and accurate detection of extracellular H2O2. In this paper, a novel multichannel signaling fluorescence-electrochemistry combined probe 1 (FE-H2O2) is presented for imaging and detection of H2O2 in living cell systems. In our design, the probe FE-H2O2 consists of a H2O2 reaction site and 4-ferrocenyl(vinyl)pyridine unit which affords chromogenic, fluorescent, and electrochemical signals. These structural motifs yield a combined chromogenic, fluorescent, and redox sensor in a single molecule. Probe FE-H2O2 showed a "Turn-On" fluorescence response to H2O2, which can be used for monitoring intracellular H2O2 in vivo. Furthermore, the electrochemical response of probe FE-H2O2 was decreased after the addition of H2O2, which can be applied for accurate detection of H2O2 released from living cells. When the fluorescence imaging method is combined with electrochemical analysis technology, it is hopeful that the well-designed multimodule probe can serve as a practical tool for understanding the metabolism and homeostasis of H2O2 in a complex biological system.
Collapse
Affiliation(s)
- Yue Ni
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province , Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou , Gansu 730000 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Hong Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province , Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou , Gansu 730000 , P. R. China
| | - Di Dai
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province , Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou , Gansu 730000 , P. R. China
| | - Xiqiong Mu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province , Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou , Gansu 730000 , P. R. China
| | - Jian Xu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province , Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou , Gansu 730000 , P. R. China
| | - Shijun Shao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province , Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou , Gansu 730000 , P. R. China
| |
Collapse
|
15
|
Electroless Synthesis of Highly Stable and Free-Standing Porous Pt Nanotube Networks and their Application in Methanol Oxidation. ChemElectroChem 2018. [DOI: 10.1002/celc.201701271] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Buccolieri A, Serra A, Giancane G, Manno D. Colloidal solution of silver nanoparticles for label-free colorimetric sensing of ammonia in aqueous solutions. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:499-507. [PMID: 29515962 PMCID: PMC5815292 DOI: 10.3762/bjnano.9.48] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/26/2018] [Indexed: 03/30/2024]
Abstract
Silver nanoparticles were synthesized in the presence of saccharides and ammonia (NH3) in the concentration range from 10-2 to 103 ppm to develop an optical sensor for NH3 in aqueous solutions. Ammonia affects the features of the nanoparticles obtained in a concentration-dependent manner as determined by UV-vis absorption analysis and TEM observations. Structural and morphological analysis provides the basis for the production of a colorimetric label-free sensor for ammonia. Overall, surface plasmon resonance increases when ammonia concentration rises, although the functional trend is not the same over the entire investigated ammonia concentration range. Three different ranges have been identified: very low ammonia concentrations from 0.01 to 0.2 ppm, high ammonia concentrations from 20 to 350 ppm and, most importantly, the intermediate or physiological range of ammonia from 0.5 to 10 ppm.
Collapse
Affiliation(s)
- Alessandro Buccolieri
- GFA-Gruppo di Fisica Applicata, Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento Lecce, Italy
| | - Antonio Serra
- GFA-Gruppo di Fisica Applicata, Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento Lecce, Italy
| | - Gabriele Giancane
- GFA-Gruppo di Fisica Applicata, Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento Lecce, Italy
| | - Daniela Manno
- GFA-Gruppo di Fisica Applicata, Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento Lecce, Italy
| |
Collapse
|
17
|
El-Nagar GA, Sarhan RM, Abouserie A, Maticiuc N, Bargheer M, Lauermann I, Roth C. Efficient 3D-Silver Flower-like Microstructures for Non-Enzymatic Hydrogen Peroxide (H 2O 2) Amperometric Detection. Sci Rep 2017; 7:12181. [PMID: 28939874 PMCID: PMC5610335 DOI: 10.1038/s41598-017-11965-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/25/2017] [Indexed: 11/09/2022] Open
Abstract
We present an efficient non-enzymatic hydrogen peroxide sensor composed of flower-like silver microstructures. The silver microstructures´ morphology is controlled by adding minute amounts of either succinic or malonic acid as directing agents. Morphologically, silver particles showed ball-like structures in the absence of both directing agents, while the presence of 50 ppm of succinic acid and malonic acid lead to monodisperse chrysanthemum and water-lily flower-like structure, respectively. A higher concentration of succinic acid resulted in a rose flower-like structures. Electrochemically, the rose flower-like silver microstructures exhibited the best performance for H2O2 detection as evaluated by their outstanding electrocatalytic activity (12 times higher) and sensitivity (2.4 mM-1 cm-2, 24 times higher) with lower detection limit (0.4 µM, 5 times smaller) together with their excellent H2O2 selectivity compared to that of the ball-shaped structures. Additionally, rose-flower microstructures exhibited excellent long-term stability; 11 and 3 times higher compared to ball- and water-lily structures, respectively. This substantial performance enhancement is attributed to their unique flower-like structure providing a higher number of active surface sites (at least 8 times higher) and a faster detachment rate of in-situ generated oxygen bubbles from their surface.
Collapse
Affiliation(s)
- Gumaa A El-Nagar
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt.
- Institut für Chemie und Biochemie Physikalische und Theoretische Chemie, Freie Universität Berlin, 14195, Berlin, Germany.
| | - Radwan M Sarhan
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany
- Humboldt-Universität zu Berlin, School of Analytical Sciences Adlershof (SALSA), Albert-Einstein-Str. 5-9, 10099, Berlin, Germany
| | - Ahed Abouserie
- Institute of chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Potsdam, D-14476, Germany
| | - Natalia Maticiuc
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Matias Bargheer
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany
| | - Iver Lauermann
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Christina Roth
- Institut für Chemie und Biochemie Physikalische und Theoretische Chemie, Freie Universität Berlin, 14195, Berlin, Germany
| |
Collapse
|
18
|
Muench F, Schaefer S, Hagelüken L, Molina-Luna L, Duerrschnabel M, Kleebe HJ, Brötz J, Vaskevich A, Rubinstein I, Ensinger W. Template-Free Electroless Plating of Gold Nanowires: Direct Surface Functionalization with Shape-Selective Nanostructures for Electrochemical Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:31142-31152. [PMID: 28825459 DOI: 10.1021/acsami.7b09398] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Metal nanowires (NWs) represent a prominent nanomaterial class, the interest in which is fueled by their tunable properties as well as their excellent performance in, for example, sensing, catalysis, and plasmonics. Synthetic approaches to obtain metal NWs mostly produce colloids or rely on templates. Integrating such nanowires into devices necessitates additional fabrication steps, such as template removal, nanostructure purification, or attachment. Here, we describe the development of a facile electroless plating protocol for the direct deposition of gold nanowire films, requiring neither templates nor complex instrumentation. The method is general, producing three-dimensional nanowire structures on substrates of varying shape and composition, with different seed types. The aqueous plating bath is prepared by ligand exchange and partial reduction of tetrachloroauric acid in the presence of 4-dimethylaminopyridine and formaldehyde. Gold deposition proceeds by nucleation of new grains on existing nanostructure tips and thus selectively produces curvy, polycrystalline nanowires of high aspect ratio. The nanofabrication potential of this method is demonstrated by producing a sensor electrode, whose performance is comparable to that of known nanostructures and discussed in terms of the catalyst architecture. Due to its flexibility and simplicity, shape-selective electroless plating is a promising new tool for functionalizing surfaces with anisotropic metal nanostructures.
Collapse
Affiliation(s)
- Falk Muench
- Department of Materials and Interfaces, Weizmann Institute of Science , Rehovot 7610001, Israel
| | - Sandra Schaefer
- Department of Materials and Earth Sciences, Technische Universität Darmstadt , Alarich-Weiss-Straße 2, Darmstadt 64287, Germany
| | - Lorenz Hagelüken
- Department of Materials and Earth Sciences, Technische Universität Darmstadt , Alarich-Weiss-Straße 2, Darmstadt 64287, Germany
| | - Leopoldo Molina-Luna
- Department of Materials and Earth Sciences, Technische Universität Darmstadt , Alarich-Weiss-Straße 2, Darmstadt 64287, Germany
| | - Michael Duerrschnabel
- Department of Materials and Earth Sciences, Technische Universität Darmstadt , Alarich-Weiss-Straße 2, Darmstadt 64287, Germany
| | - Hans-Joachim Kleebe
- Department of Materials and Earth Sciences, Technische Universität Darmstadt , Alarich-Weiss-Straße 2, Darmstadt 64287, Germany
| | - Joachim Brötz
- Department of Materials and Earth Sciences, Technische Universität Darmstadt , Alarich-Weiss-Straße 2, Darmstadt 64287, Germany
| | - Alexander Vaskevich
- Department of Materials and Interfaces, Weizmann Institute of Science , Rehovot 7610001, Israel
| | - Israel Rubinstein
- Department of Materials and Interfaces, Weizmann Institute of Science , Rehovot 7610001, Israel
| | - Wolfgang Ensinger
- Department of Materials and Earth Sciences, Technische Universität Darmstadt , Alarich-Weiss-Straße 2, Darmstadt 64287, Germany
| |
Collapse
|
19
|
Zaraska L, Gawlak K, Kurowska-Tabor E, Jaskuła M, Sulka GD. Template-assisted synthesis of rough Ag nanorods and their application for amperometric sensing of H 2 O 2. CR CHIM 2017. [DOI: 10.1016/j.crci.2017.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
20
|
Huang Z, Zhao Y, Song Y, Zhao Y, Zhao J. Trisodium citrate assisted synthesis of flowerlike hierarchical Co3O4 nanostructures with enhanced catalytic properties. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.12.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Muench F, Sun L, Kottakkat T, Antoni M, Schaefer S, Kunz U, Molina-Luna L, Duerrschnabel M, Kleebe HJ, Ayata S, Roth C, Ensinger W. Free-Standing Networks of Core-Shell Metal and Metal Oxide Nanotubes for Glucose Sensing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:771-781. [PMID: 27935294 DOI: 10.1021/acsami.6b13979] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanotube assemblies represent an emerging class of advanced functional materials, whose utility is however hampered by intricate production processes. In this work, three classes of nanotube networks (monometallic, bimetallic, and metal oxide) are synthesized solely using facile redox reactions and commercially available ion track membranes. First, the disordered pores of an ion track membrane are widened by chemical etching, resulting in the formation of a strongly interconnected pore network. Replicating this template structure with electroless copper plating yields a monolithic film composed of crossing metal nanotubes. We show that the parent material can be easily transformed into bimetallic or oxidic derivatives by applying a second electroless plating or thermal oxidation step. These treatments retain the monolithic network structure but result in the formation of core-shell nanotubes of altered composition (thermal oxidation: Cu2O-CuO; electroless nickel coating: Cu-Ni). The obtained nanomaterials are applied in the enzyme-free electrochemical detection of glucose, showing very high sensitivities between 2.27 and 2.83 A M-1 cm-2. Depending on the material composition, varying reactivities were observed: While copper oxidation reduces the response to glucose, it is increased in the case of nickel modification, albeit at the cost of decreased selectivity. The performance of the materials is explained by the network architecture, which combines the advantages of one-dimensional nano-objects (continuous conduction pathways, high surface area) with those of a self-supporting, open-porous superstructure (binder-free catalyst layer, efficient diffusion). In summary, this novel synthetic approach provides a fast, scalable, and flexible route toward free-standing nanotube arrays of high compositional complexity.
Collapse
Affiliation(s)
- Falk Muench
- Department of Materials and Earth Sciences, Technische Universität Darmstadt , Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
| | - Luwan Sun
- Department of Materials and Earth Sciences, Technische Universität Darmstadt , Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
| | - Tintula Kottakkat
- Department of Physical and Theoretical Chemistry, Freie Universität Berlin , Takustraße 3, 14195 Berlin, Germany
| | - Markus Antoni
- Department of Materials and Earth Sciences, Technische Universität Darmstadt , Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
| | - Sandra Schaefer
- Department of Materials and Earth Sciences, Technische Universität Darmstadt , Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
| | - Ulrike Kunz
- Department of Materials and Earth Sciences, Technische Universität Darmstadt , Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
| | - Leopoldo Molina-Luna
- Department of Materials and Earth Sciences, Technische Universität Darmstadt , Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
| | - Michael Duerrschnabel
- Department of Materials and Earth Sciences, Technische Universität Darmstadt , Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
| | - Hans-Joachim Kleebe
- Department of Materials and Earth Sciences, Technische Universität Darmstadt , Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
| | - Sevda Ayata
- Science Faculty, Department of Chemistry, Dokuz Eylul University , Tinaztepe Kampusu, Buca, 35160 Izmir, Turkey
| | - Christina Roth
- Department of Physical and Theoretical Chemistry, Freie Universität Berlin , Takustraße 3, 14195 Berlin, Germany
| | - Wolfgang Ensinger
- Department of Materials and Earth Sciences, Technische Universität Darmstadt , Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
| |
Collapse
|