1
|
Tungsirisurp S, Frascione N. Enhancing Target Detection: A Fluorescence-Based Streptavidin-Bead Displacement Assay. BIOSENSORS 2024; 14:509. [PMID: 39451722 DOI: 10.3390/bios14100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Fluorescence-based aptasensors have been regarded as innovative analytical tools for the detection and quantification of analytes in many fields, including medicine and therapeutics. Using DNA aptamers as the biosensor recognition component, conventional molecular beacon aptasensor designs utilise target-induced structural switches of the DNA aptamers to generate a measurable fluorescent signal. However, not all DNA aptamers undergo sufficient target-specific conformational changes for significant fluorescence measurements. Here, the use of complementary 'antisense' strands is proposed to enable fluorescence measurement through strand displacement upon target binding. Using a published target-specific DNA aptamer against the receptor binding domain of SARS-CoV-2, we designed a streptavidin-aptamer bead complex as a fluorescence displacement assay for target detection. The developed assay demonstrates a linear range from 50 to 800 nanomolar (nM) with a limit of detection calculated at 67.5 nM and a limit of quantification calculated at 204.5 nM. This provides a 'fit-for-purpose' model assay for the detection and quantification of any target of interest by adapting and functionalising a suitable target-specific DNA aptamer and its complementary antisense strand.
Collapse
Affiliation(s)
- Sireethorn Tungsirisurp
- Department of Analytical, Environmental & Forensic Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| | - Nunzianda Frascione
- Department of Analytical, Environmental & Forensic Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| |
Collapse
|
2
|
Zhou L, Zhu R, Figueroa-Miranda G, Neis M, Offenhäusser A, Mayer D. Ratiometric electrochemical aptasensor with strand displacement for insulin detection in blood samples. Anal Chim Acta 2024; 1317:342823. [PMID: 39029996 DOI: 10.1016/j.aca.2024.342823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Diabetes patients suffer either from insulin deficiency or resistance with a high risk of severe long-term complications, thus the quantitative assessment of insulin level is highly desired for diabetes surveillance and management. Utilizing insulin-capturing aptamers may facilitate the development of affordable biosensors however, their rigid G-quadruplex structures impair conformational changes of the aptamers and diminish the sensor signals. RESULTS Here we report on a ratiometric, electrochemical insulin aptasensor which is achieved by hybridization of an insulin-capturing aptamer and a partially complementary ssDNA to break the rigid G-quadruplex structures. To improve the durability of the aptasensor, the capturing aptamer was immobilized on gold electrodes via two dithiol-phosphoramidite functional groups while methoxy-polyethylene glycol thiol was used as a blocking molecule. The exposure of the sensor to insulin-containing solutions induced the dissociation of the hybridized DNA accompanied by a conformational rearrangement of the capturing aptamer back into a G-quadruplex structure. The reliability of sensor readout was improved by the adoption of an AND logic gate utilizing anthraquinone and methylene blue redox probes associated to the aptamer and complementary strand, respectively. Our aptasensor possessed an improved detection limit of 0.15 nM in comparison to aptasensors without strand displacement. SIGNIFICANCE The sensor was adapted for detection in real blood and is ready for future PoC diagnostics. The capability of monitoring the insulin level in an affordably manner can improve the treatment for an increasing number of patients in developed and developing nations. The utilization of low-cost and versatile aptamer receptors together with the engineering of ratiometric electrochemical signal recording has the potential to considerably advance the current insulin detection technology toward multi-analyte diabetes sensors.
Collapse
Affiliation(s)
- Lei Zhou
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Jülich, Germany; Faculty I, RWTH Aachen University, Aachen, Germany
| | - Ruifeng Zhu
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Gabriela Figueroa-Miranda
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Marc Neis
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Andreas Offenhäusser
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Jülich, Germany.
| |
Collapse
|
3
|
Bakhshandeh F, Saha S, Sen P, Sakib S, MacLachlan R, Kanji F, Osman E, Soleymani L. A universal bacterial sensor created by integrating a light modulating aptamer complex with photoelectrochemical signal readout. Biosens Bioelectron 2023; 235:115359. [PMID: 37187062 DOI: 10.1016/j.bios.2023.115359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/05/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
Photoelectrochemical (PEC) signal transduction is of great interest for ultrasensitive biosensing; however, signal-on PEC assays that do not require target labeling remain elusive. In this work, we developed a signal-on biosensor that uses nucleic acids to modulate PEC currents upon target capture. Target presence removes a biorecognition probe from a DNA duplex carrying a gold nanoparticle, bringing the gold nanoparticle in direct contact to the photoelectrode and increasing the PEC current. This assay was used to develop a universal bacterial detector by targeting peptidoglycan using an aptamer, demonstrating a limit-of-detection of 82 pg/mL (13 pM) in buffer and 239 pg/mL (37 pM) in urine for peptidoglycan and 1913 CFU/mL forEscherichia coliin urine. When challenged with a panel of unknown targets, the sensor identified samples with bacterial contamination versus fungi. The versatility of the assay was further demonstrated by analyzing DNA targets, which yielded a limit-of-detection of 372 fM.
Collapse
Affiliation(s)
- Fatemeh Bakhshandeh
- Department of Engineering Physics, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Sudip Saha
- School of Biomedical Engineering, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Payel Sen
- Department of Engineering Physics, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Sadman Sakib
- Department of Engineering Physics, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Roderick MacLachlan
- Department of Engineering Physics, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Farhaan Kanji
- Department of Engineering Physics, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Enas Osman
- School of Biomedical Engineering, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Leyla Soleymani
- Department of Engineering Physics, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada; School of Biomedical Engineering, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada; Michael G. DeGroote Institute for Infectious Disease Research, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada.
| |
Collapse
|
4
|
Thionine-mediated electrocatalytic reduction for electrochemical detection of EDTA-Fe(III) in soy sauce. Anal Bioanal Chem 2023; 415:639-648. [PMID: 36434171 DOI: 10.1007/s00216-022-04452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
Electrocatalytic reactions based on electron transfer mediators provide a simple and effective route for the development of convenient and sensitive electrochemical assays. Here, we report a novel electrocatalytic assay for detection of EDTA-Fe(III), which is widely used as a supplement in iron-fortified foods to reduce prevalence of iron deficiency. Unlike conventional electrochemical methods to detect Fe(III) ion, signaling mechanism of our electrocatalytic assay relies on the previously unexplored thionine-mediated electrochemical reduction of EDTA-Fe(III). This electrocatalytic detection method is sensitive for EDTA-Fe(III) detection in the linear concentration range from 10 to 750 μM with a detection limit of 2.5 μM. It is also specific enough and applicable to detection of EDTA-Fe(III) in real soy sauce samples with satisfactory recovery. The one-step electrocatalytic reduction for signal generation enables the direct and sensitive electrochemical detection of EDTA-Fe(III). We believe that this electrocatalytic assay can serve as a general platform for quantification of EDTA-Fe(III) in many EDTA-Fe(III)-fortified foods. And because thionine is increasingly used as a signal reporter in electrochemical DNA/aptamer sensors, the engineered electrocatalytic reaction of thionine-mediated electrochemical reduction of EDTA-Fe(III) will also provide a simple signal amplification means for the development of highly sensitive electrochemical biosensors.
Collapse
|
5
|
Ni Y, Ouyang H, Yu L, Ling C, Zhu Z, He A, Liu R. Label-free electrochemical aptasensor based on magnetic α-Fe2O3/Fe3O4 heterogeneous hollow nanorods for the detection of cancer antigen 125. Bioelectrochemistry 2022; 148:108255. [DOI: 10.1016/j.bioelechem.2022.108255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 11/24/2022]
|
6
|
Beitollahi H, Zaimbashi R, Mahani MT, Tajik S. A label-free aptasensor for highly sensitive detection of homocysteine based on gold nanoparticles. Bioelectrochemistry 2020; 134:107497. [PMID: 32222669 DOI: 10.1016/j.bioelechem.2020.107497] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 11/25/2022]
Abstract
In the present study, an original electrode fabrication approach was devised to create a label free sensitive electrochemical aptasensor for the detection of Homocysteine (Hcy) (Homocysteine signal was used for detection). To bind certain targets, synthetic oligonucleotides used as aptamers (APs) were specifically selected. Aptamers are substitutes for antibodies for analytical devices because of their sensitivity and high affinity. In this study, Hcy-Binding-Aptamer (HBA) was grafted onto the surface of Au nanoparticles/Glassy Carbon Electrode (Au/GCE) in order to create an aptasensor. The effects of buffer concentration, buffer type, interaction time, and aptamer concentration were investigated and optimized. In addition, Differential Pulse Voltammetry (DPV) was implemented to identify homocysteine. Favorable performance was achieved at a detection limit of 0.01 μM (S/N = 3) and linear range 0.05-20.0 μM. Furthermore, the fabricated aptasensor displayed desirable stability and reproducibility. The developed electrochemical aptasensor was found to have reasonable selectivity for the detection of homocysteine in the presence of cysteine and methionine. Analysis of real samples showed good ability of the proposed homocysteine biosensor to provide sensitive, quick, easy, and cost effective measurement of homocysteine in human blood serum and urine samples.
Collapse
Affiliation(s)
- Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Reza Zaimbashi
- Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran
| | - Masoud Torkzadeh Mahani
- Department of Biotechnology, Institute of Science, High Technology & Environmental Science, Graduate University of Advance Technology, Kerman, Iran
| | - Somayeh Tajik
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Iqbal A, Liu J, Dixon B, Zargar B, Sattar SA. Development and application of DNA-aptamer-coupled magnetic beads and aptasensors for the detection of Cryptosporidium parvum oocysts in drinking and recreational water resources. Can J Microbiol 2019; 65:851-857. [PMID: 31404505 DOI: 10.1139/cjm-2019-0153] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Environmentally stable and disinfectant-resistant oocysts of Cryptosporidium spp. shed in the feces of infected humans and animals frequently contaminate water resources and are subsequently spread via potable and recreational waters. The current monoclonal-antibody-based methods for detecting them in water are slow, labor-intensive, and demand skills to interpret the results. We have developed DNA-aptamer-based aptasensors, coupled with magnetic beads, to detect and identify the oocysts of C. parvum for monitoring recreational and drinking water sources. A sensitive and specific electrochemical aptasensor (3'-biotinylated R4-6 aptamer) was used as a secondary ligand to bind the streptavidin-coated magnetic beads. This was incorporated into a probe using gold nanoparticle modified screen-printed carbon electrodes. Square wave voltammetry allowed for specific recognition of C. parvum oocysts. The aptamer-coated probes had an oocyst detection limit of 50. It did not bind to the cysts of Giardia duodenalis, another common waterborne pathogen, thus indicating its high specificity for the target pathogen. The system could successfully detect C. parvum oocysts in spiked samples of the raw lake and river waters. Therefore, the combined use of the aptasensor and magnetic beads has the potential to monitor water quality for C. parvum oocysts in field samples without relying on monoclonal antibodies and skill-demanding microscopy.
Collapse
Affiliation(s)
- Asma Iqbal
- CREM Co Labs, Units 1-2, 3403 American Drive, Mississauga, ON L4V 1T4, Canada
| | - Juewen Liu
- Department of Chemistry, Faculty of Science, University of Waterloo, 200 University Avenue W, Waterloo, ON N2L 3G1, Canada
| | - Brent Dixon
- Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting, Ottawa, ON K1Y 0M1, Canada
| | - Bahram Zargar
- CREM Co Labs, Units 1-2, 3403 American Drive, Mississauga, ON L4V 1T4, Canada
| | - Syed A Sattar
- CREM Co Labs, Units 1-2, 3403 American Drive, Mississauga, ON L4V 1T4, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
8
|
Mayer M, Baeumner AJ. A Megatrend Challenging Analytical Chemistry: Biosensor and Chemosensor Concepts Ready for the Internet of Things. Chem Rev 2019; 119:7996-8027. [DOI: 10.1021/acs.chemrev.8b00719] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael Mayer
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Antje J. Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
9
|
Zhang Z, Dong L, Zhu Q. Rational engineering of synergically stabilized aptamer-cDNA duplex probes for strand displacement based electrochemical sensors. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Zhang Z, Tao C, Yin J, Wang Y, Li Y. Enhancing the response rate of strand displacement-based electrochemical aptamer sensors using bivalent binding aptamer-cDNA probes. Biosens Bioelectron 2017; 103:39-44. [PMID: 29278811 DOI: 10.1016/j.bios.2017.12.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/12/2017] [Accepted: 12/19/2017] [Indexed: 12/19/2022]
Abstract
Electrochemical aptamer (EA) sensors based on aptamer-cDNA duplex probes (cDNA: complementary DNA) and target induced strand displacement (TISD) recognition are sensitive, selective and capable of detecting a wide variety of target analytes. While substantial research efforts have focused on engineering of new signaling mechanisms for the improvement of sensor sensitivity, little attention was paid to the enhancement of sensor response rate. Typically, the previous TISD based EA sensors exhibited relatively long response times larger than 30min, which mainly resulted from the suboptimal aptamer-cDNA probe structure in which most of aptamer bases were paired to the cDNA bases. In an effort to improve the response rate of this type of sensors, we report here the rational engineering of a quickly responsive and sensitive aptamer-cDNA probe by employing the conception of bivalent interaction in supramolecular chemistry. We design a bivalent cDNA strand through linking two short monovalent cDNA sequences, and it is simultaneously hybridized to two electrode-immobilized aptamer probes to form a bivalent binding (BB) aptamer-cDNA probe. This class of BB probe possesses the advantages of less aptamer bases paired to the cDNA bases for quick response rate and good structural stability for high sensor sensitivity. By use of the rationally designed BB aptamer-cDNA probe, a TISD based EA sensor against ATP with significantly enhanced response rate (with a displacement equilibrium time of 4min) and high sensitivity was successfully constructed. We believe that our BB probe conception will help guide future designs and applications of TISD based EA sensors.
Collapse
Affiliation(s)
- Ziping Zhang
- College of Life Sciences, Yantai University, Yantai 264005, China.
| | - Cancan Tao
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Jungang Yin
- College of Life Sciences, Yantai University, Yantai 264005, China.
| | - Yunhui Wang
- School of Mathematics and Information Sciences, Yantai University, Yantai 264005, China
| | - Yanshen Li
- College of Life Sciences, Yantai University, Yantai 264005, China
| |
Collapse
|
11
|
An electrochemical aptasensor based on functionalized graphene oxide assisted electrocatalytic signal amplification of methylene blue for aflatoxin B1 detection. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.05.089] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Zhao G, Ding J, Yu H, Yin T, Qin W. Potentiometric Aptasensing of Vibrio alginolyticus Based on DNA Nanostructure-Modified Magnetic Beads. SENSORS (BASEL, SWITZERLAND) 2016; 16:E2052. [PMID: 27918423 PMCID: PMC5191033 DOI: 10.3390/s16122052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/25/2016] [Accepted: 11/28/2016] [Indexed: 12/16/2022]
Abstract
A potentiometric aptasensing assay that couples the DNA nanostructure-modified magnetic beads with a solid-contact polycation-sensitive membrane electrode for the detection of Vibrio alginolyticus is herein described. The DNA nanostructure-modified magnetic beads are used for amplification of the potential response and elimination of the interfering effect from a complex sample matrix. The solid-contact polycation-sensitive membrane electrode using protamine as an indicator is employed to chronopotentiometrically detect the change in the charge or DNA concentration on the magnetic beads, which is induced by the interaction between Vibrio alginolyticus and the aptamer on the DNA nanostructures. The present potentiometric aptasensing method shows a linear range of 10-100 CFU mL-1 with a detection limit of 10 CFU mL-1, and a good specificity for the detection of Vibrio alginolyticus. This proposed strategy can be used for the detection of other microorganisms by changing the aptamers in the DNA nanostructures.
Collapse
Affiliation(s)
- Guangtao Zhao
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, Shandong, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiawang Ding
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, Shandong, China.
| | - Han Yu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, Shandong, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tanji Yin
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, Shandong, China.
| | - Wei Qin
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, Shandong, China.
| |
Collapse
|