1
|
Zhang Y, Xu Y, Zhao S, Zhang S, Li H, Hu Q, Wang W, Du H. Nano-confined Si@C composites with excellent lithium-ion storage performance derived from a POSS-based covalent framework and low-temperature reduction method. Dalton Trans 2025; 54:2964-2973. [PMID: 39804280 DOI: 10.1039/d4dt03185g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
Silicon-based anode materials experience significant volume changes and low conductivity during the lithiation process, which severely hinders their successful application in lithium-ion batteries. Reducing the size of silicon particles and effectively combining them with carbon-based materials are considered the main strategies to enhance the lithium-ion storage performance of silicon-based anodes. In this study, we employed a "bottom-up" strategy to synthesize Si@C anode materials by cross-linking octa-aminopropyl polyhedral oligomeric silsesquioxane (NH2-POSS) with terephthalaldehyde and subsequent high-temperature treatment and low-temperature liquid reduction. The obtained nanospheres consist of ultra-thin silicon stripes embedded in a continuous carbon framework, forming a carbon-protected silicon-based anode material suitable for lithium-ion batteries. The Si@C nanospheres exhibit excellent lithium-ion storage performance. After 1000 cycles at a current density of 0.5 A g-1, it retains an impressive capacity of 1363 mA h g-1, which is more than three times the theoretical capacity of graphite and 182% of the first cycle capacity after activation (750 mA h g-1). This work not only provides new possibilities for the application of POSS but also broadens the design and application of advanced silicon-based anode materials in the energy storage field.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Yanan Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Shupeng Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Shiyue Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Hao Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Qing Hu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Wenkai Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Hongbin Du
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
2
|
Park OK, Kim NH, Lee JH. A facile and scalable fabrication method of scrolled graphene/boron nitride-based van der Waals superlattice heterostructure materials for highly stable supercapacitor electrode application. NANOSCALE 2024; 16:14448-14458. [PMID: 39012377 DOI: 10.1039/d4nr01289e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Due to the increasing demand for the development of efficient renewable energy supply systems to reduce the mismatch between energy demand and utilization, supercapacitors have attracted increasing attention in the energy industry. However, the development of energy storage electrode materials to be applied at the industrial level is still challenging due to the unsatisfactory durability and scalable production issues. This study suggested a facile and scalable one-pot fabrication method of using graphene/hexagonal boron nitride (G/BN)-based one-dimensional (1D) van der Waals superlattice heterostructures (vdWSLs) as highly stable electrode materials to enhance the energy storage performance by improving the mesopore volume content, specific surface area, electrical properties, and interfacial interaction between the stacked G/BN layers. The G/BN-based vdWSLs were fabricated by a simple scrolling process through the electromagnetic interaction between the attached magnetic iron oxide nanoparticles (Fe3O4 NPs) on the surface of a G/BN vdW heterostructure (vdWH) and the applied magnetic field. The investigation results demonstrate that the changed morphology of the fabricated G/Fe/BN(NS) strongly affects the fine pore distribution, electrochemical performance, and electrical properties. Consequently, as a synergistic effect of an increased mesopore volume content, specific surface area, and C-B-N heterojunction interfacial area, the fabricated G/Fe/BN(NS) electrode showed a 100% enhancement of specific capacitance (207 F g-1 at 0.5 A g-1) and almost 7 times enhancement of electrical conductivity (800 S cm-1) with a nearly 2.3 times increase of carrier mobility (716 cm2 V-1 s-1) compared to that of the G/Fe/BN electrode. Furthermore, it exhibited outstanding long-term cycling stability with almost 119% capacitance retention even after 100 000 charge-discharge cycles. These results suggest that G/Fe/BN(NS) has tremendous potential as an electrode to fabricate high-performance supercapacitors with excellent cycling stability.
Collapse
Affiliation(s)
- Ok-Kyung Park
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.
| | - Nam Hoon Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.
| | - Joong Hee Lee
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.
- Carbon Composite Research Center, Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| |
Collapse
|
3
|
Katsuyama Y, Yang Z, Thiel M, Zhang X, Chang X, Lin CW, Huang A, Wang C, Li Y, Kaner RB. A Rapid, Scalable Laser-Scribing Process to Prepare Si/Graphene Composites for Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305921. [PMID: 38342674 DOI: 10.1002/smll.202305921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/25/2024] [Indexed: 02/13/2024]
Abstract
Silicon has gained significant attention as a lithium-ion battery anode material due to its high theoretical capacity compared to conventional graphite. Unfortunately, silicon anodes suffer from poor cycling performance caused by their extreme volume change during lithiation and de-lithiation. Compositing silicon particles with 2D carbon materials, such as graphene, can help mitigate this problem. However, an unaddressed challenge remains: a simple, inexpensive synthesis of Si/graphene composites. Here, a one-step laser-scribing method is proposed as a straightforward, rapid (≈3 min), scalable, and less-energy-consuming (≈5 W for a few minutes under air) process to prepare Si/laser-scribed graphene (LSG) composites. In this research, two types of Si particles, Si nanoparticles (SiNPs) and Si microparticles (SiMPs), are used. The rate performance is improved after laser scribing: SiNP/LSG retains 827.6 mAh g-1 at 2.0 A gSi+C -1, while SiNP/GO (before laser scribing) retains only 463.8 mAh g-1. This can be attributed to the fast ion transport within the well-exfoliated 3D graphene network formed by laser scribing. The cyclability is also improved: SiNP/LSG retains 88.3% capacity after 100 cycles at 2.0 A gSi+C -1, while SiNP/GO retains only 57.0%. The same trend is found for SiMPs: the SiMP/LSG shows better rate and cycling performance than SiMP/GO composites.
Collapse
Affiliation(s)
- Yuto Katsuyama
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhiyin Yang
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Markus Thiel
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Xinyue Zhang
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Xueying Chang
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Cheng-Wei Lin
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Ailun Huang
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Chenxiang Wang
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Yuzhang Li
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Richard B Kaner
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
4
|
dos Santos FKF, Júnior AAMP, Filho ALN, Fonseca CJN, Isidorio DKM, Araújo FDA, Oliveira PHA, da Veiga Júnior VF. Graphene and Natural Products: A Review of Antioxidant Properties in Graphene Oxide Reduction. Int J Mol Sci 2024; 25:5182. [PMID: 38791220 PMCID: PMC11120955 DOI: 10.3390/ijms25105182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
This review article addresses the antioxidant properties of different natural products, including ascorbic acid, gallic acid, oxalic acid, L-glutathione (GSH), bacteriorhodopsin, green tea polyphenols, glucose, hydroxycinnamic acid, ethanoic acid, betanin, and L-glutathione, in the reduction of graphene oxide (rGO). rGO can cause damage to cells, including oxidative stress and inflammation, limiting its application in different sectors that use graphene, such as technologies used in medicine and dentistry. The natural substances reviewed have properties that help reduce this damage, neutralizing free radicals and maintaining cellular integrity. This survey demonstrates that the combination of these antioxidant compounds can be an effective strategy to minimize the harmful effects of rGO and promote cellular health.
Collapse
Affiliation(s)
| | | | - Arquimedes Lopes Nunes Filho
- Postgraduate Program in Materials Science and Engineering, Military Institute of Engineering, Rio de Janeiro 22.290-270, Brazil; (A.L.N.F.); (C.J.N.F.)
| | - Clícia Joanna Neves Fonseca
- Postgraduate Program in Materials Science and Engineering, Military Institute of Engineering, Rio de Janeiro 22.290-270, Brazil; (A.L.N.F.); (C.J.N.F.)
| | - Daysianne Kessy Mendes Isidorio
- Department of Metallurgical and Materials Engineering, Federal University of Rio de Janeiro, Rio de Janeiro 21.941-901, Brazil;
| | - Filipe de Almeida Araújo
- Postgraduate Program in Materials Science and Engineering, Federal University of São Carlos, São Carlos 13.565-905, Brazil;
| | - Pablo Henrique Ataide Oliveira
- Higher Education Department of Education, Federal Institute of the North of Minas Gerais, Bom Jardim 39.480-000, Brazil;
| | | |
Collapse
|
5
|
Yu L, Zhang R, Jia R, Jiang W, Dong X, Liu X, Cao H, Xu B. Consecutive engineering of anodic graphene supported cobalt monoxide composite and cathodic nanosized lithium cobalt oxide materials with improved lithium-ion storage performances. J Colloid Interface Sci 2023; 652:2017-2028. [PMID: 37696056 DOI: 10.1016/j.jcis.2023.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Downsizing the electrochemically active materials in both cathodic and anodic electrodes commonly brings about enhanced lithium-ion storage performances. It is particularly meaningful to explore simplified and effective strategies for exploiting nanosized electrode materials in the advanced lithium-ion batteries. In this work, the spontaneous reaction between few-layered graphene oxide (GO) and metallic cobalt (Co) foils in mild hydrothermal condition is for the first time employed to synthesize a reduced graphene oxide (RGO) supported nanosized cobalt monoxide (CoO) anode material (CoO@RGO). Furthermore, the CoO@RGO sample is converted to nanosized lithium cobalt oxide cathode material (LiCoO2, LCO) by taking the advantages of the self-templated effect. As a result, both the CoO@RGO anode and the LCO cathode exhibit inspiring lithium-ion storage properties. In half-cells, the CoO@RGO sample maintains a reversible capacity of 740.6 mAh·g-1 after 300 cycles at the current density of 1000 mA·g-1 while the LCO sample delivers a reversible capacity of 109.1 mAh·g-1 after 100 cycles at the current density of 100 mA·g-1. In the CoO@RGO//LCO full-cells, the CoO@RGO sample delivers a reversible capacity of 553.9 mAh·g-1 after 50 cycles at the current density of 200 mA·g-1. The reasons for superior electrochemical behaviors of the samples have been revealed, and the strategy in this work can be considered to be straightforward and effective for engineering both anode and cathode materials for lithium-ion batteries.
Collapse
Affiliation(s)
- Longbiao Yu
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Rui Zhang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Ruixin Jia
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Wenhao Jiang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiaoyu Dong
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xuehua Liu
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Haijie Cao
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Binghui Xu
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
6
|
Tu M, Yu Ruixin Jia L, Kong X, Zhang R, Xu B. Chitosan modulated engineer tin dioxide nanoparticles well dispersed by reduced graphene oxide for high and stable lithium-ion storage. J Colloid Interface Sci 2023; 635:105-116. [PMID: 36580693 DOI: 10.1016/j.jcis.2022.12.126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
Tin based materials are widely investigated as a potential anode material for lithium-ion batteries. Effectively dispersing SnO2 nanocrystals in carbonaceous supporting skeleton using simplified methods is both promising and challenging. In this work, water soluble chitosan (CS) chains are employed to modulate the redox coprecipitation reaction between stannous chloride (SnCl2) and few-layered graphene oxide (GO), where the excessive restacking of the corresponding reduced graphene oxide sheets (RGO) has been effectively inhibited and the grain size of the in-situ formed SnO2 nanoparticles have been significantly controlled. In particular, the CS molecules are gradually detached from the RGO sheets with the GO deoxygenation process, leaving only a small quantity of CS remnants in the intermediate SnO2@CS@RGO sample. The final SnO2/CSC/RGO sample with significantly improved microstructure is synthesized after a simple thermal treatment, which delivers a high specific capacity of 842.9 mAh g-1 at 1000 mA·g-1 for 1000 cycles in half cells and a specific capacity of 410.5 mAh g-1 at 200 mA·g-1 for 100 cycles in full cells. The reasons for the good lithium-ion storage performances for the SnO2/CSC/RGO composite have been studied.
Collapse
Affiliation(s)
- Mengyao Tu
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Longbiao Yu Ruixin Jia
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiangli Kong
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Rui Zhang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Binghui Xu
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
7
|
Engineering a hierarchical carbon supported magnetite nanoparticles composite from metal organic framework and graphene oxide for lithium-ion storage. J Colloid Interface Sci 2023; 630:86-98. [DOI: 10.1016/j.jcis.2022.10.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 10/17/2022] [Indexed: 11/21/2022]
|
8
|
Kong X, Shan L, Zhang R, Bao S, Tu M, Jia R, Yu L, Li H, Xu B. Controllable engineering magnetite nanoparticles dispersed in a hierarchical amylose derived carbon and reduced graphene oxide framework for lithium-ion storage. J Colloid Interface Sci 2022; 628:1-13. [PMID: 35973253 DOI: 10.1016/j.jcis.2022.08.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022]
Abstract
A straightforward and eco-friendly method is demonstrated to engineer magnetite (Fe3O4) nanoparticles well dispersed by an amorphous amylose-derived carbon (AMC) and reduced graphene oxide (RGO) framework. Naturally available amylose (AM) serves as both reducing agent for few-layered graphene oxide (GO) in the first mild redox coprecipitation system and precursor for small-sized pyrolytic AMC in the following thermal treatment. In particular, the presence of the AM molecules effectively limits the crystal growth kinetics for the akaganeite (FeOOH) in the intermediate FeOOH@AM/RGO sample, which contributes to the transformation to Fe3O4 nanoparticles with significantly controlled size in the final Fe3O4@AMC/RGO composite. As a result, both Fe3O4 nanoparticles and AMC domains are adjacently anchored on the larger sized RGO sheets, and a unique hierarchical structure has been engineered in the Fe3O4@AMC/RGO sample. Compared with the controlled Fe3O4@RGO sample, the Fe3O4@AMC/RGO composite exhibits remarkably enhanced initial coulombic efficiency, superior cycling stability and rate performance for lithium-ion storage. The mechanisms of the interaction between GO sheets and AM molecules as well as the inspiring electrochemical behaviors of the Fe3O4@AMC/RGO electrode have been revealed. The Fe3O4@AMC/RGO sample possesses good potential for scaling-up and finding applications in wider fields.
Collapse
Affiliation(s)
- Xiangli Kong
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Liangjie Shan
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Rui Zhang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Shouchun Bao
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Mengyao Tu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Ruixin Jia
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Longbiao Yu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hongliang Li
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Binghui Xu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
9
|
Zhang R, Lv C, Bao S, Gao J, Xie Y, Zheng F, Liu X, Wen Y, Xu B. Rationally engineering a hierarchical porous carbon and reduced graphene oxide supported magnetite composite with boosted lithium-ion storage performances. J Colloid Interface Sci 2022; 628:154-165. [PMID: 35914426 DOI: 10.1016/j.jcis.2022.07.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022]
Abstract
Ferric gallate (Fe-GA), an ancient metal-organic framework (MOF) material, has been recently employed as an eco-friendly and cost-effective precursor sample to synthesize a porous carbon confined nano-iron composite (Fe/RPC), and the Fe element in the Fe/RPC sample could be further oxidized to Fe3O4 nanocrystals in a 180 °C hydrothermal condition. On this foundation, this work reports an optimized approach to engineering a hierarchical one-dimensional porous carbon and two-dimensional reduced graphene oxide (RGO) supporting framework with Fe3O4 nanoparticles well dispersed. Under mild hydrothermal condition, the redox reaction between metal iron atoms from Fe/RPC and surface functional radicals from few-layered graphene oxide sheets (GO) is triggered. As a result, reinforced microstructure and improved atomic efficiency have been achieved for the Fe3O4@RPC/RGO sample. The homogeneously dispersed Fe3O4 nanoparticles with controlled size are anchored on the surface of the larger sized RGO coating layers while the smaller sized RPC domains are embedded between the RGO sheets as spacer. Challenges including spontaneous aggregation of RPC, over exposure of Fe3O4 nanoparticles and excessive restacking of RGO have been significantly inhibited. Furthermore, micro-sized carbon fiber (CF) is chosen as a structural reinforcement additive during electrode fabrication, and the Fe3O4@RPC/RGO sample delivers a good specific capacity of 1170.5 mAh·g-1 under a current rate of 1000 mA·g-1 for 500 cycles in the half cell form. The reasons for superior electrochemical behaviors have been revealed and the lithium-ion storage performances of the Fe3O4@RPC/RGO sample in the full cell form have been preliminarily investigated.
Collapse
Affiliation(s)
- Rui Zhang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Changpeng Lv
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Shouchun Bao
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jiazhe Gao
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yan Xie
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Fei Zheng
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xuehua Liu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanfen Wen
- Key Laboratory of Functional Materials and Applications of Fujian Province, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China.
| | - Binghui Xu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
10
|
Sodium carboxymethylcellulose induced engineering a porous carbon and graphene immobilized magnetite composite for lithium-ion storage. J Colloid Interface Sci 2021; 608:1707-1717. [PMID: 34742085 DOI: 10.1016/j.jcis.2021.10.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/31/2023]
Abstract
Immobilizing nanosized electrochemically active materials with supportive carbonaceous framework usually brings in improved lithium-ion storage performance. In this work, magnetite nanoparticles (Fe3O4) are stabilized by both porous carbon domains (PC) and reduced graphene oxide sheets (RGO) to form a hierarchical composite (Fe3O4@PC/RGO) via a straightforward approach. The PC confined iron nanoparticle intermediate sample (Fe@PC) was first fabricated, where sodium carboxymethylcellulose (Na-CMC) was employed not only as a cross-linker to trap ferric ions for synthesizing a Fe-CMC precursor sample, but also as the carbon source for PC domains and iron source for Fe nanoparticles in a pyrolysis process. The final redox reaction between Fe@PC and few-layered graphene oxide (GO) sheets contributed to the formation of Fe3O4 nanoparticles with reduced size, avoiding any severe aggregation or excessive exposure. The Fe3O4@PC/RGO sample delivered a specific capacity of 522.2 mAh·g-1 under a current rate of 1000 mA·g-1 for 650 cycles. The engineered Fe@PC and Fe3O4@PC/RGO samples have good prospects for application in wider fields.
Collapse
|
11
|
Zhang R, Tan Q, Bao S, Deng J, Xie Y, Zheng F, Wu G, Xu B. Spray drying induced engineering a hierarchical reduced graphene oxide supported heterogeneous Tin dioxide and Zinc oxide for Lithium-ion storage. J Colloid Interface Sci 2021; 608:1758-1768. [PMID: 34743046 DOI: 10.1016/j.jcis.2021.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022]
Abstract
In this work, a hierarchical reduced graphene oxide (RGO) supportive matrix consisting of both larger two-dimensional RGO sheets and smaller three-dimensional RGO spheres was engineered with ZnO and SnO2 nanoparticles immobilized. The ZnO and SnO2 nanocrystals with controlled size were in sequence engineered on the surface of the RGO sheets during the deoxygenation of graphene oxide sample (GO), where the zinc-containing ZIF-8 sample and metal tin foil were used as precursors for ZnO and SnO2, respectively. After a spray drying treatment and calcination, the final ZnO@SnO2/RGO-H sample was obtained, which delivered an outstanding specific capacity of 982 mAh·g-1 under a high current density of 1000 mA·g-1 after 450 cycles. Benefitting from the unique hierarchical structure, the mechanical strength, ionic and electric conductivities of the ZnO@SnO2/RGO-H sample have been simultaneously promoted. The joint contributions from pseudocapacitive and battery behaviors in lithium-ion storage processes bring in both large specific capacity and good rate capability. The industrially mature spray drying method for synthesizing RGO based hierarchical products can be further developed for wider applications.
Collapse
Affiliation(s)
- Rui Zhang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibersfv and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Qingke Tan
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibersfv and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Shouchun Bao
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibersfv and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jianbin Deng
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibersfv and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yan Xie
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibersfv and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Fei Zheng
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibersfv and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Guanglei Wu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibersfv and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Binghui Xu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibersfv and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
12
|
Patil R, Phadatare M, Blomquist N, Örtegren J, Hummelgård M, Meshram J, Dubal D, Olin H. Highly Stable Cycling of Silicon-Nanographite Aerogel-Based Anode for Lithium-Ion Batteries. ACS OMEGA 2021; 6:6600-6606. [PMID: 33748572 PMCID: PMC7970491 DOI: 10.1021/acsomega.0c05214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/18/2021] [Indexed: 05/23/2023]
Abstract
Silicon anodes are considered as promising electrode materials for next-generation high capacity lithium-ion batteries (LIBs). However, the capacity fading due to the large volume changes (∼300%) of silicon particles during the charge-discharge cycles is still a bottleneck. The volume changes of silicon lead to a fracture of the silicon particles, resulting in recurrent formation of a solid electrolyte interface (SEI) layer, leading to poor capacity retention and short cycle life. Nanometer-scaled silicon particles are the favorable anode material to reduce some of the problems related to the volume changes, but problems related to SEI layer formation still need to be addressed. Herein, we address these issues by developing a composite anode material comprising silicon nanoparticles and nanographite. The method developed is simple, cost-efficient, and based on an aerogel process. The electrodes produced by this aerogel fabrication route formed a stable SEI layer and showed high specific capacity and improved cyclability even at high current rates. The capacity retentions were 92 and 72% of the initial specific capacity at the 171st and the 500th cycle, respectively.
Collapse
Affiliation(s)
- Rohan Patil
- Department
of Natural Sciences, Mid Sweden University, Sundsvall 852 30, Sweden
| | - Manisha Phadatare
- Department
of Natural Sciences, Mid Sweden University, Sundsvall 852 30, Sweden
| | - Nicklas Blomquist
- Department
of Natural Sciences, Mid Sweden University, Sundsvall 852 30, Sweden
| | - Jonas Örtegren
- Department
of Natural Sciences, Mid Sweden University, Sundsvall 852 30, Sweden
| | - Magnus Hummelgård
- Department
of Natural Sciences, Mid Sweden University, Sundsvall 852 30, Sweden
| | - Jagruti Meshram
- Centre
for Interdisciplinary Research, D.Y. Patil
Education Society (Deemed University), Kolhapur, Maharashtra 416006, India
| | - Deepak Dubal
- Centre
for Materials Science, Queensland University
of Technology (QUT), 2 George Street, Brisbane 4000, Australia
- School
of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane 4000, Australia
| | - Håkan Olin
- Department
of Natural Sciences, Mid Sweden University, Sundsvall 852 30, Sweden
| |
Collapse
|
13
|
Tan Q, Wang C, Cao Y, Liu X, Cao H, Wu G, Xu B. Synthesis of a zinc ferrite effectively encapsulated by reduced graphene oxide composite anode material for high-rate lithium ion storage. J Colloid Interface Sci 2020; 579:723-732. [DOI: 10.1016/j.jcis.2020.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 01/15/2023]
|
14
|
Sun J, Yang M, Gong Y, Li H, Guo P. Synthesis of Pd3Pb colloidal nanocrystal assembly and their electrocatalytic activity toward ethanol oxidation. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124224] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Xu B, Dai X, Tan Q, Wei Y, Liu G, Wu G. Controlled engineering of nano-sized FeOOH@ZnO hetero-structures on reduced graphene oxide for lithium-ion storage and photo-Fenton reaction. CrystEngComm 2020. [DOI: 10.1039/d0ce00171f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a nano-sized goethite and zinc oxide hetero-structure (FeOOH@ZnO) dispersed on reduced graphene oxide (RGO) sheets was synthesized for the first time to construct a ternary composite (FeOOH@ZnO/RGO) via a stepped graphene oxide (GO) deoxygenation process.
Collapse
Affiliation(s)
- Binghui Xu
- Institute of Materials for Energy and Environment
- School of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Xin Dai
- Institute of Materials for Energy and Environment
- School of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Qingke Tan
- Institute of Materials for Energy and Environment
- School of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Yuan Wei
- College of Materials Science and Engineering
- Central South University of Forestry and Technology
- Changsha 410004
- China
| | - Gonggang Liu
- College of Materials Science and Engineering
- Central South University of Forestry and Technology
- Changsha 410004
- China
| | - Guanglei Wu
- Institute of Materials for Energy and Environment
- School of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| |
Collapse
|
16
|
Hierarchical zinc oxide/reduced graphene oxide composite: Preparation route, mechanism study and lithium ion storage. J Colloid Interface Sci 2019; 548:233-243. [DOI: 10.1016/j.jcis.2019.04.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/10/2019] [Accepted: 04/14/2019] [Indexed: 11/22/2022]
|
17
|
Li L, Yan C, Xu H, Liu D, Shi P, Zhu Y, Chen G, Wu X, Liu W. Improving the interfacial properties of carbon fiber–epoxy resin composites with a graphene‐modified sizing agent. J Appl Polym Sci 2019. [DOI: 10.1002/app.47122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lingtong Li
- Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment TechnologyNingbo Institute of Material Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
- School of Materials Science and EngineeringShanghai University Shanghai 200444 China
| | - Chun Yan
- Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment TechnologyNingbo Institute of Material Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Haibing Xu
- Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment TechnologyNingbo Institute of Material Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Dong Liu
- Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment TechnologyNingbo Institute of Material Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Pengcheng Shi
- Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment TechnologyNingbo Institute of Material Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Yingdan Zhu
- Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment TechnologyNingbo Institute of Material Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Gang Chen
- Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment TechnologyNingbo Institute of Material Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Xiaofei Wu
- Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment TechnologyNingbo Institute of Material Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Wenqing Liu
- School of Materials Science and EngineeringShanghai University Shanghai 200444 China
| |
Collapse
|
18
|
Effects of gallic acid biofabricated rGO nanosheets combined with radiofrequency radiation for the treatment of renal cell carcinoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:846-852. [DOI: 10.1016/j.msec.2018.08.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/12/2018] [Accepted: 08/18/2018] [Indexed: 12/18/2022]
|
19
|
Gong Y, Liu X, Gong Y, Wu D, Xu B, Bi L, Zhang LY, Zhao X. Synthesis of defect-rich palladium-tin alloy nanochain networks for formic acid oxidation. J Colloid Interface Sci 2018; 530:189-195. [DOI: 10.1016/j.jcis.2018.06.074] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 11/24/2022]
|
20
|
Guan X, Liu X, Xu B, Liu X, Kong Z, Song M, Fu A, Li Y, Guo P, Li H. Carbon Wrapped Ni₃S₂ Nanocrystals Anchored on Graphene Sheets as Anode Materials for Lithium-Ion Battery and the Study on Their Capacity Evolution. NANOMATERIALS 2018; 8:nano8100760. [PMID: 30261632 PMCID: PMC6215149 DOI: 10.3390/nano8100760] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 01/16/2023]
Abstract
Ni3S2 nanocrystals wrapped by thin carbon layer and anchored on the sheets of reduced graphene oxide (Ni3S2@C/RGO) have been synthesized by a spray-coagulation assisted hydrothermal method and combined with a calcination process. Cellulose, dissolved in Thiourea/NaOH aqueous solution is chosen as carbon sources and mixed with graphene oxide via a spray-coagulation method using graphene suspension as coagulation bath. The resulted cellulose/graphene suspension is utilized as solvent for dissolving of Ni(NO3)2 and then used as raw materials for hydrothermal preparation of the Ni3S2@C/RGO composites. The structure of the composites has been investigated and their electrochemical properties are evaluated as anode material for lithium-ion batteries. The Ni3S2@C/RGO sample exhibits increasing reversible capacities upon cycles and shows a superior rate performance as well. Such kinds of promising performance have been ascribed to the wrapping effect of carbon layer which confines the dislocation of the polycrystals formed upon cycles and the enhanced conductivity as the integration of RGO conductive substrate. Discharge capacities up to 850 and 630 mAh·g−1 at current densities of 200 and 5000 mA·g−1, respectively, are obtained. The evolution of electrochemical performance of the composites with structure variation of the encapsulated Ni3S2 nanocrystals has been revealed by ex-situ TEM and XRD measurements.
Collapse
Affiliation(s)
- Xianggang Guan
- Institute of Materials for Energy and Environment, Qingdao University, Qingdao 266071, China.
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Xuehua Liu
- Institute of Materials for Energy and Environment, Qingdao University, Qingdao 266071, China.
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Binghui Xu
- Institute of Materials for Energy and Environment, Qingdao University, Qingdao 266071, China.
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Xiaowei Liu
- Institute of Materials for Energy and Environment, Qingdao University, Qingdao 266071, China.
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Zhen Kong
- Institute of Materials for Energy and Environment, Qingdao University, Qingdao 266071, China.
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Meiyun Song
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Aiping Fu
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yanhui Li
- College of Electromechanic Engineering, Qingdao University, Qingdao 266071, China.
| | - Peizhi Guo
- Institute of Materials for Energy and Environment, Qingdao University, Qingdao 266071, China.
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Hongliang Li
- Institute of Materials for Energy and Environment, Qingdao University, Qingdao 266071, China.
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
21
|
Thirumalraj B, Rajkumar C, Chen SM, Palanisamy S. One-Pot Green Synthesis of Graphene Nanosheets Encapsulated Gold Nanoparticles for Sensitive and Selective Detection of Dopamine. Sci Rep 2017; 7:41213. [PMID: 28128225 PMCID: PMC5269579 DOI: 10.1038/srep41213] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/16/2016] [Indexed: 11/08/2022] Open
Abstract
We report a simple new approach for green preparation of gallic acid supported reduced graphene oxide encapsulated gold nanoparticles (GA-RGO/AuNPs) via one-pot hydrothermal method. The as-prepared composites were successfully characterized by using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray powder diffraction techniques (XRD), scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM) and elemental analysis. The GA-RGO/AuNPs modified electrode behaves as a hybrid electrode material for sensitive and selective detection of dopamine (DA) in presence of ascorbic acid (AA) and uric acid (UA). The GA-RGO/AuNPs modified electrode displays an excellent electrocatalytic activity towards the oxidation of DA and exhibits a wide linear response range over the DA concentrations from 0.01-100.3 μM with a detection limit (LOD) of 2.6 nM based on S/N = 3. In addition, the proposed sensor could be applied for the determination of DA in human serum and urine samples for practical analysis.
Collapse
Affiliation(s)
- Balamurugan Thirumalraj
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, ROC, Taiwan
| | - Chellakannu Rajkumar
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, ROC, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, ROC, Taiwan
| | - Selvakumar Palanisamy
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, ROC, Taiwan
| |
Collapse
|