1
|
Liu X, Li Z, Chong B, Kang J, Zhang S, Chen M, Wang C, Ji K. Electrochemically Dealloying Engineering toward Integrated Monolithic Electrodes with Superior Electrochemical Li-Storage Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401698. [PMID: 38794861 DOI: 10.1002/smll.202401698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/26/2024] [Indexed: 05/26/2024]
Abstract
Integrated monolithic electrodes (IMEs) free of inactive components demonstrate great potential in boosting energy-power densities and cycling life of lithium-ion batteries. However, their practical applications are significantly limited by low active substance loading (< 4.0 mg cm-2 and 1.0 g cm-3), complicated manufacturing process, and high fabrication cost. Herein, employing industrial Cu-Mn alloy foil as a precursor, a simple neutral salt solution-mediated electrochemical dealloying strategy is proposed to address such problems. The resultant Cu-Mn IMEs achieve not only a significantly larger active material loading due to the in situ generated Cu2O and MnOx (ca. 16.0 mg cm-2 and 1.78 g cm-3), simultaneously fast transport of ions and electrons due to the well-formed nanoporous structure and built-in Cu current collector, but also high structural stability due to the interconnected ligaments and suitable free space to relieve the volume expansion upon lithiation. As a result, they demonstrate remarkable performances including large specific capacities (> 5.7 mAh cm-2), remarkable pseudocapacitive effect despite the battery-type constitutes, long cycling life, and good working condition in a lithium-ion full cell. This study sheds new light on the further development of IMEs, enriches the existing dealloying techniques, and builds a bridge between the two.
Collapse
Affiliation(s)
- Xinyu Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300350, China
| | - Ziheng Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300350, China
| | - Boyang Chong
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300350, China
| | - Jianli Kang
- National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300350, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Sheng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Mingming Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Chengyang Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Kemeng Ji
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
2
|
Sagar P, Srivastava M, Srivastava SK. Electrochemical Sensor for the Anti‐tuberculosis Drug Rifampicin on CuO@rGO‐Nanocomposite‐Modified GCE by Voltammetry Techniques. ChemistrySelect 2022. [DOI: 10.1002/slct.202202271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pinky Sagar
- Department of Physics Institute of Science Banaras Hindu University Varanasi 221005 India
| | - Monika Srivastava
- School of Materials Science & Technology Indian Institute of Technology (BHU) Varanasi 221005 India
| | - Sanjay K. Srivastava
- Department of Physics Institute of Science Banaras Hindu University Varanasi 221005 India
| |
Collapse
|
3
|
Smartphone-assisted Colorimetric Sensor based on Nanozyme for On-Site Glucose Monitoring. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Fe2O3-MWNTs Composite with Reinforced Concrete Structure as High-performance Anode Material for Lithium-ion Batteries. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2147-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Zhang Y, Liu L, Deng Q, Wu W, Li Y, Ren X, Zhang P, Sun L. Hybrid CuO-Co3O4 nanosphere/RGO sandwiched composites as anode materials for lithium-ion batteries. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Superior Electrochemical Performance of Two-Dimensional RGO/Cu/Cu2O Composite as Anode Material for Lithium-Ion Batteries. ENERGIES 2022. [DOI: 10.3390/en15030733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, graphene has attracted the interest of many researchers working on LIB anode materials owing to its unique 2D structure, thermal stability, and fast electron transfer. In this work, RGO/Cu/Cu2O nanocomposites were synthesized through a hydrothermal procedure. The as-prepared nanocomposites exhibited a high lithium storage capacity with improved cycling stability and great rate performance, i.e., the discharge capacity was 371.8 mAh/g after 100 cycles at a current density of 500 mA/g. These excellent properties were associated with the sheet structure symmetry of graphene enriched with the multifunctional Cu-Cu2O component, which prevented aggregation and accommodated the volume changes of the anode material during the charge–discharge tests. The RGO/Cu/Cu2O composite conferred to the LIB anode the ability to resist electrode cracking. The approach proposed in this paper can be also generalized for the synthesis of other carbon-based anode materials for LIBs.
Collapse
|
7
|
Shi R, Zhang L, Gao T, Lian W, Liu K, Zhao X, Li B, Chen N, Song W. The Thermal Expansion Exfoliation Technology and Lithium Promoter Assistant Enables CuO x/graphene as a High-Performance Anode for Lithium-Ion Batteries. Dalton Trans 2022; 51:14201-14206. [DOI: 10.1039/d2dt01879a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability to rationally design the copper oxide anode with superior rate performance that possesses ultra-small particle size is highly desirable for lithium-ion batteries (LIBs). Herein, a rapid and effective...
Collapse
|
8
|
Kim SD, Sarkar A, Ahn JH. Graphene-Based Nanomaterials for Flexible and Stretchable Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006262. [PMID: 33682293 DOI: 10.1002/smll.202006262] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/21/2020] [Indexed: 05/20/2023]
Abstract
Recently, as flexible and wearable electronic devices have become widely popular, research on light weight and large-capacity batteries suitable for powering such devices has been actively conducted. In particular, graphene has attracted considerable attention from researchers in the battery field owing to its good mechanical properties and its applicability in various processes to fabricate electrodes for batteries. Graphene is classified into two types: flake-type, fabricated from graphite, and film-type, synthesized using chemical vapor deposition. The unique processes involved in these two types enable the fabrication of flexible and stretchable batteries with various shapes and functions. In this article, the recent progress in the development of flexible and stretchable batteries based on graphene, as well as its important technical issues are reviewed.
Collapse
Affiliation(s)
- Seong Dae Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Arijit Sarkar
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
9
|
Siavash Moakhar R, Hosseini‐Hosseinabad SM, Masudy‐Panah S, Seza A, Jalali M, Fallah‐Arani H, Dabir F, Gholipour S, Abdi Y, Bagheri‐Hariri M, Riahi‐Noori N, Lim Y, Hagfeldt A, Saliba M. Photoelectrochemical Water-Splitting Using CuO-Based Electrodes for Hydrogen Production: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007285. [PMID: 34117806 PMCID: PMC11468279 DOI: 10.1002/adma.202007285] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/25/2020] [Indexed: 06/12/2023]
Abstract
The cost-effective, robust, and efficient electrocatalysts for photoelectrochemical (PEC) water-splitting has been extensively studied over the past decade to address a solution for the energy crisis. The interesting physicochemical properties of CuO have introduced this promising photocathodic material among the few photocatalysts with a narrow bandgap. This photocatalyst has a high activity for the PEC hydrogen evolution reaction (HER) under simulated sunlight irradiation. Here, the recent advancements of CuO-based photoelectrodes, including undoped CuO, doped CuO, and CuO composites, in the PEC water-splitting field, are comprehensively studied. Moreover, the synthesis methods, characterization, and fundamental factors of each classification are discussed in detail. Apart from the exclusive characteristics of CuO-based photoelectrodes, the PEC properties of CuO/2D materials, as groups of the growing nanocomposites in photocurrent-generating devices, are discussed in separate sections. Regarding the particular attention paid to the CuO heterostructure photocathodes, the PEC water splitting application is reviewed and the properties of each group such as electronic structures, defects, bandgap, and hierarchical structures are critically assessed.
Collapse
Affiliation(s)
- Roozbeh Siavash Moakhar
- Department of BioengineeringMcGill UniversityMontrealQCH3A 0E9Canada
- Non‐Metallic Materials Research GroupNiroo Research Institute (NRI)Tehran14686‐13113Iran
| | | | - Saeid Masudy‐Panah
- Electrical and Computer EngineeringNational University of SingaporeSingapore119260Singapore
- Low Energy Electronic Systems (LEES)Singapore‐MIT Alliance for Research and Technology (SMART) CentreSingapore38602Singapore
| | - Ashkan Seza
- Non‐Metallic Materials Research GroupNiroo Research Institute (NRI)Tehran14686‐13113Iran
- Department of Materials Science and EngineeringSharif University of TechnologyAzadi AveTehran11155‐9466Iran
| | - Mahsa Jalali
- Department of BioengineeringMcGill UniversityMontrealQCH3A 0E9Canada
| | - Hesam Fallah‐Arani
- Non‐Metallic Materials Research GroupNiroo Research Institute (NRI)Tehran14686‐13113Iran
| | - Fatemeh Dabir
- Non‐Metallic Materials Research GroupNiroo Research Institute (NRI)Tehran14686‐13113Iran
| | - Somayeh Gholipour
- Nanophysics Research LaboratoryDepartment of PhysicsUniversity of TehranTehran14395‐547Iran
| | - Yaser Abdi
- Nanophysics Research LaboratoryDepartment of PhysicsUniversity of TehranTehran14395‐547Iran
| | - Mohiedin Bagheri‐Hariri
- Institute for Corrosion and Multiphase flow TechnologyDepartment of Chemical and Biomedical EngineeringOhio UniversityAthensOH45701USA
| | - Nastaran Riahi‐Noori
- Non‐Metallic Materials Research GroupNiroo Research Institute (NRI)Tehran14686‐13113Iran
| | - Yee‐Fun Lim
- Institute of Materials Research and EngineeringAgency for Science Technology and Research (A*STAR)2 Fusionopolis Way, Innovis, #08‐03Singapore138634Singapore
| | - Anders Hagfeldt
- Laboratory of Photomolecular ScienceEcole Polytechnique Fédérale de LausanneEPFL SB‐ISIC‐LSPM, Station 6Lausanne1015Switzerland
| | - Michael Saliba
- Institute for PhotovoltaicsUniversity of StuttgartPfaffenwaldring 47D‐70569StuttgartGermany
- Helmholtz Young Investigator Group FRONTRUNNER IEK5‐PhotovoltaikForschungszentrumD‐52425JülichGermany
| |
Collapse
|
10
|
Du B, Qiu L, Chen Y, Zhang Z. Rational Design of Self-Supported CuO x -Decorated Composite Films as an Efficient and Easy-Recycling Catalyst for Styrene Oxidation. ACS OMEGA 2021; 6:18157-18168. [PMID: 34308047 PMCID: PMC8296588 DOI: 10.1021/acsomega.1c02031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
The applications of graphene-based materials in catalysis are limited by their strong tendency to aggregate, which may lead to a decrease in active sites. Herein, we propose a facile and controllable strategy to fabricate a series of heterogeneous catalysts with a unique nanostructure wherein CuO x -decorated reduced graphene oxide (rGO) sheets are incorporated into a solid matrix composed of poly(vinylpyrrolidone) (PVP) and carboxymethyl cellulose (CMC). The resultant materials are self-supported films and could be directly used as catalysts for the liquid-phase oxidation of styrene without the requirement for extra substrates. The employment of PVP-CMC (PC) as the support for CuO x -decorated rGO sheets successfully inhibits their aggregation. Benefiting from the dispersion of copper species, these films exhibit good catalytic activity and recyclability under mild reaction conditions. Especially, they can be conveniently removed from the reaction mixture by tweezers due to their structural stability. For catalyzing multiple reactions with high efficiency and facile recyclability, this study offers a universal strategy to design heterogeneous catalysts based on graphene materials and provides a promising platform.
Collapse
|
11
|
Ren Y, Zhu T, Liu Y, Liu Q, Yan Q. Direct Utilization of Photoinduced Charge Carriers to Promote Electrochemical Energy Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2008047. [PMID: 33860628 DOI: 10.1002/smll.202008047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Electrochemical energy storage has been regarded as one of the most promising strategies for next-generation energy consumption. To meet the increasing demands of urban electric vehicles, development of green and efficient charging technologies by exploitation of solar energy should be considered for outdoor charging in the future. Herein, a light-sensitive material (copper foam-supported copper oxide/nickel copper oxides nanosheets arrays, namely CF@CuOx @NiCuOx NAs) with hierarchical nanostructures to promote electrochemical charge storage is specifically fabricated. The as-fabricated NAs have demonstrated a high areal specific capacity of 1.452 C cm-2 under light irradiation with a light power of 1.76 W, which is 44.8% higher than the capacity obtained without light. Such areal specific capacity (1.452 C cm-2 ) is much higher than that of the conventional supercapacitor structure using a similar active redox component reported recently (NiO nanosheets array@Co3 O4 -NiO FTNs: maximum areal capacity of 623.5 mF cm-2 at 2 mA cm-2 ). This photo-enhancement for charge storage can be attributed to the combination of photo-sensitive Cu2 O and pseudo-active NiO components. Hence, this work may provide new possibilities for direct utilization of sustainable solar energy to realize enhanced capability for energy storage devices.
Collapse
Affiliation(s)
- Yuanfu Ren
- School of Materials Science & Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Ting Zhu
- School of Materials Science & Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Yadong Liu
- School of Materials Science & Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Quanbing Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
12
|
A nanocomposite consisting of cuprous oxide supported on graphitic carbon nitride nanosheets for non-enzymatic electrochemical sensing of 8-hydroxy-2'-deoxyguanosine. Mikrochim Acta 2020; 187:459. [PMID: 32686000 DOI: 10.1007/s00604-020-04416-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
Graphitic carbon nitrides supported cuprous oxide architecture is reported as an efficient electrode material for supercapacitors, especially due to its high charge-transfer conductivity of the electrochemical devices. Herein, we present an electrochemical sensor to specifically detect 8-hydroxy-2'-deoxyguanosine (8-HDG) oxidative stress biomarker using graphitic carbon nitrides that decorate a cuprous oxide cubes modified electrode. The fabricated electrochemical sensor was characterized and proved by electrochemical methods, EDX, FESEM, and amperometry (i-t). In the presence of 8-hydroxy-2'-deoxyguanosine (8-HDG), the effective interaction between graphitic carbon nitrides and 8-HDG favors the accumulation on the Cu2O/g-C3N4/GCE, which increases the electrocatalytic property and amperometric response. The proposed electrochemical sensor exhibits a wide linear range for 8-HDG in 0.1 M phosphate buffer (pH 7.0) from 25 nM to 0.91 mM, and the limit of detection (LOD) is 4.5 nM. The stability of the Cu2O/g-C3N4/GCE is improved when stored at 4 °C. The repeatability and reproducibility of this electrochemical sensor is good and the sensor retains its current response for 8-HDG detection also after long time storage. The modified sensor proved high selectivity and sensitivity for 8-HDG, which made it possible to determine 8-HDG in biological samples. Furthermore, the Cu2O/g-C3N4/GCE offered a favorable electron transfer between the Cu2O/g-C3N4 and the electrode interface compared to Cu2O/GCE, g-C3N4/GCE, and unmodified GCE. Graphical abstract Electrochemical detection of oxidative stress marker based on Cu2O@g-C3N4 materials modified electrode.
Collapse
|
13
|
Gu M, Lee WR, Kim M, Kang J, Lee JS, Thompson LT, Kim BS. Structure-tunable supraparticle assemblies of hollow cupric oxide sheathed with nanographenes. NANOSCALE ADVANCES 2020; 2:1236-1244. [PMID: 36133034 PMCID: PMC9419484 DOI: 10.1039/d0na00031k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 02/04/2020] [Indexed: 06/14/2023]
Abstract
Self-assembled supraparticles (SPs), a secondary structure of clustered nanoparticles, have attracted considerable interest owing to their highly tunable structure, composition, and morphology from their primary nanoparticle constituents. In this study, hierarchically assembled hollow Cu2O SPs were prepared using a cationic polyelectrolyte poly(diallyl dimethylammonium chloride) (PDDA) during the formation of Cu2O nanoparticles. The concentration-dependent structural transformation of PDDA from linear chains to assembled droplets plays a crucial role in forming a hollow colloidal template, affording the self-assembly of Cu2O nanoparticles as a secondary surfactant. The use of the positively charged PDDA also affords negatively charged nanoscale graphene oxide (NGO), an electrical and mechanical supporter to uniformly coat the surface of the hollow Cu2O SPs. Subsequent thermal treatment to enhance the electrical conductivity of NGO within the NGO/Cu2O SPs allows for the concomitant phase transformation of Cu2O to CuO, affording reduced NGO/CuO (RNGO/CuO) SPs. The uniquely structured hollow RNGO/CuO SPs achieve improved electrochemical properties by providing enhanced electrical conductivity and electroactive surface area.
Collapse
Affiliation(s)
- Minsu Gu
- Department of Chemistry, Yonsei University Seoul 03722 Korea
| | - Woo-Ram Lee
- Department of Chemical Engineering, University of Michigan Ann Arbor Michigan 48109 USA
| | - Minkyung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Jiwoong Kang
- Department of Chemical Engineering, University of Michigan Ann Arbor Michigan 48109 USA
| | - Jae Sung Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Levi T Thompson
- College of Engineering, University of Delaware Newark Delaware 19716 USA
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University Seoul 03722 Korea
| |
Collapse
|
14
|
Shi M, Huang Z, Liu H, He J, Zeng W, Wu Q, Zhao Y, Tian M, Mu S. Ultralow nitrogen-doped carbon coupled carbon-doped Co3O4 microrods with tunable electron configurations for advanced Li-storage properties. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.135059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Chen H, He J, Ke G, Sun L, Chen J, Li Y, Ren X, Deng L, Zhang P. MoS 2 nanoflowers encapsulated into carbon nanofibers containing amorphous SnO 2 as an anode for lithium-ion batteries. NANOSCALE 2019; 11:16253-16261. [PMID: 31454008 DOI: 10.1039/c9nr05631a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
SnO2 with high abundance, large theoretical capacity, and nontoxicity is considered to be a promising candidate for use as advanced electrodes. However, the poor electronic conductivity and large volume variations hinder the practical applications of SnO2-based electrodes for use in lithium-ion batteries (LIBs). Herein, the MoS2-SnO2 heterostructures were encapsulated into carbon nanofibers (CNFs) via facile solvothermal and electrospinning methods. Remarkably, when the binder-free and robust MoS2-SnO2@CNF is employed as the anode for LIBs, such a clever structure yields a discharge capacity of 983 mA h g-1 at a current density of 200 mA g-1 after 100 cycles and a capacity of 710 mA h g-1 after 800 cycles at a current density of 2000 mA g-1. Moreover, full cells and flexible full cells were constructed, which exhibited high flexibility and delivered a high reversible capacity of 463 mA h g-1 after 100 cycles at 500 mA g-1. The exceptional performance of MoS2-SnO2@CNF could be attributed to the rational design of the electrode structure. On one hand, the robust structure of the amorphous SnO2 and MoS2 nanoflowers in the conductive carbon network not only provides direct current pathways, but also enhances electron transfer. On the other hand, the abundance of p-n heterogeneous interfaces considerably reduces the charge transfer resistance and enhances the surface reaction kinetics. This work proposes a feasible strategy to enhance the capacity and stability of SnO2-based electrodes and opens up a new avenue for the potential applications of SnO2 anode materials.
Collapse
Affiliation(s)
- Huanhui Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Jiao He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Guanxia Ke
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Lingna Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Junning Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Yongliang Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Xiangzhong Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Libo Deng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Peixin Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| |
Collapse
|
16
|
Huang M, Chen H, He J, An B, Sun L, Li Y, Ren X, Deng L, Zhang P. Ultra small few layer MoS2 embedded into three-dimensional macro-micro-mesoporous carbon as a high performance lithium ion batteries anode with superior lithium storage capacity. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Wang Z, Zhang X, Yan Y, Zhang Y, Wang Y, Qin C, Bakenov Z. Nanoporous GeO2/Cu/Cu2O network synthesized by dealloying method for stable Li-ion storage. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.127] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Wang Y, Cao L, Li J, Huang J, Kou L, Kong X, Liu Y, Pan L. Design of Cu2O coated Cu3V2O7(OH)2·2H2O microflower with in-situ crystallization process and enhanced Li-storage properties. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Wang F, Cheng D, Cheng T, Zong J, Long Y, Zhao M, Yang S, Song X. Selective synthesis of CuO/C nanocomposites and porous CuO based on polyacrylic acid hydrogel system as high-performance anode for lithium-ion batteries. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2018.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Guo B, Mi H, Zhang P, Ren X, Li Y. Free-Standing Selenium Impregnated Carbonized Leaf Cathodes for High-Performance Sodium-Selenium Batteries. NANOSCALE RESEARCH LETTERS 2019; 14:30. [PMID: 30659376 PMCID: PMC6338612 DOI: 10.1186/s11671-019-2861-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/09/2019] [Indexed: 05/28/2023]
Abstract
A novel approach of carbonizing leaves by thermal pyrolysis with melt diffusion followed by selenium vapor deposition is developed to prepare the carbon-selenium composite cathodes for sodium-selenium batteries. The carbonized leaf possesses internal hierarchical porosity and high mass loading; therefore, the composite is applied as a binder- and current collector-free cathode, exhibiting an excellent rate capability and a high reversible specific capacity of 520 mA h g-1 at 100 mA g-1 after 120 cycles and 300 mA h g-1 even at 2 A g-1 after 500 cycles without any capacity loss. Moreover, the unique natural three-dimensional structure and moderate graphitization degree of leaf-based carbon facilitate Na+/e- transport to activate selenium which can guarantee a high utilization of the selenium during discharge/charge process, demonstrating a promising strategy to fabricate advanced electrodes toward the sodium-selenium batteries.
Collapse
Affiliation(s)
- Bingru Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 Guangdong People’s Republic of China
| | - Hongwei Mi
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 Guangdong People’s Republic of China
| | - Peixin Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 Guangdong People’s Republic of China
- Guangdong Flexible Wearable Energy and Tools Engineering Technology Research Centre, Shenzhen University, Shenzhen, 518060 Guangdong People’s Republic of China
| | - Xiangzhong Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 Guangdong People’s Republic of China
| | - Yongliang Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060 Guangdong People’s Republic of China
- Guangdong Flexible Wearable Energy and Tools Engineering Technology Research Centre, Shenzhen University, Shenzhen, 518060 Guangdong People’s Republic of China
| |
Collapse
|
21
|
Momeni S, Sedaghati F. CuO/Cu2O nanoparticles: A simple and green synthesis, characterization and their electrocatalytic performance toward formaldehyde oxidation. Microchem J 2018. [DOI: 10.1016/j.microc.2018.07.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Li Y, Cai R, Lü R, Gao L, Qin S. Template synthesis of the Cu 2O nanoparticle-doped hollow carbon nanofibres and their application as non-enzymatic glucose biosensors. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181474. [PMID: 30662752 PMCID: PMC6304140 DOI: 10.1098/rsos.181474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/25/2018] [Indexed: 06/09/2023]
Abstract
The cuprous oxide nanoparticle (Cu2O NP)-doped hollow carbon nanofibres (Cu2O/HCFs) were directly synthesized by the anodic aluminium oxide (AAO) template. The doped Cu2O NPs were formed by in situ deposition by direct reduction reaction of precursor carbonization in thermal decomposition and could act as functionalized nanoparticles. The synthesized Cu2O/HCFs were characterized in detail by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and inductively coupled plasma mass spectrometry (ICP-MS). The results reveal that Cu2O/HCFs have a tubular structure with an average diameter of approximately 60 nm. The shape of the Cu2O/HCFs is straight and Cu2O NPs are uniformly distributed and highly dispersed in HCFs. Cu2O/HCFs have good dispersibility. The electrochemical activity of Cu2O/HCFs was investigated by cyclic voltammetry (CV), the glucose sensors display high electrochemical activity towards the oxidation of glucose. Cu2O/HCFs can effectively accelerate the transmission of electrons on the electrode surface. Cu2O/HCFs are applied in the detection of glucose with a detection limit of 0.48 µM, a linear detection range from 7.99 to 33.33 µM and with a high sensitivity of 1218.3 µA cm-2 mM-1. Moreover, the experimental results demonstrate that Cu2O/HCFs have good stability, reproducibility and selectivity. Our results suggest that Cu2O/HCFs could be a promising candidate for the construction of non-enzymatic sensor.
Collapse
Affiliation(s)
| | | | - Renjiang Lü
- Author for correspondence: Renjiang Lü e-mail:
| | | | | |
Collapse
|
23
|
Sun B, Li H, Li X, Liu X, Zhang C, Xu H, Zhao XS. Degradation of Organic Dyes over Fenton-Like Cu2O–Cu/C Catalysts. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02697] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Baofen Sun
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hongliang Li
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xingyun Li
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiaowei Liu
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Chuanhui Zhang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Huanyan Xu
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - X. S. Zhao
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
24
|
Ding J, Li L, Li H, Chen S, Fang S, Feng T, Li G. Optimum Preferential Oxidation Performance of CeO 2-CuO x-RGO Composites through Interfacial Regulation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7935-7945. [PMID: 29425017 DOI: 10.1021/acsami.7b15549] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Interfacial regulation offers a promising route to rationally and effectively design advanced materials for CO preferential oxidation. Herein, we initiated an interfacial regulation of CeO2-CuO x-RGO composites by adjusting the addition sequence of the components during the support formation. The presence of RGO along with the sequence tuning of the components is confirmed to survey the changes of the oxidation state of copper species, the content and distribution of the Cu+ site, and the synergistic interactions between Cu-Ce mixed oxides and reduced graphene oxide (RGO) over the catalysts. These catalysts were systematically characterized by inductively coupled plasma, X-ray diffraction, transmission electron microscopy/high-resolution transmission electron microscopy, hydrogen temperature-programmed reduction, X-ray photoelectron spectra, thermal gravimetric analysis, Raman spectra, and in situ diffuse reflectance infrared Fourier transform spectroscopy measurements. The results show that RGO is favorable for the generation of Cu+ and the dispersion of copper-cerium species in the as-prepared catalysts. Furthermore, by multi-interfacial regulation of the CeO2-CuO x-RGO composites, the catalyst CeO2/CuO x-RGO exhibits a strikingly high catalytic oxidation activity at a low temperature coupled with a broader operation temperature window (i.e., CO conversion >99.0%, 140-220 °C) in the CO-selective oxidation reaction, which has been attributed to the high content of the active species Cu+ enriched on the surface, the highly dispersed copper oxide clusters subjected to a strong interaction with ceria, and the synergistic interactions between Cu-Ce mixed oxides and RGO.
Collapse
Affiliation(s)
- Junfang Ding
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , P.R. China
| | - Liping Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , P.R. China
| | - Huixia Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , P.R. China
| | - Shaoqing Chen
- Fujian Institute of Research in Structure of Matter , Chinese Academy of Sciences , Fuzhou 350002 , P.R. China
| | - Shaofan Fang
- Fujian Institute of Research in Structure of Matter , Chinese Academy of Sciences , Fuzhou 350002 , P.R. China
| | - Tao Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , P.R. China
| | - Guangshe Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , P.R. China
| |
Collapse
|
25
|
Iskandar F, Abdillah OB, Stavila E, Aimon AH. The influence of copper addition on the electrical conductivity and charge transfer resistance of reduced graphene oxide (rGO). NEW J CHEM 2018. [DOI: 10.1039/c8nj03614d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The possible explanations on how the existence of copper, CuO, or Cu2O influences the electrical conductivity and electrochemical properties of rGO.
Collapse
Affiliation(s)
- Ferry Iskandar
- Department of Physics
- Faculty of Mathematics and Natural Sciences
- Institut Teknologi Bandung
- Bandung
- Indonesia
| | | | - Erythrina Stavila
- Research Center for Nanosciences and Nanotechnology (RCNN)
- Institut Teknologi Bandung
- Bandung
- Indonesia
| | - Akfiny Hasdi Aimon
- Department of Physics
- Faculty of Mathematics and Natural Sciences
- Institut Teknologi Bandung
- Bandung
- Indonesia
| |
Collapse
|
26
|
Sun L, Deng Q, Li Y, Mi H, Wang S, Deng L, Ren X, Zhang P. CoO-Co 3 O 4 heterostructure nanoribbon/RGO sandwich-like composites as anode materials for high performance lithium-ion batteries. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.04.148] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|