1
|
Kim M, Kim WJ, Kim MK, Seo J, Song S, Kim DI, Sim B, Lee H, Lee M, Ryu GH, Hong J, Hong JP. Enhanced Wire-Shaped Micro-Supercapacitor Treated with a Continuous Surface Atmospheric Pressure Plasma Jet Approach. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409050. [PMID: 39905858 DOI: 10.1002/smll.202409050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/20/2025] [Indexed: 02/06/2025]
Abstract
Microscale, wire-shaped flexible supercapacitors are gaining significant attention due to the growing demand for wearable electronics and microrobotic technologies. Among various materials, copper sulfide stands out as an ideal candidate because of its superior electrochemical properties, which can be attributed to its nanostructured composition. This structure enhances the surface area, reduces ion transport distances, and improves charge-discharge kinetics. However, conventional electrode synthesis methods-such as annealing and hydrothermal processes-are limited by long production times and scalability issues, making them unsuitable for wire-shaped supercapacitor development. In this study, an innovative fabrication technique using an atmospheric pressure plasma jet (APPJ) for both surface treatment and material synthesis is proposed. By integrating the APPJ with a winding mechanism, roll-to-roll processing for continuous production is enabled, significantly enhancing the scalability of the manufacturing process. The fabricated wire-shaped microscale electrodes demonstrate high specific capacitance (153.39 mF cm-2), specific energy density (15.48 µWh cm-2), and excellent capacitance retention (91.32%) after 30 000 charge-discharge cycles. Furthermore, a wire-shaped solid-state flexible asymmetric supercapacitor is assembled using the fabricated electrodes in a coaxial configuration. The supercapacitor exhibits exceptional flexibility and energy storage performance, underscoring the practical applicability of the proposed method for advanced electronics.
Collapse
Affiliation(s)
- Minju Kim
- Research Institute for Natural Science, Department of Physics, Hanyang University, Seoul, 04763, South Korea
| | - Woo Jong Kim
- Division of Nano-Scale Semiconductor Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Min Kyeong Kim
- School of Materials Science and Engineering, Kookmin University, Seoul, 02707, South Korea
| | - Jeongwoo Seo
- Research Institute for Natural Science, Department of Physics, Hanyang University, Seoul, 04763, South Korea
| | - Saegyoung Song
- Research Institute for Natural Science, Department of Physics, Hanyang University, Seoul, 04763, South Korea
| | - Dong Il Kim
- Research Institute for Natural Science, Department of Physics, Hanyang University, Seoul, 04763, South Korea
| | - Byeongchan Sim
- Research Institute for Natural Science, Department of Physics, Hanyang University, Seoul, 04763, South Korea
| | - Huigu Lee
- Division of Nano-Scale Semiconductor Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Minjeong Lee
- School of Materials Science and Engineering, Gyeongsang National University, Jinju, 52828, South Korea
| | - Gyeong Hee Ryu
- School of Materials Science and Engineering, Gyeongsang National University, Jinju, 52828, South Korea
| | - John Hong
- School of Materials Science and Engineering, Kookmin University, Seoul, 02707, South Korea
| | - Jin Pyo Hong
- Research Institute for Natural Science, Department of Physics, Hanyang University, Seoul, 04763, South Korea
- Division of Nano-Scale Semiconductor Engineering, Hanyang University, Seoul, 04763, South Korea
| |
Collapse
|
2
|
Lu J, Jiang H, Guo P, Li J, Zhu H, Fan X, Huang L, Sun J, Wang Y. Application of Copper-Sulfur Compound Electrode Materials in Supercapacitors. Molecules 2024; 29:977. [PMID: 38474488 DOI: 10.3390/molecules29050977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Supercapacitors (SCs) are a novel type of energy storage device that exhibit features such as a short charging time, a long service life, excellent temperature characteristics, energy saving, and environmental protection. The capacitance of SCs depends on the electrode materials. Currently, carbon-based materials, transition metal oxides/hydroxides, and conductive polymers are widely used as electrode materials. However, the low specific capacitance of carbon-based materials, high cost of transition metal oxides/hydroxides, and poor cycling performance of conductive polymers as electrodes limit their applications. Copper-sulfur compounds used as electrode materials exhibit excellent electrical conductivity, a wide voltage range, high specific capacitance, diverse structures, and abundant copper reserves, and have been widely studied in catalysis, sensors, supercapacitors, solar cells, and other fields. This review summarizes the application of copper-sulfur compounds in SCs, details the research directions and development strategies of copper-sulfur compounds in SCs, and analyses and summarizes the research hotspots and outlook, so as to provide a reference and guidance for the use of copper-sulfur compounds.
Collapse
Affiliation(s)
- Junhua Lu
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
| | - Hedong Jiang
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
| | - Pingchun Guo
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
| | - Jiake Li
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
| | - Hua Zhu
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
| | - Xueyun Fan
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
| | - Liqun Huang
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
| | - Jian Sun
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
| | - Yanxiang Wang
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
| |
Collapse
|
3
|
Ren X, Wang H, Chen J, Xu W, He Q, Wang H, Zhan F, Chen S, Chen L. Emerging 2D Copper-Based Materials for Energy Storage and Conversion: A Review and Perspective. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204121. [PMID: 36526607 DOI: 10.1002/smll.202204121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/23/2022] [Indexed: 06/17/2023]
Abstract
2D materials have shown great potential as electrode materials that determine the performance of a range of electrochemical energy technologies. Among these, 2D copper-based materials, such as Cu-O, Cu-S, Cu-Se, Cu-N, and Cu-P, have attracted tremendous research interest, because of the combination of remarkable properties, such as low cost, excellent chemical stability, facile fabrication, and significant electrochemical properties. Herein, the recent advances in the emerging 2D copper-based materials are summarized. A brief summary of the crystal structures and synthetic methods is started, and innovative strategies for improving electrochemical performances of 2D copper-based materials are described in detail through defect engineering, heterostructure construction, and surface functionalization. Furthermore, their state-of-the-art applications in electrochemical energy storage including supercapacitors (SCs), alkali (Li, Na, and K)-ion batteries, multivalent metal (Mg and Al)-ion batteries, and hybrid Mg/Li-ion batteries are described. In addition, the electrocatalysis applications of 2D copper-based materials in metal-air batteries, water-splitting, and CO2 reduction reaction (CO2 RR) are also discussed. This review also discusses the charge storage mechanisms of 2D copper-based materials by various advanced characterization techniques. The review with a perspective of the current challenges and research outlook of such 2D copper-based materials for high-performance energy storage and conversion applications is concluded.
Collapse
Affiliation(s)
- Xuehua Ren
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Haoyu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Jun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Weili Xu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qingqing He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Feiyang Zhan
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA, 95060, USA
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
4
|
Alshahrie A, Arkook B, Al-Ghamdi W, Eldera S, Alzaidi T, Bamashmus H, Shalaan E. Electrochemical Performance and Hydrogen Storage of Ni-Pd-P-B Glassy Alloy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4310. [PMID: 36500933 PMCID: PMC9740777 DOI: 10.3390/nano12234310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The search for hydrogen storage materials is a challenging task. In this work, we tried to test metallic glass-based pseudocapacitive material for electrochemical hydrogen storage potential. An alloy ingot with an atomic composition of Ni60Pd20P16B4 was prepared via arc melting of extremely pure elements in an Ar environment. A ribbon sample with a width of 2 mm and a thickness of 20 mm was produced via melt spinning of the prepared ingot. Electrochemical dealloying of the ribbon sample was conducted in 1 M H2SO4 to prepare a nanoporous glassy alloy. The Brunauer-Emmett-Teller (BET) and Langmuir methods were implemented to obtain the total surface area of the nanoporous glassy alloy ribbon. The obtained values were 6.486 m2/g and 15.082 m2/g, respectively. The Dubinin-Astakhov (DA) method was used to calculate pore radius and pore volume; those values were 1.07 nm and 0.09 cm3/g, respectively. Cyclic voltammetry of the dealloyed samples revealed the pseudocapacitive nature of this alloy. Impedance of the dealloying sample was measured at different frequencies through use of electrochemical impedance spectroscopy (EIS). A Cole-Cole plot established a semicircle with a radius of ~6 Ω at higher frequency, indicating low interfacial charge-transfer resistance, and an almost vertical Warburg slope at lower frequency, indicating fast diffusion of ions to the electrode surface. Charge-discharge experiments were performed at different constant currents (75, 100, 125, 150, and 200 mA/g) under a cutoff potential of 2.25 V vs. Ag/AgCl electrode in a 1 M KOH solution. The calculated maximum storage capacity was 950 mAh/g. High-rate dischargeability (HRD) and capacity retention (Sn) for the dealloyed glassy alloy ribbon sample were evaluated. The calculated capacity retention rate at the 40th cycle was 97%, which reveals high stability.
Collapse
Affiliation(s)
- Ahmed Alshahrie
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bassim Arkook
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Physics and Astronomy Department, University of California, Riverside, CA 92521, USA
| | - Wafaa Al-Ghamdi
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Physics Department, Faculty of Science, Albaha University, Albaha 65779, Saudi Arabia
| | - Samah Eldera
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Physics Department, Faculty of Science, Al-Azhar University, Cairo 11751, Egypt
| | - Thuraya Alzaidi
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hassan Bamashmus
- College of Engineering, University of Business and Technology (UBT), Jeddah 23847, Saudi Arabia
| | - Elsayed Shalaan
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Dong S, Li Y, Zhao Z, Li R, He J, Yin J, Yan B, Zhang X. A Review of the Application of Heterostructure Catalysts in Hydrogen Evolution Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202104041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shizhi Dong
- College of Materials Science and Engineering Liaoning Technical University Fuxin 123000 China
| | - Yanshuai Li
- College of Materials Science and Engineering Liaoning Technical University Fuxin 123000 China
| | - Zhilong Zhao
- College of Materials Science and Engineering Liaoning Technical University Fuxin 123000 China
| | - Ruichuan Li
- College of Materials Science and Engineering Liaoning Technical University Fuxin 123000 China
| | - Jiaqi He
- College of Materials Science and Engineering Liaoning Technical University Fuxin 123000 China
| | - Jinpeng Yin
- College of Materials Science and Engineering Liaoning Technical University Fuxin 123000 China
| | - Bing Yan
- College of Materials Science and Engineering Liaoning Technical University Fuxin 123000 China
| | - Xing Zhang
- College of Materials Science and Engineering Liaoning Technical University Fuxin 123000 China
| |
Collapse
|
6
|
Detergent-free micelle-assisted synthesis of carbon-containing hexagonal CuS nanostructures for efficient supercapacitor electrode materials. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Wang T, Li K, Le Q, Zhu S, Guo X, Jiang D, Zhang Y. Tuning parallel manganese dioxide to hollow parallel hydroxyl oxidize iron replicas for high-performance asymmetric supercapacitors. J Colloid Interface Sci 2021; 594:812-823. [DOI: 10.1016/j.jcis.2021.03.075] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/27/2021] [Accepted: 03/13/2021] [Indexed: 02/07/2023]
|
8
|
Ghosh K, Srivastava SK. Enhanced Supercapacitor Performance and Electromagnetic Interference Shielding Effectiveness of CuS Quantum Dots Grown on Reduced Graphene Oxide Sheets. ACS OMEGA 2021; 6:4582-4596. [PMID: 33644566 PMCID: PMC7905797 DOI: 10.1021/acsomega.0c05034] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/30/2020] [Indexed: 05/05/2023]
Abstract
This study is focused on the preparation of the CuS/RGO nanocomposite via the hydrothermal method using GO and Cu-DTO complex as precursors. X-ray diffraction, Fourier-transform infrared spectroscopy, and Raman and X-ray photoelectron spectroscopy study revealed the formation of the CuS/RGO nanocomposite with improved crystallinity, defective nanostructure, and the presence of the residual functional group in the RGO sheet. The morphological study displayed the transformation of CuS from nanowire to quantum dots with the incorporation of RGO. The galvanostatic charge/discharge curve showed that the CuS/RGO nanocomposite (12 wt % Cu-DTO complex) has tremendous and outperforming specific capacitance of 3058 F g-1 at 1 A g-1 current density with moderate cycling stability (∼60.3% after 1000 cycles at 10 A g-1). The as-prepared nanocomposite revealed excellent improvement in specific capacitance, cycling stability, Warburg impedance, and interfacial charge transfer resistance compared to neat CuS. The fabricated nanocomposites were also investigated for their bulk DC electrical conductivity and EMI shielding ability. It was observed that the CuS/RGO nanocomposite (9 wt % Cu-DTO) exhibited a total electromagnetic shielding efficiency of 64 dB at 2.3 GHz following absorption as a dominant shielding mechanism. Such a performance is ascribed to the presence of interconnected networks and synergistic effects.
Collapse
Affiliation(s)
- Kalyan Ghosh
- Department of Chemistry, Indian
Institute of Technology Kharagpur, Kharagpur 721302, India
| | | |
Collapse
|
9
|
Zhang M, Hu H, Qi J, Wei F, Meng Q, Ren Y, Zhan Z, Sui Y, Sun Z. Expeditious and controllable synthesis of micron flower-like architecture Cu7S4@LSC via Ni ions morphology confinement for asymmetric button supercapacitor. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Majumdar D. Recent progress in copper sulfide based nanomaterials for high energy supercapacitor applications. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114825] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Borthakur P, Boruah PK, Das P, Das MR. CuS nanoparticles decorated MoS 2 sheets as an efficient nanozyme for selective detection and photocatalytic degradation of hydroquinone in water. NEW J CHEM 2021. [DOI: 10.1039/d1nj00856k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cost effective and efficient CuS–MoS2 nanocomposite with enhanced peroxidase enzyme mimetics and photocatalytic activity was synthesized by simple hydrothermal method and successfully utilized for sensing and detection of toxic hydroquinone molecules in aqueous medium.
Collapse
Affiliation(s)
- Priyakshree Borthakur
- Materials Sciences and Technology Division
- CSIR-North East Institute of Science and Technology
- Jorhat 785006
- India
- Academy of Scientific and Innovative Research
| | - Purna K. Boruah
- Materials Sciences and Technology Division
- CSIR-North East Institute of Science and Technology
- Jorhat 785006
- India
- Academy of Scientific and Innovative Research
| | - Punamshree Das
- Materials Sciences and Technology Division
- CSIR-North East Institute of Science and Technology
- Jorhat 785006
- India
- Academy of Scientific and Innovative Research
| | - Manash R. Das
- Materials Sciences and Technology Division
- CSIR-North East Institute of Science and Technology
- Jorhat 785006
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
12
|
He Y, Li N, Lian J, Yang Z, Liu Z, Liu Q, Zhang X, Zhang X. Colorimetric ascorbic acid sensing from a synergetic catalytic strategy based on 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphyrin functionalized CuS nanohexahedrons with the enhanced peroxidase-like activity. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124855] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Zhu D, Xia C, Yang Z, Yang T, Li Q, Liu R. Fast electrodeposition of Ni/Ni(OH)2 nanoparticles on nanoporous Cu prepared by dealloying Zr-Cu amorphous alloy for supercapacitor application. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135591] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Template free and facile microwave-assisted synthesis method to prepare mesoporous copper sulfide nanosheets for high-performance hybrid supercapacitor. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.169] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
15
|
In-situ growth of flower-like CuS microsphere on carbonized cotton for high-performance flexible supercapacitor. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Xun X, Liu H, Su Y, Zhang J, Niu J, Zhao H, Zhao G, Liu Y, Li G. One-pot synthesis Ni-Cu sulfide on Ni foam with novel three-dimensional prisms/spheres hierarchical structure for high-performance supercapacitors. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Mezgebe MM, Ju A, Wei G, Macharia DK, Guang S, Xu H. Structure based optical properties and catalytic activities of hydrothermally prepared CuS nanostructures. NANOTECHNOLOGY 2019; 30:105704. [PMID: 30530945 DOI: 10.1088/1361-6528/aaf758] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The nano-sized copper sulfides (CuS) with different morphologies were prepared by hydrothermal method without any surfactant or template. The morphology and structure of CuS were characterized by powder x-ray diffraction (XRD), Fourier transform infrared spectroscopy, x-ray photoelectron spectra (XPS), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller (BET) and ultraviolet-visible (UV-vis) absorption spectroscopy. FESEM results show that four morphologies of CuS (flower-like nanospheres, cross-linked nanodisks, cross-linked nanoplates and nanosheets) were prepared simply by changing the hydrothermal solvent. According to the XPS, XRD and HRTEM results the synthesized nano-sized structures are highly crystallized pure hexagonal covellite CuS. UV-vis spectra results show intense absorption peaks in the visible region, confirming that the resultant CuS has potential application in the field of solar cells. The catalytic activities of resultant CuS on model pollutant methylene blue (MB) in the dark were also investigated in detail. The small and flat crystallites show rapid degradation rate on MB, which is attributed to the numerous active sites on their large specific surface area. The as-synthesized CuS nanosheets took the shortest time (only 15 min) to degrade MB completely compared with the other nanostructural CuS in this work as well as previously reported ones. Total organic carbon removal of the samples approved mineralization of the MB pollutant. Thus, CuS is an excellent catalyst for degrading organic pollutants, which does not require light energy for its catalytic activities.
Collapse
Affiliation(s)
- Mebrahtu Melake Mezgebe
- The State Key Laboratory for Modification of Chemical Fibers and Polymers Materials, College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, People's Republic of China. Eritrea Institute of Technology (EIT), College of Science and Engineering, Department of Physics, University of Asmara, Asmara, Eritrea
| | | | | | | | | | | |
Collapse
|
18
|
Li C, He P, Jia L, Zhang X, Zhang T, Dong F, He M, Wang S, Zhou L, Yang T, Liu H. Facile synthesis of 3D CuS micro-flowers grown on porous activated carbon derived from pomelo peel as electrode for high-performance supercapacitors. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Jin K, Zhou M, Zhao H, Zhai S, Ge F, Zhao Y, Cai Z. Electrodeposited CuS nanosheets on carbonized cotton fabric as flexible supercapacitor electrode for high energy storage. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.182] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Lokhande A, Patil A, Shelke A, Babar P, Gang M, Lokhande V, Dhawale DS, Lokhande C, Kim JH. Binder-free novel Cu4SnS4 electrode for high-performance supercapacitors. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.170] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Ba Y, Zhou S, Jiao S, Pan W. Fabrication of polyaniline/copper sulfide/poly(ethylene terephthalate) thread electrode for flexible fiber-shaped supercapacitors. J Appl Polym Sci 2018. [DOI: 10.1002/app.46769] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yuerong Ba
- School of Materials and Chemical Engineering; Zhongyuan University of Technology; Zhengzhou 451191 People’ Republic of China
- Center for Advanced Materials Research; Zhongyuan University of Technology; Zhengzhou 451191 People's Republic of China
| | - Shaojie Zhou
- Center for Advanced Materials Research; Zhongyuan University of Technology; Zhengzhou 451191 People's Republic of China
| | - Shanshan Jiao
- School of Materials and Chemical Engineering; Zhongyuan University of Technology; Zhengzhou 451191 People’ Republic of China
| | - Wei Pan
- School of Materials and Chemical Engineering; Zhongyuan University of Technology; Zhengzhou 451191 People’ Republic of China
- Center for Advanced Materials Research; Zhongyuan University of Technology; Zhengzhou 451191 People's Republic of China
| |
Collapse
|
22
|
Li Y, Shi M, Wang L, Wang M, Li J, Cui H. Tailoring synthesis of Ni3S2 nanosheets with high electrochemical performance by electrodeposition. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2018.01.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
CuS/MnS composite hexagonal nanosheet clusters: Synthesis and enhanced pseudocapacitive properties. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Chemical Dealloying Synthesis of CuS Nanowire-on-Nanoplate Network as Anode Materials for Li-Ion Batteries. METALS 2018. [DOI: 10.3390/met8040252] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Qin Y, Kong X, Lei D, Lei X. Facial Grinding Method for Synthesis of High-Purity CuS Nanosheets. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b04616] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yang Qin
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029, China
| | - Xianggui Kong
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029, China
| | - Deqiang Lei
- Department
of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaodong Lei
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029, China
| |
Collapse
|
26
|
Electrochemical battery-type supercapacitor based on chemosynthesized Cu2S Ag2S composite electrode. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Zhu Y, Chen X, Zhou W, Xiang K, Hu W, Chen H. Controllable preparation of highly uniform CuCo 2 S 4 materials as battery electrode for energy storage with enhanced electrochemical performances. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Sun S, Li P, Liang S, Yang Z. Diversified copper sulfide (Cu 2-xS) micro-/nanostructures: a comprehensive review on synthesis, modifications and applications. NANOSCALE 2017; 9:11357-11404. [PMID: 28776056 DOI: 10.1039/c7nr03828c] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As a significant metal chalcogenide, copper sulfide (Cu2-xS, 0 < x < 1), with a unique semiconducting and nontoxic nature, has received significant attention over the past few decades. Extensive investigations have been employed to the various Cu2-xS micro-/nanostructures owing to their excellent optoelectronic behavior, potential thermoelectric properties, and promising biomedical applications. As a result, micro-/nanostructured Cu2-xS with well-controlled morphologies, sizes, crystalline phases, and compositions have been rationally synthesized and applied in the fields of photocatalysis, energy conversion, in vitro biosensing, and in vivo imaging and therapy. However, a comprehensive review on diversified Cu2-xS micro-/nanostructures is still lacking; therefore, there is an imperative need to thoroughly highlight the new advances made in function-directed Cu2-xS-based nanocomposites. In this review, we have summarized the important progress made in the diversified Cu2-xS micro-/nanostructures, including that in the synthetic strategies for the preparation of 0D, 1D, 2D, and 3D micro-/nanostructures (including polyhedral, hierarchical, hollow architectures, and superlattices) and in the development of modified Cu2-xS-based composites for enhanced performance, as well as their various applications. Furthermore, the present issues and promising research directions are briefly discussed.
Collapse
Affiliation(s)
- Shaodong Sun
- Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology, School of Material Science and Engineering, Xi'an University of Technology, Xi'an 710048, ShaanXi, People's Republic of China.
| | | | | | | |
Collapse
|
29
|
High Specific Capacitance and Energy density of Synthesized Graphene Oxide based Hierarchical Al2S3 Nanorambutan for Supercapacitor Applications. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.06.123] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Durairaj S, Vaithilingam S. Hydrothermal assisted synthesis of zeolite based nickel deposited poly(pyrrole-co-fluoro aniline)/CuS catalyst for methanol and sulphur fuel cell applications. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.01.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Ramachandran R, Saranya M, Grace AN, Wang F. MnS nanocomposites based on doped graphene: simple synthesis by a wet chemical route and improved electrochemical properties as an electrode material for supercapacitors. RSC Adv 2017. [DOI: 10.1039/c6ra25457h] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanocomposites of MnS anchored on graphene, nitrogen-doped graphene and boron-doped graphene have been prepared by a simple wet chemical process.
Collapse
Affiliation(s)
- Rajendran Ramachandran
- Department of Electronic and Electrical Engineering
- Southern University of Science and Technology
- Shenzhen 518055
- China
- Centre for Nanotechnology Research
| | - Murugan Saranya
- Centre for Nanotechnology Research
- VIT University
- Vellore-632 014
- India
- Platinum Retail Ltd
| | | | - Fei Wang
- Department of Electronic and Electrical Engineering
- Southern University of Science and Technology
- Shenzhen 518055
- China
| |
Collapse
|
32
|
Wang Q, Liang X, Yang D, Zhang D. Facile synthesis of novel CuCo2S4 nanospheres for coaxial fiber supercapacitors. RSC Adv 2017. [DOI: 10.1039/c7ra04532h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A flexible coaxial supercapacitor was designed using CuCo2S4 nanospheres on Ti wire, which exhibit satisfactory performances with high capacitance, excellent cycle stability and high energy density.
Collapse
Affiliation(s)
- Qiufan Wang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education
- South-Central University for Nationalities
- Wuhan
- China
| | - Xiao Liang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education
- South-Central University for Nationalities
- Wuhan
- China
| | - Depeng Yang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education
- South-Central University for Nationalities
- Wuhan
- China
| | - Daohong Zhang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education
- South-Central University for Nationalities
- Wuhan
- China
| |
Collapse
|
33
|
Sivakumar M, Sakthivel M, Chen SM. Simple synthesis of cobalt sulfide nanorods for efficient electrocatalytic oxidation of vanillin in food samples. J Colloid Interface Sci 2016; 490:719-726. [PMID: 27951514 DOI: 10.1016/j.jcis.2016.11.094] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/25/2016] [Accepted: 11/25/2016] [Indexed: 10/20/2022]
Abstract
Well-defined CoS nanorods (NR) were synthesized using a simple hydrothermal method, and were tested as an electrode material for electro-oxidation of vanillin. The NR material was characterized with regard to morphology, crystallinity, and electro-activity by use of appropriate analytical techniques. The resulting CoS NR@Nafion modified glassy carbon electrode (GCE) exhibited efficient electro-oxidation of vanillin with a considerable linear range of current-vs-concentration (0.5-56μM vanillin) and a detection limit of 0.07μM. Also, food samples containing vanillin were studied to test suitability for commercial applications.
Collapse
Affiliation(s)
- Mani Sivakumar
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Mani Sakthivel
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan.
| |
Collapse
|