1
|
Hojabri S, Rajic L, Zhao Y, Alshawabkeh AN. Simulation of hexavalent chromium removal by electrocoagulation using iron anode in flow-through reactor. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135195. [PMID: 39018592 DOI: 10.1016/j.jhazmat.2024.135195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
An electrocoagulation (EC) model is developed for hexavalent chromium reduction and precipitation, using iron electrodes. Parallel removal mechanisms such as adsorption of chromium on ferrihydrite and direct reduction at the cathode is assumed negligible due to low concentration of Cr(VI). The reaction model presented for batch system represents species complexation, precipitation/dissolution, acid/base, and oxidation-reduction reactions. Batch reactor simulation is verified using experimental data obtained by Sarahney et al. (2012), where the effect of initial chromium concentration, pH, volumetric current density, and ionic strength is considered (Sarahney et al., 2012). The model couples multicomponent ionic transport in MATLAB with chemical reaction model in PHREEQC, as a widely used computational programming tool and a geochemical reaction simulator with comprehensive geochemistry databases. The suggested current density is 0.05-0.3mA/cm2 and the surface to volume ratio in batch reactor is considered 0.017 1/cm. Design parameters are presented for operation of a flow-through hexavalent chromium removal using electrocoagulation by iron electrode to treat Cr(VI) in range of 10-50 mg/L. The operational parameters for a flow-through EC reactor for Cr(VI) removal is suggested to follow [Formula: see text] .
Collapse
Affiliation(s)
- Shayan Hojabri
- Civil and Environmental Engineering, Northeastern University, Boston MA 02115, United States
| | - Ljiljana Rajic
- Elateq Inc., 240 Thatcher road, Amherst, MA 01003, United States
| | - Yuwei Zhao
- Biotechnology Development and Applications Group, APTIM, Lawrenceville NJ 08648, United States
| | - Akram N Alshawabkeh
- Civil and Environmental Engineering, Northeastern University, Boston MA 02115, United States.
| |
Collapse
|
2
|
Cabrera V, López-Vizcaíno R, Yustres Á, Navarro V. Reactive transport model for bentonites in COMSOL multiphysics: Benchmark and validation exercise. CHEMOSPHERE 2024; 350:141050. [PMID: 38154672 DOI: 10.1016/j.chemosphere.2023.141050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 12/30/2023]
Abstract
At present, the deep geological repository concept for spent nuclear fuel is considered the most reliable and safe technique for the permanent disposal of this type of waste. One of the many safety elements used is an engineered barrier made of compacted bentonite. This material allows the encapsulated waste to be isolated from the host rock. Therefore, there is great interest in a detailed study of the behavior of bentonites to different changes in the composition of the surrounding groundwater. In this context, this work presents a new reactive transport model for bentonites implemented in the COMSOL Multiphysics platform. The model contemplates a non-simplistic geochemical system composed of 42 species and 4 minerals. Reactive transport involves the diffusive-dispersive-advective processes defined by the Nernst Planck equations for two overlapping modeling levels (macro- and microstructural) to simulate the behavior of double-porosity media. The uniqueness of this model is that the system of equations used to calculate the chemical speciation problem and the advective-diffusive-dispersive transport can be integrally solved in COMSOL. The model has been satisfactorily verified and validated using the benchmark exercise consisting of the simulation of the multicomponent advective-diffusive column experiment conducted on a compacted bentonite core extracted from a field experiment (LOT project) in the Äspö Hardrock laboratory (Sweden).
Collapse
Affiliation(s)
- Virginia Cabrera
- Geoenvironmental Group, Department of Civil Engineering and Construction, Civil Engineering School, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Rubén López-Vizcaíno
- Geoenvironmental Group, Department of Civil Engineering and Construction, Civil Engineering School, University of Castilla-La Mancha, Ciudad Real, Spain.
| | - Ángel Yustres
- Geoenvironmental Group, Department of Civil Engineering and Construction, Civil Engineering School, University of Castilla-La Mancha, Ciudad Real, Spain.
| | - Vicente Navarro
- Geoenvironmental Group, Department of Civil Engineering and Construction, Civil Engineering School, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
3
|
Sprocati R, Gallo A, Wienkenjohann H, Rolle M. Temperature-dependent dynamics of electrokinetic conservative and reactive transport in porous media: A model-based analysis. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 259:104261. [PMID: 37925812 DOI: 10.1016/j.jconhyd.2023.104261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
Electrokinetic techniques employ direct current electric fields to enhance the transport of amendments in low permeability porous media and have been demonstrated effective for in situ remediation of both organic contaminants and heavy metals. The application of electric potential gradients give rise to coupled chemical, hydraulic and electric fluxes, which are at the basis of the main transport mechanisms: electromigration and electroosmosis. Previous research has highlighted the significant impacts of charge interactions and fluid composition, including temperature-dependent properties such as electrolyte conductivity and density, on these transport phenomena. However, current models of electrokinetic applications often assume isothermal conditions and overlook the production of heat resulting from Joule heating. This study provides a detailed model-based investigation, systematically exploring the effects of temperature on electrokinetic conservative and reactive transport in porous media. By incorporating temperature-dependent material properties and progressively investigating the impact of temperature on each transport mechanism, we analyze the effects of temperature variations in both 1D and 2D systems. The study reveals how temperature dynamically influences the physical, chemical and electrostatic processes controlling electrokinetic transport. A temperature increase results in a higher speed of amendments delivery by both electromigration and electroosmosis and increases the kinetics of degradation reactions. The simulations also reveal a feedback mechanism in which higher aqueous conductivity results in increased Joule heating, leading to a faster temperature rise and, subsequently, to higher electrolyte conductivity. Finally, we estimate the electric energy requirements of the system at varying temperatures and show how these changes impact the rate of contaminant removal.
Collapse
Affiliation(s)
- Riccardo Sprocati
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Andrea Gallo
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Henning Wienkenjohann
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Massimo Rolle
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark; Technical University of Darmstadt, Department of Materials and Geosciences, Institute of Applied Geosciences, Schnittspahnstr. 9, 64287 Darmstadt, Germany.
| |
Collapse
|
4
|
Kanbar HJ, Zein-Eddin A, Ammami MT, Benamar A. Electrokinetic remediation of estuarine sediments using a large reactor: spatial variation of physicochemical, mineral, and chemical properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117688-117705. [PMID: 37867172 DOI: 10.1007/s11356-023-30271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/01/2023] [Indexed: 10/24/2023]
Abstract
The treatment and beneficial use of polluted or contaminated environmental matrices have become major issues, especially as the world strives toward a zero-waste policy. In this regard, dredged sediments need to be treated before they can be used in an environmentally safe and sustainable manner. Therefore, this work aims to treat estuarine sediments and, more importantly, use physicochemical, mineral, organic, and chemical information to understand the reactions that occur upon treatment. Dredged estuarine sediments were collected from Tancarville (Seine River estuary, France) and subjected to electrokinetic (EK) remediation using a 128-L laboratory-scale reactor. The sediments were treated 8 h per day for 21 days. The electric (voltage and current) and physicochemical (pH and electric conductivity) parameters were monitored during treatment. Sediments were collected from various sections in the reactor at the end of the experiment (lengthwise, widthwise, and depthwise). The spatial variation was investigated in terms of organic, mineral, and metal contents. Statistical analyses proved that the variation occurred only in the lengthwise direction. Furthermore, three main phases described the treatment, which were mainly linked to carbonate dissolution and pH variation. The results also showed that the trace elements Ni and Zn were reduced by 21% and 19%, respectively, without a direct link to pH, while Ca and Mg were only redistributed. The buffering capacity of the anodic sediment was reduced due to carbonate dissolution. The treated sediments showed reduced contents in trace metals without affecting major elements that can be useful in agriculture (i.e., Ca and Mg).
Collapse
Affiliation(s)
- Hussein J Kanbar
- Laboratoire Ondes et Milieux Complexes (LOMC), UMR 6294 CNRS, University of Le Havre Normandy (ULHN), 76600, Le Havre, France.
| | - Ahmad Zein-Eddin
- Laboratoire Ondes et Milieux Complexes (LOMC), UMR 6294 CNRS, University of Le Havre Normandy (ULHN), 76600, Le Havre, France
| | - Mohamed-Tahar Ammami
- Laboratoire Ondes et Milieux Complexes (LOMC), UMR 6294 CNRS, University of Le Havre Normandy (ULHN), 76600, Le Havre, France
| | - Ahmed Benamar
- Laboratoire Ondes et Milieux Complexes (LOMC), UMR 6294 CNRS, University of Le Havre Normandy (ULHN), 76600, Le Havre, France
| |
Collapse
|
5
|
Hawal LH, Al-Sulttani AO. The technique of arsenic elimination from contaminated soil with enhanced conditions by electro-kinetic remediation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1319. [PMID: 37837489 DOI: 10.1007/s10661-023-11979-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Remediation of arsenic-contaminated soil by the technique of electro-kinetic using various enhanced conditions is the thrust of this study. Many tests were performed with different operating conditions, such as the electrodes solution (tap water) with a variable pH at (2, 5, and 8). Cyclodextrin (10% hydroxypropyl-beta-cyclodextrin, or HPCD) has been used as an activating agent that helps enhance this process of soil arsenic clean-up. Agricultural wastes (pomegranate peels) were used after treating them as an adsorbent to impede the return of pollutants to the soil as a result of reverse osmosis. The results obtained after the remediation's completion indicated that the best elimination capacity was 72% at a pH of 2. This indicates that the elimination capacity increases with the decreasing pH of the electrodes solution. Mixing the HPCD solution with soil as an enhanced solution increased the solubility and desorption of arsenic from the soil. Then, arsenic-containing HPCD micelles readily moved to the cathode electrode by electro-osmotic flow, and the elimination capacity increased (84%). It was concluded that pomegranate peels are a good adsorbent for arsenic returning to the soil during the treatment process as a result of reverse osmosis. Hence, the application of this material in this research gave a perfect impression of its use as an inexpensive, environmentally friendly adsorbent and an alternative to commercial absorbents.
Collapse
Affiliation(s)
- Laith Hamdan Hawal
- Environment Engineering Department, Mustansiriyah University, Baghdad, Iraq.
| | - Ali Omran Al-Sulttani
- Department of Water Resources Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
6
|
Hawal LH, Saeed KA, Al-Sulttani AO. Copper metal elimination from polluted soil by electro-kinetic technique. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:443. [PMID: 36872419 DOI: 10.1007/s10661-023-11057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The electro kinetic method is one of the common methods in the process of pollutants removal. In this paper, the process of removing copper from contaminated soil has been studied. Some improved conditions were used in this process; the pH of the solution was changed for each experiment during the first three experiments. SDS (sodium dodecyl sulfate) has been used as an activator to improve the removal process by washing the soil with it. Date palm fibers (DPF) were also used as an adsorbent material to counteract the reverse flow that occurred during the removal process, thus increasing the removal value. Various experiments were performed, where it was observed that by decreasing the pH, the removal capacity was increased. The removal capacity in the three different experiments were 70% at pH 4, 57% at pH 7, and 45% at pH 10. The use of SDS as a solution in the process increased the dissolution and absorption of copper from the soil surface and then increased the removal capacity (74%). The use of DPF to counter the osmosis flow has been successful in adsorbing the pollutants (copper) returning from this flow, and thus this material can be considered good from an economic and environmental aspect when compared to other commercial adsorbents.
Collapse
Affiliation(s)
- Laith Hamdan Hawal
- Environment Engineering Department, Mustansiriyah University, Baghdad, Iraq.
| | | | - Ali Omran Al-Sulttani
- Water Resources Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
7
|
Wang Y, Feng H, Wang R, Zhou L, Li N, He Y, Yang X, Lai J, Chen K, Zhu W. Non-targeted metabolomics and 16s rDNA reveal the impact of uranium stress on rhizosphere and non-rhizosphere soil of ryegrass. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 258:107090. [PMID: 36565664 DOI: 10.1016/j.jenvrad.2022.107090] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/27/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
As a radioactive heavy metal element with a long half-life, uranium causes environmental pollution when it enters the surrounding soil. This study analyzed the changes about soil enzyme activity, non-targeted metabolomics, microbial community structure and function microbial community structure and function to assess the differences in the effects of uranium stress on rhizosphere and non-rhizosphere soil. Results showed that uranium stress significantly inhibited the activities of urease and sucrase in rhizosphere and non-rhizosphere, which had less effect on rhizosphere. Compare to the non-rhizosphere soil, the uranium stress induced the production of gibberellin A1, to promoted several metabolic pathways, such as nitrogen and PTS (Phosphotransferase system) metabolic in rhizosphere soil. The species and abundance of Aspergillus, Acidobacter, and Synechococcus in both rhizosphere and non-rhizosphere soil were decreased by uranium stress. However, the microorganisms in rhizosphere soil were less inhibited according to the soil metabolism and microbial network map analysis. Furthermore, the Chujaibacter in rhizosphere soil under uranium stress was found significantly positively correlated with lipid and organic oxygen compounds. Overall, the results indicated that ryegrass roots significantly alleviated the effects of uranium stress on soil microbial activity and population abundances, thus playing a protective role. The study also provided a theoretical basis for in-depth understanding of the biological effects, prevention and control mechanisms of uranium-contaminated soil.
Collapse
Affiliation(s)
- Yilin Wang
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Huachuan Feng
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Ruixiang Wang
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Li Zhou
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Nan Li
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yizhou He
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xu Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jinlong Lai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Ke Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
8
|
Xu Q, Wu B. Recent Progress on Ex Situ Remediation Technology and Resource Utilization for Heavy Metal Contaminated Sediment. TOXICS 2023; 11:207. [PMID: 36976972 PMCID: PMC10051940 DOI: 10.3390/toxics11030207] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Sediment is an important part of aquatic systems, which plays a vital role in transporting and storing metals. Due to its abundance, persistence, and environmental toxicity, heavy metal pollution has always been one of the hot spots in the world. In this article, the state-of-art ex situ remediation technology for metal-contaminated sediments is elaborated, including sediment washing, electrokinetic remediation (EKR), chemical extraction, biological treatment, as well as encapsulating pollutants by adding some stabilized/solidified materials. Furthermore, the progress of sustainable resource utilization methods, such as ecosystem restoration, construction materials (e.g., materials fill materials, partition blocks, and paving blocks), and agriculture use are reviewed in detail. Finally, the pros and cons of each technique are summarized. This information will provide the scientific basis for selecting the appropriate remediation technology in a particular scenario.
Collapse
|
9
|
Gidudu B, Chirwa EMN. The Role of pH, Electrodes, Surfactants, and Electrolytes in Electrokinetic Remediation of Contaminated Soil. Molecules 2022; 27:7381. [PMID: 36364207 PMCID: PMC9657640 DOI: 10.3390/molecules27217381] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 08/01/2023] Open
Abstract
Electrokinetic remediation has, in recent years, shown great potential in remediating polluted environments. The technology can efficiently remove heavy metals, chlorophenols, polychlorinated biphenyls, phenols, trichloroethane, benzene, toluene, ethylbenzene, and xylene (BTEX) compounds and entire petroleum hydrocarbons. Electrokinetic remediation makes use of electrolysis, electroosmosis, electrophoresis, diffusion, and electromigration as the five fundamental processes in achieving decontamination of polluted environments. These five processes depend on pH swings, voltage, electrodes, and electrolytes used in the electrochemical system. To apply this technology at the field scale, it is necessary to pursue the design of effective processes with low environmental impact to meet global sustainability standards. It is, therefore, imperative to understand the roles of the fundamental processes and their interactions in achieving effective and sustainable electrokinetic remediation in order to identify cleaner alternative solutions. This paper presents an overview of different processes involved in electrokinetic remediation with a focus on the effect of pH, electrodes, surfactants, and electrolytes that are applied in the remediation of contaminated soil and how these can be combined with cleaner technologies or alternative additives to achieve sustainable electrokinetic remediation. The electrokinetic phenomenon is described, followed by an evaluation of the impact of pH, surfactants, voltage, electrodes, and electrolytes in achieving effective and sustainable remediation.
Collapse
|
10
|
López-Vizcaíno R, Cabrera V, Sprocati R, Muniruzzaman M, Rolle M, Navarro V, Yustres Á. A modeling approach for electrokinetic transport in double-porosity media. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Study on Water-Heat-Solution Transport Law in Cr(VI)-Contaminated Soil during Electric Remediation. SUSTAINABILITY 2022. [DOI: 10.3390/su14138136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In order to understand the water-thermal-solute transport pattern during the electrokinetic remediation of Cr(VI)-contaminated soil, this study selected 2.46 m3 of Cr(VI)-contaminated soil from a chemical plant plot for an indoor experiment of electrokinetic remediation, which monitored the changes of three indicators of soil volumetric water content, temperature and Cr(VI) content over time under the conditions of a voltage of 90 V and 110 V and an electrode distance of 1.5 m for 7 days. A numerical model was also developed using the finite element software COMSOL, which was evaluated and calibrated to predict the changes in soil volumetric water content and hexavalent chromium concentration within 15 days. The results showed that the soil volumetric water content near the anode showed a decreasing trend at the beginning, and then gradually increased when the external supplemental water arrived. The decrease in soil volume water content became larger when the voltage increased. During the electrokinetic remediation experiment, the maximum temperature could reach 36.9 °C at 5 cm from the anode under the conditions of 90 V and 1.5 m distance between electrodes, while the maximum temperature could reach 52.4 °C at a voltage of 110 V. Moreover, the higher the voltage, the faster the temperature rise of the soil at the same location. A higher voltage increased the removal rate of hexavalent chromium, and the removal rate of hexavalent chromium in shallow soils was higher than that in deep soils. At 90 V and an electrode distance of 1.5 m, the removal rates of hexavalent chromium at sampling points 6 and 7 reached 66.03% and 60.80%, respectively. The removal rates of points 6 and 7 at 110 V were able to reach 75.96% and 70.74%, respectively.
Collapse
|
12
|
Srichandan H, Singh PK, Parhi PK, Mohanty P, Adhya TK, Pattnaik R, Mishra S, Hota PK. Environmental remediation using metals and inorganic and organic materials: a review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2022; 40:197-226. [PMID: 35895918 DOI: 10.1080/26896583.2022.2065871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent times, environmental pollution has been an alarming concern. This is increasing day-in-and-day-out, especially in the Asia-Pacific region due to the increasing population, urbanization, industrialization and inappropriate waste management measures. Pollution abatement is the need of the hour to sustain the biosphere in general and the human life in particular. A range of physical, chemical and biological strategies are commonly employed to remove pollutants from the contained water, soil and air. Physical, chemical or physicochemical remediation processes are commonly employed owing to their high efficiency, stability, recyclable property and low procurement cost as compared to metals, inorganic and organic materials. Materials of the later type include biocomposites, thin films, modified (bio)polymers, nanoparticles, nanofilters, sorbent like activated charcoal, and carbon nanotubes and nanosensors. Remediation mechanism largely follows sorption, degradation, oxidation, reduction, catalytic conversion, detection and microbial toxicity principles. This review details the mechanisms of action by these various remediating entities, their successful applications in pollution abatement, drawbacks and future prospects.HighlightsEnvironmental remediation using metals, inorganic and organic materials are discussed extensively.Major remediating approaches, viz., physical, physicochemical and chemical are elaborated citing latest references.The significance of biocomposites, biopolymers, polymers, thin films, nanoparticles, nanofilters, nanosensors and sorbents in remediation are highlighted.Pollutant removal from water, air and soil has been precisely discussed.A note on drawbacks, improvement and future prospects of remediating agents is presented.
Collapse
Affiliation(s)
- Haragobinda Srichandan
- Bioenergy Lab, BDTC, School of Biotechnology, KIIT Deemed-to-be-University, Bhubaneswar, India
| | - Puneet Kumar Singh
- Bioenergy Lab, BDTC, School of Biotechnology, KIIT Deemed-to-be-University, Bhubaneswar, India
| | | | - Pratikhya Mohanty
- Bioenergy Lab, BDTC, School of Biotechnology, KIIT Deemed-to-be-University, Bhubaneswar, India
| | - Tapan Kumar Adhya
- School of Biotechnology, KIIT Deemed-to-be-University, Bhubaneswar, India
| | - Ritesh Pattnaik
- Bioenergy Lab, BDTC, School of Biotechnology, KIIT Deemed-to-be-University, Bhubaneswar, India
| | - Snehasish Mishra
- Bioenergy Lab, BDTC, School of Biotechnology, KIIT Deemed-to-be-University, Bhubaneswar, India
| | - Pranab Kumar Hota
- Department of Chemistry, Odapada Panchayat Samiti Mahavidyalaya, Dhenkanal,India
| |
Collapse
|
13
|
Fernández-Marchante CM, Souza FL, Millán M, Lobato J, Rodrigo MA. Can the green energies improve the sustainability of electrochemically-assisted soil remediation processes? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149991. [PMID: 34482137 DOI: 10.1016/j.scitotenv.2021.149991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/30/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The green powering of electrochemically-assisted soil remediation processes had been strongly discouraged. Low remediation efficiencies have been reported as a consequence of the reversibility of the transport processes when no power is applied to the electrodes, due to the intermittent powering of renewable sources. However, it has been missed a deeper evaluation from the environmental point of view. This work goes further and seeks to quantify, using life cycle assessment tools, the environmental impacts related to the electro-kinetic treatments powered by different sources: grid (Spanish energy mix), photovoltaic and wind sources. The global warming potential and the ozone depletion showed higher environmental impacts in case of using green energies, associated with the manufacturing of the energy production devices. In contrast to that, results pointed out the lowest water consumption for the treatment powered with solar panels. The huge water requirements to produce energy, considering a Spanish energy mix, drop the sustainability of this powering strategy in terms of water footprint. Regarding toxicities, the pollutant toxicity was highly got rid of after 15 days of treatment, regardless the powering source used. Nevertheless, the manufacturing of energy and green energy production devices has a huge impact into the toxicity of the remediation treatments, increasing massively the total toxicity of the process, being this effect less prominent by the electro-kinetic treatment solar powered. In view of the overall environmental impact assessed, according to mid and endpoint impact categories, it can be claimed that, despite the high energy requirements and affectation to the global warming potential, the use of solar power is a more sustainable alternative to remediate polluted soils by electrochemical techniques.
Collapse
Affiliation(s)
- C M Fernández-Marchante
- Department of Chemical Engineering, University of Castilla La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain.
| | - F L Souza
- Department of Chemical Engineering, University of Castilla La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - M Millán
- Department of Chemical Engineering, University of Castilla La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - J Lobato
- Department of Chemical Engineering, University of Castilla La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - M A Rodrigo
- Department of Chemical Engineering, University of Castilla La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| |
Collapse
|
14
|
Rolle M, Albrecht M, Sprocati R. Impact of solute charge and diffusion coefficient on electromigration and mixing in porous media. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 244:103933. [PMID: 34872016 DOI: 10.1016/j.jconhyd.2021.103933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
The application of electrokinetic techniques in porous media has great potential to enhance mass transfer rates and, thus, to mobilize contaminants and effectively deliver reactants and amendments. However, the transport mechanisms induced by the application of an external electric field are complex and entail the coupling of physical, chemical and electrostatic processes. In this study we focus on electromigration and we provide experimental evidence of the impact of compound-specific properties, such as the aqueous diffusivity and the valence of charged species, on the macroscopic electrokinetic transport. We performed a series of multidimensional experiments considering the displacement of three different tracer plumes (i.e., permanganate, allura red and new coccine) in different background electrolyte solutions. The outcomes of the experiments clearly show that both the compound-specific diffusivity and the charge of the injected and resident ions impact the transport of the selected color tracer plumes, whose evolution was monitored with image analysis. The investigated experimental scenarios led to distinct plume behavior characterized by different mass distribution, average displacement velocities, longitudinal and lateral plume spreading, shape of the invading and receding fronts, as well as dilution of the injected solutes. A numerical simulator, based on the Nernst-Planck-Poisson equations and on aqueous speciation reactions in the pore water, allowed us to quantitatively interpret the experimental results, to capture the observed patterns of plume evolution, and to illuminate the coupling between the governing physico-chemical mechanisms and the controlling role of small scale compound-specific and electrostatic properties. Finally, the model was also extended to a typical configuration of in situ electrokinetic remediation of contaminated groundwater to show the impact of such mechanisms at larger scale.
Collapse
Affiliation(s)
- Massimo Rolle
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kgs. Lyngby, Denmark.
| | - Marina Albrecht
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kgs. Lyngby, Denmark
| | - Riccardo Sprocati
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
15
|
Shen X, Li C, Li M, Zhou K, Li Y. Effect of electric potentials on the removal of Cu and Zn in soil by electrokinetic remediation. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2020.1825967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Xiaoxiao Shen
- College of Environment, Hohai University, Nanjing, China
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University., Nanjing, China
| | - Chao Li
- College of Environment, Hohai University, Nanjing, China
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University., Nanjing, China
| | - Ming Li
- College of Environment, Hohai University, Nanjing, China
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University., Nanjing, China
| | - Kang Zhou
- College of Environment, Hohai University, Nanjing, China
| | - Yizhou Li
- College of Environment, Hohai University, Nanjing, China
| |
Collapse
|
16
|
Chen Y, Zhi D, Zhou Y, Huang A, Wu S, Yao B, Tang Y, Sun C. Electrokinetic techniques, their enhancement techniques and composite techniques with other processes for persistent organic pollutants remediation in soil: A review. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
López-Vizcaíno R, Yustres Á, Cabrera V, Navarro V. A worksheet-based tool to implement reactive transport models in COMSOL Multiphysics. CHEMOSPHERE 2021; 266:129176. [PMID: 33316469 DOI: 10.1016/j.chemosphere.2020.129176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/11/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
The increasing needs for modelling of reactive transport phenomena in different areas of environmental modelling have led to the development of many numerical codes. However, many of them suffer from a lack of flexibility, which hinders the adaptation of the codes to new problems. Moreover, in many cases, changes can be done by a very reduced group of people, and often by a single person, the main developer. Implementation platforms based on multiphysics modelling removes these barriers, although until now within that programming environments has been only possible the coupling of geochemical codes to transport equations using operator splitting techniques. This paper presents the EE4MGM tool, a MS Excel worksheet, provided in supplementary material, for the edition and complete implementation of reactive transport models in COMSOL. The tool automatically generates the code needed to solve the desired reactive transport problem by selecting only which species make up the geochemical system. This way, the numerical model will be completely adapted to the idealisation to be applied, being able to choose easily and effortlessly from a wide range of different levels of conceptual complexity. The organization of data input and the equation libraries obtained for the implementation in the multiphysics COMSOL environment are first described. Afterwards, two examples, in one and two-dimensional domains, to check the utility of the tool are presented.
Collapse
Affiliation(s)
- Rubén López-Vizcaíno
- Geoenvironmental Group, Civil Engineering School, University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Ángel Yustres
- Geoenvironmental Group, Civil Engineering School, University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain.
| | - Virginia Cabrera
- Geoenvironmental Group, Civil Engineering School, University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Vicente Navarro
- Geoenvironmental Group, Civil Engineering School, University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
| |
Collapse
|
18
|
Ghobadi R, Altaee A, Zhou JL, McLean P, Ganbat N, Li D. Enhanced copper removal from contaminated kaolinite soil by electrokinetic process using compost reactive filter media. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123891. [PMID: 33254824 DOI: 10.1016/j.jhazmat.2020.123891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/17/2020] [Accepted: 08/30/2020] [Indexed: 06/12/2023]
Abstract
Electrokinetic (EK) remediation is a promising technology for soil decontamination, although basic pH in the soil close to cathode has constrained EK effectiveness due to heavy metal precipitation. This study aimed to enhance copper removal from kaolinite soil by integrating EK with compost (C) as recyclable reactive filter media (RFM) for the first time. Compost placed near the cathode served as an adsorbent to bind copper ions while buffering the advancement of the alkaline front in soil. The total copper removal rate increased from 1.03% in EK to 45.65% in EK-100%C under an electric potential of 10 V. Further experiments conducted by using biochar (BC) and compost/biochar (C + BC) mixture RFM at different ratios showed total Cu removal efficiency decreasing as EK-100%C > EK-(10%BC + 90%C) > EK-(20%BC + 80%C) > EK-(30%BC + 70%C) > EK. The application of a constant electric current of 20.00 mA further enhanced copper removal to 84.09% in EK-100%C although did not show significant enhancement in EK-(BC + C). The compost RFM was regenerated by acid extraction and then reused twice, achieving a total removal of 74.11%. The findings demonstrated compost as a promising and reusable RFM for the efficient removal of copper in contaminated soil.
Collapse
Affiliation(s)
- Romina Ghobadi
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia.
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia.
| | - Peter McLean
- School of Electrical and Data Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Namuun Ganbat
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Donghao Li
- Department of Chemistry, MOE Key Laboratory of Biological Resources of Changbai Mountain & Functional Molecules, Yanbian University, Yanji, 133002, Jilin Province, PR China
| |
Collapse
|
19
|
Wen D, Fu R, Li Q. Removal of inorganic contaminants in soil by electrokinetic remediation technologies: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123345. [PMID: 32763678 DOI: 10.1016/j.jhazmat.2020.123345] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/22/2020] [Accepted: 06/27/2020] [Indexed: 05/09/2023]
Abstract
The soil contaminated by inorganic contaminants including heavy metals, radioactive elements and salts has been posing risks for human health and ecological environment, which has been widely paid attention in recent years. The electrokinetic remediation (EKR) technology is recognized as the most potential separation technology, which is commonly used to clean sites that are contaminated with organic and inorganic contaminants. It is the most suitable remediation technology for low permeability porous matrices. The main transport mechanism of pollutants in EKR include electromigration, electroosmosis and electrophoresis, coupled with electrolysis and geochemical reactions. Although arduous endeavors have been carried out to build optimal operating conditions and reveal the mechanism of EKR process, a systematic theoretical foundation hasn't been sorted yet. A comprehensive review on electrokinetic remediation of inorganic contaminants in soil is given in this study, and a more systematic theoretical foundation is sorted out according to the latest theoretical achievements. This theoretical system mainly focuses on the scientific and practical aspects of the application of EKR technology in soil remediation, by which we try to dig into the core of this technology. It contains key motive power of electric phenomena, side effects, energy consumption and supply, and removal of heavy metals, radioactive elements and salts in soil during EKR. In addition, correlations between dehydration, crystallization effect, focusing effect and thermal effect are disclosed; optimal operating conditions for the removal of heavy metals by EKR and EKR coupled with PRB are discussed and sorted out. Also discussed herein is the relationship between energy allocation and energy saving. According to the related findings, some potential improvements are also proposed.
Collapse
Affiliation(s)
- Dongdong Wen
- Centre for Environmental Risk Management & Remediation of Soil & Groundwater, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Rongbing Fu
- Centre for Environmental Risk Management & Remediation of Soil & Groundwater, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Qian Li
- Centre for Environmental Risk Management & Remediation of Soil & Groundwater, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
20
|
Tang X, Li R, Han D, Wu X. Impacts of electrokinetic isolation of phosphorus through pore water drainage on sediment phosphorus storage dynamics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115210. [PMID: 32693325 DOI: 10.1016/j.envpol.2020.115210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Pore water is a crucial storage medium and a key source of sediment phosphorus. A novel equipment based on electrokinetic geosynthetics (EKGs) was used for isolating phosphorus from eutrophic lake sediments through pore water drainage. Three mutually independent indoor group experiments (A, B, and C) were conducted to investigate the effects of voltage gradient (0.00, 0.25, and 0.50 V/cm) on pore water drainage capacity, phosphorus removal performance, sediment physicochemical properties, and phosphorus storage dynamics. The average reduction in the sediment moisture and total phosphorus content was 2.5%, 4.3%, and 4.6% and 28.15, 75.95, and 112.65 mg/kg after 6 days of treatment for A, B and C, respectively. Efficient pore water drainage through gravity and electroosmotic flow and electromigration of phosphate were the main drivers of sediment-dissolved and mobilized phosphorus separation. A high voltage gradient facilitated the migration of pore water and the phosphorus in it. The maximal effluent total phosphorous (TP) concentration was up to 27.9 times that in the initial pore water samples, and negligible effluent TP was detected when the pore water pH was less than 2.5. The TP concentration was exponentially and linearly related to the pH and electronic conductivity of the electroosmotic flow, respectively. The migration of H+ within the sediment matrix promoted the liberation of metals bounded to phosphorus, particularly of Ca-P and Fe-P. Pore water drainage through an EKG resulted in Ex-P separation of up to 87.50% and a 13.84 mg/kg decrease in Ca-P and 125.35 mg/kg accumulation of low mobile Fe-P in the weak acid anode zone.
Collapse
Affiliation(s)
- Xianqiang Tang
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, China; Changjiang River Eco-Environmental Engineering Research Centre, China Three Gorges Corporation, Beijing, 10080, China.
| | - Rui Li
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, China
| | - Ding Han
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, China
| | - Xingyi Wu
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, China
| |
Collapse
|
21
|
Sprocati R, Flyvbjerg J, Tuxen N, Rolle M. Process-based modeling of electrokinetic-enhanced bioremediation of chlorinated ethenes. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122787. [PMID: 32388097 DOI: 10.1016/j.jhazmat.2020.122787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/01/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
This study presents a process-based modeling analysis of electrokinetic-enhanced bioremediation (EK-Bio) to illuminate the complex interactions between physical, electrostatic and biogeochemical processes occurring during the application of this remediation technique. The features of the proposed model include: (i) multidimensional electrokinetic transport in saturated porous media by electromigration and electroosmosis, (ii) charge interactions, (iii) degradation kinetics, (iv) microbial populations dynamics of indigenous and specialized exogenous degraders, (v) mass transfer limitations, and (vi) geochemical reactions. A scenario modeling investigation is presented, which was inspired by an EK-Bio pilot application conducted in a clayey aquitard at the Skuldelev site (Denmark) contaminated by chlorinated ethenes. Lactate and specialized degraders are delivered under conservative and reactive transport conditions. In the considered setup, transport of lactate using electrokinetics results in more than fourfold increase in the distribution efficiency with respect to a diffusion-only scenario. Moreover, EK transport by electromigration and electroosmosis yields fluxes at least two orders of magnitude larger than diffusive fluxes. Quantitative metrics are also defined and used to assess the amendment distribution and the enhanced contaminant biodegradation in the different conservative and reactive transport scenarios.
Collapse
Affiliation(s)
- Riccardo Sprocati
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kgs. Lyngby, Denmark
| | - John Flyvbjerg
- Centre for Regional Development, Capital Region of Denmark, Kongens Vænge 2, 3400, Hillerød, Denmark
| | - Nina Tuxen
- Centre for Regional Development, Capital Region of Denmark, Kongens Vænge 2, 3400, Hillerød, Denmark
| | - Massimo Rolle
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
22
|
Yustres Á, López-Vizcaíno R, Cabrera V, Rodrigo MA, Navarro V. Donnan-ion hydration model to estimate the electroosmotic permeability of clays. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Heavy metal removal from sewage sludge under citric acid and electroosmotic leaching processes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116822] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Sprocati R, Rolle M. Charge interactions, reaction kinetics and dimensionality effects on electrokinetic remediation: A model-based analysis. JOURNAL OF CONTAMINANT HYDROLOGY 2020; 229:103567. [PMID: 31780056 DOI: 10.1016/j.jconhyd.2019.103567] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/09/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
The potential of electrokinetic remediation technologies (EKR) for the removal of different contaminants from subsurface porous media has been increasingly recognized. Despite electrokinetic applications have shown promising results, quantitative understanding of such systems is still challenging due to the complex interplay between physical transport processes, electrostatic interactions, and geochemical reactions. In this study, we perform a model-based analysis of electrokinetic transport in saturated porous media. We investigate the effects of: (i) Coulombic interactions between ions in the system mobilized by electromigration, (ii) reaction kinetics on the overall removal efficiency of a non-charged organic contaminant, and (iii) dimensionality and different electrode configurations. The results show that such effects play a major role on the performance of electrokinetic systems. The simulations illuminate the importance of microscopic processes, such as electrostatic interactions and ion-specific diffusivities, and their non-intuitive macroscopic impact on the delivery of charged amendments and on the efficiency of contaminant removal. The insights of this study are valuable to improve and optimize the design and the operational strategies of electrokinetic remediation systems.
Collapse
Affiliation(s)
- Riccardo Sprocati
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Massimo Rolle
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 115, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
25
|
Klouche F, Bendani K, Benamar A, Missoum H, Maliki M, Laredj N. Electrokinetic restoration of local saline soil. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.matpr.2019.08.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Sun Z, Wu B, Guo P, Wang S, Guo S. Enhanced electrokinetic remediation and simulation of cadmium-contaminated soil by superimposed electric field. CHEMOSPHERE 2019; 233:17-24. [PMID: 31163304 DOI: 10.1016/j.chemosphere.2019.05.233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 05/09/2023]
Abstract
The 'focusing' effect has become a limiting factor for the removal of heavy metals from soils by electrokinetic (EK) remediation. A superimposed electric field EK (SE-EK) method is proposed to address this problem. Two sets of fixed electrodes placed at different positions were switched to move the 'focusing' region of Cd to the cathode by controlling the location of the pH jumping front. Moreover, a model was established to simulate and optimize the process of Cd transport in soil under the superimposed electric field. Results showed that, after 35 d of SE-EK remediation, Cd was mainly accumulated in the soil section near the cathode (S5), where the acid and alkaline fronts converged. The removal rate of Cd in the soil sections from S1 to S4 reached 87.60%, which was 6.13 times that in conventional EK remediation. Meanwhile, the energy utilization efficiency in SE-EK was 6.38 times that in conventional EK. The pH changes and Cd distribution during the SE-EK experiment were simulated well, with good agreement between the modeled and experimental data. The removal of Cd in SE-EK remediation could therefore be optimized through simulating the distribution of Cd in five situations with differences in switching time and electrode position. This research provides valuable technical support for effective EK remediation of heavy metal contaminated soil.
Collapse
Affiliation(s)
- Zicheng Sun
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Wu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | | | - Sa Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
27
|
Removal of Hazardous Cationic Salt Pollutants During Electrochemical Treatment from Contaminated Mixed Heterogeneous Saline Soil. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2019. [DOI: 10.1007/s13369-018-3551-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Shu J, Sun X, Liu R, Liu Z, Wu H, Chen M, Li B. Enhanced electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue using pulsed electric field in different enhancement agents. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:523-529. [PMID: 30641313 DOI: 10.1016/j.ecoenv.2019.01.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/16/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Electrolytic manganese residue (EMR) is a solid waste generated in the process of producing electrolytic metal manganese and contains a lot of manganese and ammonia nitrogen. In this study, electrokinetic remediation (EK) of manganese and ammonia nitrogen from EMR were carried out by using pulse electric field (PE) in different agents, and sodium dodecyl benzene sulfonate (SDBS), citric acid (CA) and ethylene diamine tetraacetic acid (EDTA) were used as enhancement agents. The removal behavior of ammonia nitrogen and manganese under direct current field (DC) and PE, and the relationship between manganese fractionation and transport behavior, as well as the energy consumption were investigated. The results demonstrated that the removal efficiency of ammonia nitrogen and manganese using PE were higher than DC. SDBS, EDTA and CA could enhance electroosmosis and electromigration, and the sequence of enhancement agent effects were CA, SDBS, EDTA, distilled water. The highest removal efficiency of manganese and ammonia nitrogen were 94.74% and 88.20%, and the effective removal amount of manganese and ammonia nitrogen was 23.93 and 1.48 mg·wh-1, when CA and SDBS+CA was used as the enhancement agents, respectively. Moreover, electromigration was the main removal mechanism of manganese and ammonia nitrogen in the EK process.
Collapse
Affiliation(s)
- Jiancheng Shu
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China.
| | - Xiaolong Sun
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Renlong Liu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Zuohua Liu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Haiping Wu
- Sichuan jiuzhou technician college, 9 Ninesheng Road, Mianyang 621099, China
| | - Mengjun Chen
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Bobo Li
- College of Mining, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
29
|
López-Vizcaíno R, dos Santos E, Yustres A, Rodrigo M, Navarro V, Martínez-Huitle C. Calcite buffer effects in electrokinetic remediation of clopyralid-polluted soils. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.11.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Rocha I, Silva K, Silva D, Martínez-Huitle C, Santos E. Coupling electrokinetic remediation with phytoremediation for depolluting soil with petroleum and the use of electrochemical technologies for treating the effluent generated. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.03.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Villen-Guzman M, Guedes P, Couto N, Ottosen LM, Ribeiro AB, Rodriguez-Maroto JM. Electrodialytic phosphorus recovery from sewage sludge ash under kinetic control. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Hojabri S, Rajic L, Alshawabkeh AN. Transient reactive transport model for physico-chemical transformation by electrochemical reactive barriers. JOURNAL OF HAZARDOUS MATERIALS 2018; 358:171-177. [PMID: 29990804 PMCID: PMC6247793 DOI: 10.1016/j.jhazmat.2018.06.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 05/12/2023]
Abstract
A comprehensive model that integrates coupled effects of chemical, physical, and electrochemical processes, is necessary for design, analysis, and implementation of the electro-remediation of groundwater under flow conditions. A coupled system of equations to solve for transport and multiple reactions in an electrochemical reactor is numerically intensive due to highly stiff nature of reaction model formulation. In this study, the focus is to develop an efficient model for reactions associated with the transport and physico-chemical transformation in an electrochemical reactor. The model incorporates effects of transport mechanisms as well as chemical and electrochemical reactions. Model verification is provided for pH profiles under different electrolyte compositions in two sets of reactors; a batch and a flow-through reactor. The model is able to predict the concentration of species during the electrochemical remediation process with a close correlation to experimental data (R2 = 0.99 for batch and R2 = 0.78 for flow-through reactor.) Imposing polarity reversal to the system will cause fluctuation of pH, however, the trend stays the same as if no polarity were applied. Ultimately, volumetric charge flow is introduced as a unique parameter characterizing the electroremediation reactor for operating purposes.
Collapse
Affiliation(s)
- Shirin Hojabri
- Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Ljiljana Rajic
- Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Akram N Alshawabkeh
- Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
33
|
López Vizcaíno R, Yustres A, Asensio L, Saez C, Cañizares P, Rodrigo MA, Navarro V. Enhanced electrokinetic remediation of polluted soils by anolyte pH conditioning. CHEMOSPHERE 2018; 199:477-485. [PMID: 29454170 DOI: 10.1016/j.chemosphere.2018.02.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 05/09/2023]
Abstract
In the treatment of a polluted soil, the pH has a strong impact on the development of different physicochemical processes as precipitation/dissolution, adsorption/desorption or ionic exchange. In addition, the pH determines the chemical speciation of the compounds present in the system and, consequently, it conditions the transport processes by which those compounds will move. This question has aroused great interest in the development of pH control technologies coupled to soil remediation processes. In electrokinetic remediation processes, pH has usually been controlled by catholyte pH conditioning with acid solutions, applied to cases of heavy metals pollution. However, this method is not effective with pollutants that can be dissociated in anionic species. In this context, this paper presents a study of the electrokinetic remediation of soils polluted with 2,4-Dichlorophenoxyacetic acid, a common polar pesticide, enhanced with an anolyte pH conditioning strategy. A numerical study is proposed to evaluate the effectiveness of the strategy. Several numerical tests have been carried out for NaOH solutions with different concentrations as pH conditioning fluid. The results show that the anolyte pH conditioning strategy makes it possible to control the pH of the soil and, consequently, the chemical speciation of pollutant species. Thus, it is possible to achieve an important flux of pesticide into the anolyte compartment (electro-migration of anionic species and diffusive transport of acid species). This way, it possible to maximise the pesticide accumulation in this compartment, allowing a much more effective removal of pollutants from the soil than without the anolyte pH conditioning strategy.
Collapse
Affiliation(s)
- R López Vizcaíno
- University of Castilla-La Mancha, Institute of Technology, Campus Universitario s/n, 16071 Cuenca, Spain.
| | - A Yustres
- University of Castilla-La Mancha, Institute of Technology, Campus Universitario s/n, 16071 Cuenca, Spain
| | - L Asensio
- University of Castilla-La Mancha, Institute of Technology, Campus Universitario s/n, 16071 Cuenca, Spain
| | - C Saez
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - P Cañizares
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - M A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - V Navarro
- University of Castilla-La Mancha, Institute of Technology, Campus Universitario s/n, 16071 Cuenca, Spain
| |
Collapse
|
34
|
Yustres Á, López-Vizcaíno R, Sáez C, Cañizares P, Rodrigo M, Navarro V. Water transport in electrokinetic remediation of unsaturated kaolinite. Experimental and numerical study. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
López-Vizcaíno R, Yustres A, Sáez C, Cañizares P, Rodrigo M, Navarro V. Effect of polarity reversal on the enhanced electrokinetic remediation of 2,4-D-polluted soils: A numerical study. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.11.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|