1
|
Nie M, Xu Z, Wang Y, You H, Luo L, Li B, Mutahir S, Gan W, Yuan Q. Ultrafast synthesis of efficient TS-PtCoCu/CNTs composite with high feed-to-product conversion rate by Joule heating for electrocatalytic oxidation of ethanol. J Colloid Interface Sci 2024; 660:334-344. [PMID: 38244500 DOI: 10.1016/j.jcis.2024.01.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Due to the challenges involved in achieving high metal load, uniform metal dispersion and nanosized metal particles simultaneously, it is difficult to develop a simple protocol for the rapid and efficient synthesis of Pt-based composites for electrocatalytic ethanol oxidation reaction (EOR). In this study, a facile ultrafast thermal shock strategy via Joule heating was applied to fabricate a series of PtCoCu ternary nanoalloys decorated carbon nanotube composites (TS-PtCoCu/CNTs), without the need for a reducing agent or surfactant. The TS-PtCoCu/CNTs with optimal Pt content (∼15 %) exhibited excellent EOR activity, with mass and specific activity of 3.58 A mgPt-1 and 5.79 mA cm-2, respectively, which are 3.8 and 13.5 times higher than those of Pt/C. Compared with the control prepared through the traditional furnace annealing, the catalyst also showed excellent activity and stability. DFT calculations revealed that the TS-PtCoCu/CNTs possesses a downshifted d-band center, weakened CO adsorption and higher OH affinity compared with monometallic Pt, all of which lead to the preferred C1 pathway for EOR. This study demonstrates an ultrafast construction of a highly efficient Pt-Co-Cu ternary catalyst for EOR. Additionally, it provides insights into the reaction mechanism based on structural characterization, electrochemical characterization, and theoretical calculations.
Collapse
Affiliation(s)
- Mingxing Nie
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhengyu Xu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yu Wang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hengzhi You
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lei Luo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Binghan Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Sadaf Mutahir
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Wei Gan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Qunhui Yuan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
2
|
Wang D, Zhang Y, Zhang K, Wang X, Wang C, Li Z, Gao F, Du Y. Rapid synthesis of Palladium-Platinum-Nickel ultrathin porous nanosheets with high catalytic performance for alcohol electrooxidation. J Colloid Interface Sci 2023; 650:350-357. [PMID: 37413869 DOI: 10.1016/j.jcis.2023.06.213] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Bimetallic two-dimensional (2D) nanomaterials are widely used in electrocatalysis owing to their unique physicochemical properties, while trimetallic 2D materials of porous structures with large surface area are rarely reported. In this paper, a one-pot hydrothermal synthesis of ternary ultra-thin PdPtNi nanosheets is developed. By adjusting the volume ratio of the mixed solvents, PdPtNi with porous nanosheets (PNSs) and ultrathin nanosheets (UNSs) was prepared. The growth mechanism of PNSs was investigated through a series of control experiments. Notably, thanks to the high atom utilization efficiency and fast electron transfer, the PdPtNi PNSs have remarkable activity of methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). The mass activities of the well-tuned PdPtNi PNSs for MOR and EOR were 6.21 A mg-1 and 5.12 A mg-1, respectively, much higher than those of commercial Pt/C and Pd/C. In addition, after durability test, the PdPtNi PNSs exhibited desirable stability with the highest retained current density. Therefore, this work provides a significant guidance for designing and synthesizing a new 2D material with excellent catalytic performance toward direct fuel cells applications.
Collapse
Affiliation(s)
- Dongqiong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Kewang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Xiaomei Wang
- School of Chemical Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Caiqin Wang
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhuolin Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Fei Gao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
3
|
Shah SN, Heddle JG, Evans DJ, Lomonossoff GP. Production of Metallic Alloy Nanowires and Particles Templated Using Tomato Mosaic Virus (ToMV). NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2705. [PMID: 37836346 PMCID: PMC10574019 DOI: 10.3390/nano13192705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
We demonstrate a simple, low-energy method whereby tomato mosaic virus (ToMV) particles can be used to template the production of nanowires and particles consisting of alloys of gold (Au), platinum (Pt) and palladium (Pd) in various combinations. Selective nanowire growth within the inner channel of the particles was achieved using the polymeric capping agent polyvinylpyrrolidone (PVPK30) and the reducing agent ascorbic acid. The reaction conditions also resulted in the deposition of alloy nanoparticles on the external surface of the rods in addition to the nanowire structures within the internal cavity. The resulting materials were characterized using a variety of electron microscopic and spectroscopic techniques, which revealed both the structural and chemical composition of the alloys within the nanomaterials.
Collapse
Affiliation(s)
- Sachin N. Shah
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- Heddle Initiative Research Unit, RIKEN, 2-1 Hirosawa, Wako 351-0198, Saitama, Japan;
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK;
| | - Jonathan G. Heddle
- Heddle Initiative Research Unit, RIKEN, 2-1 Hirosawa, Wako 351-0198, Saitama, Japan;
| | - David J. Evans
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK;
| | - George P. Lomonossoff
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
4
|
Ashraf S, Liu Y, Wei H, Shen R, Zhang H, Wu X, Mehdi S, Liu T, Li B. Bimetallic Nanoalloy Catalysts for Green Energy Production: Advances in Synthesis Routes and Characterization Techniques. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303031. [PMID: 37356067 DOI: 10.1002/smll.202303031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Indexed: 06/27/2023]
Abstract
Bimetallic Nanoalloy catalysts have diverse uses in clean energy, sensing, catalysis, biomedicine, and energy storage, with some supported and unsupported catalysts. Conventional synthetic methods for producing bimetallic alloy nanoparticles often produce unalloyed and bulky particles that do not exhibit desired characteristics. Alloys, when prepared with advanced nanoscale methods, give higher surface area, activity, and selectivity than individual metals due to changes in their electronic properties and reduced size. This review demonstrates the synthesis methods and principles to produce and characterize highly dispersed, well-alloyed bimetallic nanoalloy particles in relatively simple, effective, and generalized approaches and the overall existence of conventional synthetic methods with modifications to prepare bimetallic alloy catalysts. The basic concepts and mechanistic understanding are represented with purposely selected examples. Herein, the enthralling properties with widespread applications of nanoalloy catalysts in heterogeneous catalysis are also presented, especially for Hydrogen Evolution Reaction (HER), Oxidation Reduction Reaction (ORR), Oxygen Evolution Reaction (OER), and alcohol oxidation with a particular focus on Pt and Pd-based bimetallic nanoalloys and their numerous fields of applications. The high entropy alloy is described as a complicated subject with an emphasis on laser-based green synthesis of nanoparticles and, in conclusion, the forecasts and contemporary challenges for the controlled synthesis of nanoalloys are addressed.
Collapse
Affiliation(s)
- Saima Ashraf
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanyan Liu
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, P. R. China
| | - Huijuan Wei
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Ruofan Shen
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Huanhuan Zhang
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Xianli Wu
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Sehrish Mehdi
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Baojun Li
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
5
|
Wang D, Zhang Y, Li Z, Wu Z, Hata S, Gao F, Shiraishi Y, Du Y. One-pot synthesis of PdPtAg porous nanospheres with enhanced electrocatalytic activity toward polyalcohol electrooxidation. J Colloid Interface Sci 2023; 636:602-609. [PMID: 36669453 DOI: 10.1016/j.jcis.2023.01.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Porous nanospheres (PNSs) have great development prospects in the electrocatalysis field because of their structural characteristics, such as a large specific surface area. However, it is still a challenge to find a simple and energy-saving method for the controllable synthesis of PNS nanocatalysts. In this paper, a one-pot CTAC-assisted strategy was developed for the successful formation of PdPtAg PNSs with high porosity at room temperature. Benefitting from the unique structures, optimized composition, acceleration of charge transfer and enhanced resistance to CO poisoning, the PdPtAg PNSs displayed considerably improved electrocatalytic performance with high mass activity and stability toward the ethylene glycol oxidation reaction (EGOR) and glycerol oxidation reaction (GOR). The EGOR and GOR mass activities of PdPtAg were 5.00 A mgmetal-1 and 3.06 A mgmetal-1, which are 6.22 and 1.91 times that of commercial Pd/C, respectively. This work is expected to offer a new path for improving catalytic performance by simple design and adjustment of morphology.
Collapse
Affiliation(s)
- Dongqiong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhuolin Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhengying Wu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Schinichi Hata
- Department of Applied Chemistry, Faculty of Engineering, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Fei Gao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Yukihide Shiraishi
- Department of Applied Chemistry, Faculty of Engineering, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China; School of Optical and Electronic Information, Suzhou City University Suzhou 215104, China.
| |
Collapse
|
6
|
Zhou S, Liao W, Wang Z, Zhou Q, Long J, Chen M, Wang Q. Surfactant-driven shape evolution to sub-3 nm Pt-rich Pt3Ni dodecahedrons as efficient electrocatalyst for oxygen reduction reaction. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Chen H, Liu J, Wu X, Ye C, Zhang J, Luo JL, Fu XZ. Pt-Co Electrocatalysts: Syntheses, Morphologies, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204100. [PMID: 35996763 DOI: 10.1002/smll.202204100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Pt-Co electrocatalysts have attracted significant attention because of their excellent performance in many electrochemical reactions. This review focuses on Pt-Co electrocatalysts designed and prepared for electrocatalytic applications. First, the various synthetic methods and synthesis mechanisms are systematically summarized; typical examples and core synthesis parameters are discussed for regulating the morphology and structure. Then, starting with the design and structure-activity relationship of catalysts, the research progress of the morphologies and structures of Pt-Co electrocatalysts obtained based on various strategies, the structure-activity relationship between them, and their properties are summarized. In addition, the important electrocatalytic applications and mechanisms of Pt-Co catalysts, including electrocatalytic oxidation/reduction and bifunctional catalytic reactions, are described and summarized, and their high catalytic activities are discussed on the basis of their mechanism and active sites. Moreover, the advanced electrochemical in situ characterization techniques are summarized, and the challenges and direction concerning the development of high-performance Pt-Co catalysts in electrocatalysis are discussed.
Collapse
Affiliation(s)
- Hao Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jianwen Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xuexian Wu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Chunyi Ye
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jiujun Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Jing-Li Luo
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xian-Zhu Fu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
8
|
PtCo-Based nanocatalyst for oxygen reduction reaction: Recent highlights on synthesis strategy and catalytic mechanism. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Yang Z, Yang D, Wang Y, Long Y, Huang W, Fan G. Strong electrostatic adsorption-engaged fabrication of sub-3.0 nm PtRu alloy nanoparticles as synergistic electrocatalysts toward hydrogen evolution. NANOSCALE 2021; 13:10044-10050. [PMID: 34038495 DOI: 10.1039/d1nr00936b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Alloying of Pt with Ru to form ultrafine and well-defined PtRu alloy nanoparticles (NPs) for synergistically electrocatalytic hydrogen evolution is highly desirable but remains a synthetic challenge. Here, we report a strong electrostatic adsorption (SEA)-assisted fabrication of ultrafine and homogeneously distributed PtRu alloy NPs using ethylenediaminetetraacetic acid tetrasodium-derived carbon (EC) as a matrix. The O, N-rich EC with a hierarchically macro/meso/microporous structure and the SEA-assisted formation of the [Ru(bpy)3][PtCl6] complex ensure the successful generation of ultrasmall PtRu alloy NPs (2.93 nm in diameter) with high dispersion. The optimal PtRu/EC-700 delivers excellent electrocatalytic properties with an ultralow overpotential (η10 = 18 mV), robust durability and good long-term stability for the alkaline hydrogen evolution reaction (HER). The ultrasmall PtRu alloy NPs with rich surface sites, the synergistic catalysis effect between Pt and Ru and the hierarchically macro/meso/microporous structure of O, N-rich EC cooperatively enhance the HER performance of PtRu/EC-700. This study provides an easy but effective way to construct metal alloy NPs with an ultrafine size and high dispersity for catalytic applications.
Collapse
Affiliation(s)
- Zhipeng Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| | | | | | | | | | | |
Collapse
|
10
|
Yin S, Wang Z, Li C, Yu H, Deng K, Xu Y, Li X, Wang L, Wang H. Mesoporous Pt@PtM (M = Co, Ni) cage-bell nanostructures toward methanol electro-oxidation. NANOSCALE ADVANCES 2020; 2:1084-1089. [PMID: 36133045 PMCID: PMC9417950 DOI: 10.1039/d0na00020e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/08/2020] [Indexed: 06/16/2023]
Abstract
Rational design of Pt-based nanostructures with a controllable morphology and composition is vital for electrocatalysis. Herein, we demonstrate a dual-template strategy to fabricate well-defined cage-bell nanostructures including a Pt core and a mesoporous PtM (M = Co, Ni) bimetallic shell (Pt@mPtM (M = Co, Ni) CBs). Owing to their unique nanostructure and bimetallic properties, Pt@mPtM (M = Co, Ni) CBs show higher catalytic activity, better durability and stronger CO tolerance for the methanol oxidation reaction than commercial Pt/C. This work provides a general method for convenient preparation of cage-bell nanostructures with a mesoporous bimetallic shell, which have high promising potential for application in electrocatalytic fields.
Collapse
Affiliation(s)
- Shuli Yin
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Chunjie Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| |
Collapse
|
11
|
Li Z, Wang X, Zhang Z, Hu J, Liu Z, Sun D, Tang Y. Concave PtCo nanooctahedra with high-energy {110} facets for the oxygen reduction reaction. CrystEngComm 2020. [DOI: 10.1039/c9ce01488h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
For the first time, iminodiacetic acid serves as a morphology control agent for the synthesis of concave PtCo nanooctahedra.
Collapse
Affiliation(s)
- Zhijuan Li
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Xiaoru Wang
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Zhenbo Zhang
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Jinrui Hu
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Zhenyuan Liu
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Dongmei Sun
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| |
Collapse
|
12
|
Yu H, Wang Z, Yin S, Li C, Xu Y, Li X, Wang L, Wang H. Interface engineering of Ni 5P 2 nanoparticles and a mesoporous PtRu film heterostructure on Ni foam for enhanced hydrogen evolution. NANOTECHNOLOGY 2019; 30:485403. [PMID: 31434060 DOI: 10.1088/1361-6528/ab3d65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Engineering of multicomponent heterostructures can yield exceptional functionalities and enhance electrocatalytic activities by a synergistic effect. Herein, Ni5P2 nanoparticle-decorated mesoporous PtRu film on Ni foam (Ni5P2-mPtRu/NF) has been synthesized via a facile two-step strategy. Ni5P2-mPtRu/NF possesses a well-developed continuous mesoporous structure and strong electronic interaction between Ni5P2 and PtRu, exhibiting an enhanced electrocatalytic performance towards an alkaline hydrogen evolution reaction (HER). Ni5P2-mPtRu/NF achieves a current density of 10 mA cm-2 at an overpotential of 28.8 mV and a low Tafel slope of 56.5 mV dec-1, and has excellent durability. This work provides a promising pathway for developing self-supported mesoporous multicomponent heterostructures as efficient electrocatalysts for an alkaline HER.
Collapse
Affiliation(s)
- Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Self-directed hierarchical Cu3(PO4)2/Cu-BDC nanosheets array based on copper foam as an efficient and durable electrocatalyst for overall water splitting. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Han Z, Wang AJ, Zhang L, Wang ZG, Fang KM, Yin ZZ, Feng JJ. 3D highly branched PtCoRh nanoassemblies: Glycine-assisted solvothermal synthesis and superior catalytic activity for alcohol oxidation. J Colloid Interface Sci 2019; 554:512-519. [PMID: 31326784 DOI: 10.1016/j.jcis.2019.07.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 11/20/2022]
Abstract
Advanced Pt-based ternary nanocatalysts display dramatically enhanced utilization efficiency of Pt alternative to mono- and bi-counterparts, owing to the synergistic effects of the tri-metals. Herein, multicomponent uniform 3D PtCoRh highly branched nanoassemblies (HBNAs) were prepared by glycine-assisted one-pot solvothermal method in oleylamine (OAm). The effects of the precursor types, reaction time and amount of glycine were critically investigated in this synthesis. The as-prepared PtCoRh HBNAs displayed outstanding electrocatalytic activity and improved stability towards ethanol oxidation reaction (EOR) and methanol oxidation reaction (MOR) in 1 M KOH electrolyte, whose mass/specific activities were 1.75 A mg-1/4.03 mA cm-2 and 0.98 A mg-1/2.34 mA cm-2, respectively, which were remarkably higher than commercial Pt/C (0.85 A mg-1/4.03 mA cm-2 and 0.47 A mg-1/0.89 mA cm-2). This study provides some novel guidelines to fabricate advanced multimetallic electrocatalysts for practical applications in direct alcohol fuel cells (DAFCs).
Collapse
Affiliation(s)
- Zhu Han
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhi-Gang Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ke-Ming Fang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zheng-Zhi Yin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
15
|
Construction of ultrasensitive label-free aptasensor for thrombin detection using palladium nanocones boosted electrochemiluminescence system. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.093] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Zhong W, Lin Z, Feng S, Wang D, Shen S, Zhang Q, Gu L, Wang Z, Fang B. Improved oxygen evolution activity of IrO 2 by in situ engineering of an ultra-small Ir sphere shell utilizing a pulsed laser. NANOSCALE 2019; 11:4407-4413. [PMID: 30801572 DOI: 10.1039/c8nr10163a] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Noble metal-based catalysts are vital electrocatalysts for the oxygen evolution reaction (OER), which is a half reaction among multiple renewable energy-related reactions. To fully exploit their potential as efficient OER catalysts, we developed a fast one-step strategy to engineer a unique nanostructure for the benchmark catalyst IrO2 utilizing an ultra-fast pulse laser, through which a shell of ultra-small Ir spheres with a diameter of ca. 2 nm is in situ engineered around the IrO2 core. The creation of the Ir sphere shell not only increases the electrochemical surface area, but also improves the electrical conductivity of the electrocatalyst. The as-engineered IrO2@Ir architecture exhibits extremely high electrocatalytic activity towards the OER, revealing an overpotential of 255 mV at 10 mA cm-2 and Tafel slope of 45 mV dec-1. These values are much lower than those observed for the unmodified structure. Furthermore, the catalytic performance is the best among all the noble metal-based OER catalysts. This work may open a new avenue to efficiently improve the catalytic activity of noble metal-based catalysts and significantly advance the development in the energy industry.
Collapse
Affiliation(s)
- Wenwu Zhong
- School of Pharmaceutical and Materials Engineering, School of Advanced Study, Taizhou University, Taizhou, Zhejiang 318000, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Structure dependent activity and durability towards oxygen reduction reaction on Pt modified nanoporous gold. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.146] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Huang XY, You LX, Zhang XF, Feng JJ, Zhang L, Wang AJ. -proline assisted solvothermal preparation of Cu-rich rhombic dodecahedral PtCu nanoframes as advanced electrocatalysts for oxygen reduction and hydrogen evolution reactions. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Qian J, Wang T, Xia B, Xi P, Gao D. Zn-doped MoSe2 nanosheets as high-performance electrocatalysts for hydrogen evolution reaction in acid media. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.089] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Meng HB, Zhang XF, Pu YL, Chen XL, Feng JJ, Han DM, Wang AJ. One-pot solvothermal synthesis of reduced graphene oxide-supported uniform PtCo nanocrystals for efficient and robust electrocatalysis. J Colloid Interface Sci 2019; 543:17-24. [PMID: 30772535 DOI: 10.1016/j.jcis.2019.01.110] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 11/30/2022]
Abstract
Pt-based nanocomposites with low Pt utilization and high-activity by incorporating with other transition metals have received significant interest in catalysis. Meanwhile, loading Pt-based catalysts on graphene has great research value for improved stability and dispersity of the catalysts. Herein, a facile l-proline-mediated solvothermal strategy was reported to construct reduced graphene oxide (rGO) supported sheet-like PtCo nanocrystals (Pt78Co22 NCs/rGO) in ethylene glycol (EG). The as-synthesized nanocomposite manifested remarkably improved catalytic properties and chemical stability for oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER), surpassing home-made Pt29Co71 nanoparticles (NPs)/rGO, Pt83Co17 NPs/rGO, Pt52Co48 NPs, commercial Pt/C and Pt black catalysts. These scenarios demonstrated an improved catalytic performances by tailoring the feeding ratio of Pt:Co and introducing rGO as a support. This work provides some new insights to design rGO-supported Pt-based catalysts by engineering the shapes and compositions in practical fuel cells.
Collapse
Affiliation(s)
- Han-Bin Meng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiao-Fang Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yu-Lu Pu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xue-Lu Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - De-Man Han
- Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
21
|
One-pot synthesis of highly branched Pt@Ag core-shell nanoparticles as a recyclable catalyst with dramatically boosting the catalytic performance for 4-nitrophenol reduction. J Colloid Interface Sci 2018; 538:349-356. [PMID: 30530032 DOI: 10.1016/j.jcis.2018.11.109] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 11/20/2022]
Abstract
Herein, highly branched Pt@Ag core-shell nanoparticles (Pt@Ag NPs) were fabricated by a facile one-pot wet-chemical approach, where poly(ethyleneimine) (PEI) served as structure-directing and capping agents. Their structure, morphology and composition were mainly characterized by a set of techniques. And their growth mechanism was discussed in some detail. The prepared catalyst exhibited remarkable enhancement in catalytic activity of 4-nitrophenol (4-NP) reduction as a proof-of-concept application, surpassing commercial Pt black and home-made Ag NPs catalysts. Also, the as-obtained catalyst showed superior stability without sacrificing the catalytic activity. These observations endow the catalyst possibility for practical applications in nitrophenols environmental remediation.
Collapse
|
22
|
Chen XL, Zhang L, Feng JJ, Wang W, Yuan PX, Han DM, Wang AJ. Facile solvothermal fabrication of polypyrrole sheets supported dendritic platinum-cobalt nanoclusters for highly efficient oxygen reduction and ethylene glycol oxidation. J Colloid Interface Sci 2018; 530:394-402. [DOI: 10.1016/j.jcis.2018.06.095] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/25/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
|
23
|
Lin L, Yuan M, Sun Z, Li H, Nan C, Sun G, Ma S. The in situ growth of ultrathin Fcc-NiPt nanocrystals on graphene for methanol and formic acid oxidation. Dalton Trans 2018; 47:15131-15140. [PMID: 30310897 DOI: 10.1039/c8dt03175d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the increasing demand for energy, improving the current density of fuel cells is an urgent issue. Here we report a bifunctional electrocatalyst for fuel cells involving methanol or formic acid oxidation. A nanocomposite consisting of 7.2 nm NiPt nanocrystals, which are grown in situ on graphene nanosheets (NiPt/GN), has been prepared via a solution thermal decomposition method. The NiPt/GN nanocatalyst presents specific activities as high as 41.1 mA cm-2 and 42.9 mA cm-2 for methanol oxidation and formic acid oxidation, respectively, outperforming most reported catalysts. Moreover, it retains 76.3% of this activity after 900 cycles of methanol oxidation. Additionally, in comparison with general NiPt nanoparticles, the NiPt/GN nanocatalyst shows higher electrocatalytic activity in methanol and formic acid oxidation. All these results indicate that ultrathin NiPt nanocrystals grown in situ on graphene nanosheet substrates can significantly improve performance as a bifunctional electrocatalyst.
Collapse
Affiliation(s)
- Liu Lin
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | | | | | | | | | | | | |
Collapse
|
24
|
Zhang L, Zhang XF, Chen XL, Wang AJ, Han DM, Wang ZG, Feng JJ. Facile solvothermal synthesis of Pt 71Co 29 lamellar nanoflowers as an efficient catalyst for oxygen reduction and methanol oxidation reactions. J Colloid Interface Sci 2018; 536:556-562. [PMID: 30390581 DOI: 10.1016/j.jcis.2018.10.080] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 10/28/2022]
Abstract
The research for highly efficient and stable electrocatalysts in fuel cells has attracted substantial interest. Herein, bimetallic alloyed Pt71Co29 lamellar nanoflowers (LNFs) with abundant active sites were obtained by a one-pot solvothermal method, where cetyltrimethylammonium chloride (CTAC) and 1-nitroso-2-naphthol (1-N-2-N) served as co-structure-directors, while oleylamine (OAm) as the solvent and reducing agent. The fabricated Pt71Co29 LNFs exhibited the higher mass activity (MA, 128.29 mA mg-1) for oxygen reduction reaction (ORR) than those of home-made Pt48Co52 nanodendrites (NDs), Pt79Co21 NDs and commercial Pt black with the values of 39.46, 49.42 and 22.91 mA mg-1, respectively. Meanwhile, the MA (666.23 mA mg-1) and specific activity (SA, 2.51 mA cm-2) of the constructed Pt71Co29 LNFs for methanol oxidation reaction (MOR) are superior than those of Pt48Co52 NDs (213.91 mA mg-1, 1.99 mA cm-2), Pt79Co21 NDs (210.09 mA mg-1, 1.12 mA cm-2) and Pt black (57.03 mA mg-1, 0.25 mA cm-2). Also, the Pt71Co29 LNFs catalyst exhibited the best durable ability relative to the references. This work demonstrates that the developed strategy provides a facile platform for synthesis of high-performance, low-cost and robust catalysts in practical catalysis, energy storage and conversion.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Xiao-Fang Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Xue-Lu Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - De-Man Han
- Department of Chemistry, Taizhou University, Jiaojiang 318000, PR China
| | - Zhi-Gang Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| |
Collapse
|
25
|
Facile solvothermal fabrication of Pt47Ni53 nanopolyhedrons for greatly boosting electrocatalytic performances for oxygen reduction and hydrogen evolution. J Colloid Interface Sci 2018; 525:260-268. [DOI: 10.1016/j.jcis.2018.04.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 11/24/2022]
|
26
|
Zhang Q, Cao B, Fu M, Liu Y, Wang H, Fan X, Lu H, Zhang Y, Wang H. Template, surfactant, stabilizer free controllable synthesis of various morphologies platinum decorated ordered mesoporous carbon nano architecture for high–performance electrochemical sensing. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Yu ZN, Zhang Z, Lv ZS, Liu MT, Zhang L, Wang AJ, Jiang LY, Feng JJ. Platinum69-cobalt31 alloyed nanosheet nanoassemblies as advanced bifunctional electrocatalysts for boosting ethylene glycol oxidation and oxygen reduction. J Colloid Interface Sci 2018; 525:216-224. [DOI: 10.1016/j.jcis.2018.04.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/25/2018] [Accepted: 04/11/2018] [Indexed: 11/26/2022]
|
28
|
Rezaei B, Taghipour Jahromi AR, Ensafi AA. Porous magnetic iron- manganese oxide nanocubes derived from metal organic framework deposited on reduced graphene oxide nanoflake as a bi-functional electrocatalyst for hydrogen evolution and oxygen reduction reaction. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
29
|
Huang XY, Zhu XY, Zhang XF, Zhang L, Feng JJ, Wang AJ. Simple solvothermal synthesis of uniform Pt66Ni34 nanoflowers as advanced electrocatalyst to significantly boost the catalytic activity and durability of hydrogen evolution reaction. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.169] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Wang H, Yu H, Li Y, Yin S, Xue H, Li X, Xu Y, Wang L. Direct synthesis of bimetallic PtCo mesoporous nanospheres as efficient bifunctional electrocatalysts for both oxygen reduction reaction and methanol oxidation reaction. NANOTECHNOLOGY 2018; 29:175403. [PMID: 29443007 DOI: 10.1088/1361-6528/aaaf3f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The engineering of electrocatalysts with high performance for cathodic and/or anodic catalytic reactions is of great urgency for the development of direct methanol fuel cells. Pt-based bimetallic alloys have recently received considerable attention in the field of fuel cells because of their superior catalytic performance towards both fuel molecule electro-oxidation and oxygen reduction. In this work, bimetallic PtCo mesoporous nanospheres (PtCo MNs) with uniform size and morphology have been prepared by a one-step method with a high yield. The as-made PtCo MNs show superior catalytic activities for both oxygen reduction reaction and methanol oxidation reaction relative to Pt MNs and commercial Pt/C catalyst, attributed to their mesoporous structure and bimetallic composition.
Collapse
Affiliation(s)
- Hongjing Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Mizrahi MD, Krylova G, Giovanetti LJ, Ramallo-López JM, Liu Y, Shevchenko EV, Requejo FG. Unexpected compositional and structural modification of CoPt 3 nanoparticles by extensive surface purification. NANOSCALE 2018; 10:6382-6392. [PMID: 29561055 DOI: 10.1039/c8nr00060c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We combined synchrotron small angle X-ray scattering, X-ray fluorescence and extended X-ray absorption fine structure spectroscopy to probe the structure of chemically synthesized CoPt3 nanoparticles (NPs) after ligand removal via the commonly accepted solvent/nonsolvent approach. We showed that the improved catalytic activity of extensively purified NPs could not be explained only in terms of a "cleaner" surface. We found that extensive surface purification results in the substantial leaching of the Co atoms from the chemically synthesized CoPt3 NPs transforming them into CoPt3/Pt core/shell structures with an unexpectedly thick (∼0.5 nm) Pt shell. We indicated that the improved catalytic activity of extensively purified NPs in octyne hydrogenation reaction can be explained by the formation of CoPt3/Pt core/shell structures. Also, we demonstrated that drastic compositional and structural transformation of water transferred CoPt3 NPs was rather a result of extensive removal of native ligands via a solvent/nonsolvent approach than leaching of cobalt atoms in aqueous media. We expect that these findings can be relevant to other transition metal based multicomponent NPs.
Collapse
Affiliation(s)
- Martín D Mizrahi
- INIFTA, CONICET and Dpto. Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, P.O. Box 16, Suc. 4, 1900 La Plata, Buenos Aires, Argentina.
| | - Galyna Krylova
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA.
| | - Lisandro J Giovanetti
- INIFTA, CONICET and Dpto. Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, P.O. Box 16, Suc. 4, 1900 La Plata, Buenos Aires, Argentina.
| | - José M Ramallo-López
- INIFTA, CONICET and Dpto. Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, P.O. Box 16, Suc. 4, 1900 La Plata, Buenos Aires, Argentina.
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA.
| | - Elena V Shevchenko
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA.
| | - Félix G Requejo
- INIFTA, CONICET and Dpto. Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, P.O. Box 16, Suc. 4, 1900 La Plata, Buenos Aires, Argentina.
| |
Collapse
|
32
|
Wu XT, Li JC, Pan QR, Li N, Liu ZQ. Gallic acid-assisted synthesis of Pd uniformly anchored on porous N-rGO as efficient electrocatalyst for microbial fuel cells. Dalton Trans 2018; 47:1442-1450. [PMID: 29299573 DOI: 10.1039/c7dt04063f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sluggish kinetic rate-limiting oxygen reduction reaction (ORR) at the cathode remains the foremost issue hindering the commercialization of microbial fuel cells (MFCs). Utilization of the effect of micromolecule conjugation and the synergistic effect between Pd nanoparticles and N-rGO (nitrogen-doped reduced graphene oxide) to stabilize a precious metal onto carbon materials is a promising strategy to design and synthesize highly efficient cathode catalysts. In this study, gallic acid is used to facilitate the coupling of palladium (Pd) with N-rGO to form GN@Pd-GA via a simple hydrothermal process. Notably, the as-synthesized GN@Pd-GA as a cathode catalyst shows an approximately direct four-electron feature and demonstrates a high ORR performance in 0.1 M KOH. Furthermore, the stability and methanol tolerance of GN@Pd-GA are superior to those of the commercial Pt/C catalysts. In addition, a maximum power density of 391.06 ± 0.2 mW m-2 of MFCs equipped with GN@Pd-GA was obtained, which was 96.2% of the power density of MFCs equipped with a commercial Pt/C catalyst.
Collapse
Affiliation(s)
- Xiao-Tong Wu
- School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Environmentally Functional Materials and Technology/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China.
| | | | | | | | | |
Collapse
|
33
|
Zhao Q, Zhang Q, Sun Y, Liu Y, Lu H, Fan X, Wang H, Zhang Y, Wang H. Design synthesis of a controllable flower-like Pt-graphene oxide architecture through electrostatic self-assembly for DNA damage biomarker 8-hydroxy-2′-deoxyguanosine biosensing research. Analyst 2018; 143:3619-3627. [DOI: 10.1039/c8an00698a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A flower-like Pt-graphene oxide (PtNF-GO) architecture for DNA damage biomarker 8-OHdG biosensing research.
Collapse
Affiliation(s)
- Qiuyue Zhao
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry and Environmental Science
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis
- Ministry of Education
- Hebei University
| | - Qi Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry and Environmental Science
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis
- Ministry of Education
- Hebei University
| | - Yuena Sun
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry and Environmental Science
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis
- Ministry of Education
- Hebei University
| | - Yuexian Liu
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry and Environmental Science
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis
- Ministry of Education
- Hebei University
| | - Haijun Lu
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry and Environmental Science
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis
- Ministry of Education
- Hebei University
| | - Xinyu Fan
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry and Environmental Science
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis
- Ministry of Education
- Hebei University
| | - Haiyang Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry and Environmental Science
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis
- Ministry of Education
- Hebei University
| | - Yufan Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry and Environmental Science
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis
- Ministry of Education
- Hebei University
| | - Huan Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry and Environmental Science
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis
- Ministry of Education
- Hebei University
| |
Collapse
|
34
|
Jiang LY, Wang AJ, Li XS, Yuan J, Feng JJ. Facile Solvothermal Synthesis of Pt4
Co Multi-dendrites: An Effective Electrocatalyst for Oxygen Reduction and Glycerol Oxidation. ChemElectroChem 2017. [DOI: 10.1002/celc.201700640] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Liu-Ying Jiang
- College of Chemistry and Life Science, College of Geography and Environmental Science; Zhejiang Normal University; Jinhua 321004 P.R. China
| | - Ai-Jun Wang
- College of Chemistry and Life Science, College of Geography and Environmental Science; Zhejiang Normal University; Jinhua 321004 P.R. China
| | - Xin-Sheng Li
- College of Chemistry and Life Science, College of Geography and Environmental Science; Zhejiang Normal University; Jinhua 321004 P.R. China
| | - Junhua Yuan
- College of Chemistry and Life Science, College of Geography and Environmental Science; Zhejiang Normal University; Jinhua 321004 P.R. China
| | - Jiu-Ju Feng
- College of Chemistry and Life Science, College of Geography and Environmental Science; Zhejiang Normal University; Jinhua 321004 P.R. China
| |
Collapse
|