1
|
Hydrogenative coupling of nitriles with diamines to benzimidazoles using lignin-derived Rh 2P catalyst. iScience 2021; 24:103045. [PMID: 34585110 PMCID: PMC8450259 DOI: 10.1016/j.isci.2021.103045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/21/2021] [Accepted: 08/24/2021] [Indexed: 12/01/2022] Open
Abstract
Nitrile (C≡N bond) activation for direct organic synthesis has been less explored so far due to a high redox potential of nitrile and its low dissociation energy of C−CN bond. Herein, we demonstrate a direct reductive coupling of nitriles and 1,2-phenylenediamines to yield various benzimidazoles in excellent yields (95%–99%) by using rhodium phosphide (Rh2P) catalyst supported on lignin-derived carbon (LC) using H2 (or hydrazine hydrate) as a hydrogen source. The high catalytic performance of Rh2P/LC is attributed to enhanced charge transfer to Rh and strong P−Rh interactions. Our isotope trace experiment confirms the presence of H/D exchange between H2 and the inert –CD3 group of CD3CN via an intramolecular D-shift. Reusability of Rh2P/LC is further demonstrated by a seven-time recycling without evident loss of activity. This research thus highlights a great potential in organic transformation with nitrile as a synthetic building block. Nitrile was developed as synthetic building block for organic synthesis Reductive coupling of nitriles to 1,2-phenylenediamines yielded benzimidazoles Strong P−Rh interaction and charge transfer to Rh enhanced Rh2P activity H/D exchange between H2 and –CD3 in CD3CN occurred via intramolecular D-shift
Collapse
|
2
|
Zhang T, Zhu X, Ye DD, Chen R, Zhou Y, Liao Q. Cyclic voltammetry electrodeposition of well-dispersed Pd nanoparticles on carbon paper as a flow-through anode for microfluidic direct formate fuel cells. NANOSCALE 2020; 12:20270-20278. [PMID: 33000821 DOI: 10.1039/d0nr05134a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The preparation of low-loading and high-performance Pd-based electrodes is required for direct formate fuel cells. In this study, cyclic voltammetry electrodeposition is used to electrodeposit Pd nanoparticles on carbon paper (Pd/CP) and achieve excellent activity and promising stability toward the formate oxidation reaction (FOR). The prepared electrode shows a thin layer of hemispherical and well-dispersed Pd nanoparticles on the fibers of the carbon paper. The open structure and uniform catalyst distribution make the Pd/CP electrode show 2.56-fold higher active area and stability in the FOR as compared with those of commercial Pd/C catalysts. An air-breathing microfluidic direct formate fuel cell (μDFFC) with a Pd/CP electrode used as a flow-through anode is constructed to further assess electrode performance. The Pd/CP electrode with low Pd loading, 0.105 mg cm-2, delivers a peak power density and limiting current density of 46.6 mW cm-2 (443.8 mW mg-1Pd) and 288.4 mA cm-2, respectively. The performance of the μDFFC is superior to those of most others reported in the literature, further boosting the commercialization of this direct formate fuel cell to power next-generation portable electronics.
Collapse
Affiliation(s)
- Tong Zhang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China. and Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China. and Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Ding-Ding Ye
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China. and Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Rong Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China. and Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Yuan Zhou
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China. and Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China. and Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
3
|
Glycerol electro-oxidation to dihydroxyacetone on phosphorous-doped Pd/CNT nanoparticles in alkaline medium. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.105964] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
4
|
Shan J, Lei Z, Wu W, Tan Y, Cheng N, Sun X. Highly Active and Durable Ultrasmall Pd Nanocatalyst Encapsulated in Ultrathin Silica Layers by Selective Deposition for Formic Acid Oxidation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43130-43137. [PMID: 31652044 DOI: 10.1021/acsami.9b13451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The low performance of palladium (Pd) is a considerable challenge for direct formic acid fuel cells in practical applications. Herein, we develop a simple strategy to synthesize a highly active and durable Pd nanocatalyst encapsulated in ultrathin silica layers with vertically aligned nanochannels covered graphene oxides (Pd/rGO@pSiO2) without blocking active sites by selective deposition. The Pd/rGO@pSiO2 catalyst exhibits very high performance for a formic acid oxidation (FAO) reaction compared with the Pd/rGO without protective silica layers and commercial Pd/C catalysts. Pd/rGO@pSiO2 shows an FAO activity 3.9 and 3.8 times better than those of Pd/rGO and Pd/C catalysts, respectively. The Pd/rGO@pSiO2 catalysts are also almost 6-fold more stable than Pd/C and more than 3-fold more stable than Pd/rGO. The outstanding performance of our encapsulated Pd catalysts can be ascribed to the novel design of nanostructures by selective deposition fabricating ultrasmall Pd nanoparticles encapsulated in ultrathin silica layers with vertically aligned nanochannels, which not only avoid blocking the active sites but also facilitate the mass transfer in encapsulated catalysts. Our work indicates an important method to the rational design of high-performance catalysts for fuel cells in practical applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Xueliang Sun
- Department of Mechanical and Materials Engineering , The University of Western Ontario , London , Ontario N6A 5B9 , Canada
| |
Collapse
|
5
|
Xia Y, Shang H, Zhang Q, Zhou Y, Hu X. Electrogeneration of hydrogen peroxide using phosphorus-doped carbon nanotubes gas diffusion electrodes and its application in electro-Fenton. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
6
|
Mesoporous Carbon and Ceria Nanoparticles Composite Modified Electrode for the Simultaneous Determination of Hydroquinone and Catechol. NANOMATERIALS 2019; 9:nano9010054. [PMID: 30609813 PMCID: PMC6359349 DOI: 10.3390/nano9010054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 12/17/2022]
Abstract
In this work, a novel material that was based on mesoporous carbon and ceria nanoparticles composite (MC–CeNPs) was synthesized, and a modified electrode was fabricated. When compared with a bare glass electrode, the modified electrode exhibited enhanced electrocatalytic activity towards the simultaneous determination of hydroquinone (HQ) and catechol (CC), which is attributed to the large specific area and fast electron transfer ability of MC–CeNPs. Additionally, it exhibited linear response ranges in the concentrations of 0.5–500 µM and 0.4–320 µM for HQ and CC, with detection limits (S/N = 3) of 0.24 µM and 0.13 µM, respectively. This method also displayed good stability and reproducibility. Furthermore, the modified electrode was applied to the simultaneous determination of HQ and CC in tap and lake water samples, and it exhibited satisfactory recovery levels of 98.5–103.2% and 98–103.4% for HQ and CC, respectively. All of these results indicate that a MC–CeNPs modified electrode could be a candidate for the determination of HQ and CC.
Collapse
|
7
|
Size-controllable synthesis of dendritic Pd nanocrystals as improved electrocatalysts for formic acid fuel cells’ application. JOURNAL OF SAUDI CHEMICAL SOCIETY 2018. [DOI: 10.1016/j.jscs.2018.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Yang S, Zhu Y, Cao C, Peng L, Queen WL, Song W. Controllable Synthesis of Multiheteroatoms Co-Doped Hierarchical Porous Carbon Spheres as an Ideal Catalysis Platform. ACS APPLIED MATERIALS & INTERFACES 2018; 10:19664-19672. [PMID: 29790329 DOI: 10.1021/acsami.8b03283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The synthesis of porous carbon spheres with hierarchical porous structures coupled with the doping of heteroatoms is particularly important for advanced applications. In this research, a new route for efficient and controllable synthesis of hierarchical porous carbon spheres co-doped with nitrogen, phosphorus, and sulfur (denoted as NPS-HPCs) was reported. This new approach combines in situ polymerization of hexachlorocyclophosphazene and 4,4'-sulfonyldiphenol with the self-assembly of colloidal silica nanoparticles (SiO2 NPs). After pyrolysis and subsequent removal of the SiO2 NPs, the resulting NPS-HPCs possess a high surface area (960 m2/g) as well as homogeneously distributed N, P, and S heteroatoms. The NPS-HPCs are shown to be an ideal support for anchoring highly dispersed and uniformly sized noble metal NPs for heterogeneous catalysis. As a proof of concept, Pd NPs are loaded onto the NPS-HPCs using only methanol as a reductant at room temperature. The prepared Pd/NPS-HPCs are shown to exhibit high activity, excellent stability, and recyclability for hydrogenation of nitroarenes.
Collapse
Affiliation(s)
- Shuliang Yang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Molecular Nanostructures and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-ISIC-Valais , Sion 1950 , Switzerland
| | - Yanan Zhu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Molecular Nanostructures and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Changyan Cao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Molecular Nanostructures and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Li Peng
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-ISIC-Valais , Sion 1950 , Switzerland
| | - Wendy L Queen
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-ISIC-Valais , Sion 1950 , Switzerland
| | - Weiguo Song
- Beijing National Laboratory for Molecular Sciences, Laboratory of Molecular Nanostructures and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
9
|
Rauf A, Ma M, Kim S, Sher Shah MSA, Chung CH, Park JH, Yoo PJ. Mediator- and co-catalyst-free direct Z-scheme composites of Bi 2WO 6-Cu 3P for solar-water splitting. NANOSCALE 2018; 10:3026-3036. [PMID: 29376177 DOI: 10.1039/c7nr07952d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Exploring new single, active photocatalysts for solar-water splitting is highly desirable to expedite current research on solar-chemical energy conversion. In particular, Z-scheme-based composites (ZBCs) have attracted extensive attention due to their unique charge transfer pathway, broader redox range, and stronger redox power compared to conventional heterostructures. In the present report, we have for the first time explored Cu3P, a new, single photocatalyst for solar-water splitting applications. Moreover, a novel ZBC system composed of Bi2WO6-Cu3P was designed employing a simple method of ball-milling complexation. The synthesized materials were examined and further investigated through various microscopic, spectroscopic, and surface area characterization methods, which have confirmed the successful hybridization between Bi2WO6 and Cu3P and the formation of a ZBC system that shows the ideal position of energy levels for solar-water splitting. Notably, the ZBC composed of Bi2WO6-Cu3P is a mediator- and co-catalyst-free photocatalyst system. The improved photocatalytic efficiency obtained with this system compared to other ZBC systems assisted by mediators and co-catalysts establishes the critical importance of interfacial solid-solid contact and the well-balanced position of energy levels for solar-water splitting. The promising solar-water splitting under optimum composition conditions highlighted the relationship between effective charge separation and composition.
Collapse
Affiliation(s)
- Ali Rauf
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
10
|
Yu W, Xin Z, Zhang W, Xie Y, Wang J, Niu S, Wu Y, Shao L. The role of surface functionalities in fabricating supported Pd-P nanoparticles for efficient formic acid oxidation. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Ezeta-Mejía A, Montes de Oca-Yemha MG, Arce-Estrada EM, Romero-Romo M, Palomar-Pardavé M. Nanostructured Catalysts Synthesized by High-Energy Mechanical Alloying for Formic Acid Electrochemical Oxidation. Electrocatalysis (N Y) 2017. [DOI: 10.1007/s12678-017-0404-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Li M, Liu R, Han G, Tian Y, Chang Y, Xiao Y. Facile Synthesis of Pd-Ni Nanoparticles on Reduced Graphene Oxide under Microwave Irradiation for Formic Acid Oxidation. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201700061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Miaoyu Li
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province; Shanxi University; Taiyuan Shanxi 030006 China
| | - Ruiqin Liu
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province; Shanxi University; Taiyuan Shanxi 030006 China
| | - Gaoyi Han
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province; Shanxi University; Taiyuan Shanxi 030006 China
| | - Yanni Tian
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province; Shanxi University; Taiyuan Shanxi 030006 China
| | - Yunzhen Chang
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province; Shanxi University; Taiyuan Shanxi 030006 China
| | - Yaoming Xiao
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province; Shanxi University; Taiyuan Shanxi 030006 China
| |
Collapse
|