1
|
Azizi J, Groß A, Euchner H. Computational Investigation of Carbon Based Anode Materials for Li- and Post-Li- Ion Batteries. CHEMSUSCHEM 2024; 17:e202301493. [PMID: 38411370 DOI: 10.1002/cssc.202301493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 02/28/2024]
Abstract
Due to its negligible capacity with respect to sodium intercalation, graphite is not suited as anode material for sodium ion batteries. Hard carbon materials, on the other hand, provide reasonably high capacities at low insertion potential, making them a promising anode materials for sodium (and potassium) ion batteries. The particular nanostructure of these functionalized carbon-based materials has been found to be crucially linked to the material performance. However, there is still a lack of understanding with respect to the functional role of structural units, such as defects, for intercalation and storage. To overcome these problems, the intercalation of Li, Na, and K in graphitic model structures with distinct defect configurations has been investigated by density functional theory. The calculations confirm that defects are able to stabilize intercalation of larger alkali metal contents. At the same time, it is shown that a combination of phonon and band structure calculations are able to explain characteristic Raman features typically observed for alkali metal intercalation in hard carbon, furthermore allowing for the quantification of the alkali metal intercalation inbetween the layers of hard carbon anodes.
Collapse
Affiliation(s)
- Jafar Azizi
- Institute of Theoretical Chemistry, Ulm University, D-, 89081, Ulm
| | - Axel Groß
- Institute of Theoretical Chemistry, Ulm University, D-, 89081, Ulm
- Helmholtz Institute Ulm for Electrochemical Energy Storage, D-, 89081, Ulm
| | - Holger Euchner
- Institute of Physical and Theoretical Chemistry, University of Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
2
|
Abe Y, Watanabe R, Yodose T, Kumagai S. Cathode active materials using rare metals recovered from waste lithium-ion batteries: A review. Heliyon 2024; 10:e28145. [PMID: 38560163 PMCID: PMC10981055 DOI: 10.1016/j.heliyon.2024.e28145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Large-scale lithium-ion batteries (LIBs) are overtaking as power sources for electric vehicles and grid-scale energy-storage systems for renewable sources. Accordingly, large amounts of LIBs are expected to be discarded in the near future. Recycling technologies for waste LIBs, particularly for valuable rare metals (Li, Co, and Ni) used in cathode active materials, need to be developed to construct continuous LIB supply chains. Various recovery methodologies, such as pyrometallurgy, hydrometallurgy, and direct recycling, as well as their advantages, disadvantages, and technical features, are briefly introduced. We review the electrochemical performances of these cathode active materials based on recycled rare metals from LIB waste. Moreover, the physicochemical properties and electrochemical performance of the cathode active materials with impurities incorporated during recycling, which have high academic significance, are outlined. In hydrometallurgy-based LIB recycling, the complete removal of impurities in cathode active materials is not realistic for the mass and sustainable production of LIBs; thus, optimal control of the impurity levels is of significance. Meanwhile, the studies on the direct recycling of LIB showed the necessity of almost complete impurity removal and restoration of physicochemical properties in cathode active materials. This review provides a survey of the technological outlook of reusing cathode active materials from waste LIBs.
Collapse
Affiliation(s)
- Yusuke Abe
- Joint Research Center for Electric Architecture, Akita University, Tegatagakuen-machi 1-1, Akita, 010-8502, Japan
| | - Ryoei Watanabe
- Environmental Protection Laboratory, DOWA ECO-SYSTEM Co., Ltd., 65-1 Omoriyama-shita, Hanaoka, Odate, 017-0005, Japan
| | - Tatsuya Yodose
- Environmental Protection Laboratory, DOWA ECO-SYSTEM Co., Ltd., 65-1 Omoriyama-shita, Hanaoka, Odate, 017-0005, Japan
| | - Seiji Kumagai
- Department of Mathematical Science and Electrical-Electronic-Computer Engineering, Akita University, Tegatagakuen-machi 1-1, Akita, 010-8502, Japan
| |
Collapse
|
3
|
Chen L, Chiang CL, Wu X, Tang Y, Zeng G, Zhou S, Zhang B, Zhang H, Yan Y, Liu T, Liao HG, Kuai X, Lin YG, Qiao Y, Sun SG. Prolonged lifespan of initial-anode-free lithium-metal battery by pre-lithiation in Li-rich Li 2Ni 0.5Mn 1.5O 4 spinel cathode. Chem Sci 2023; 14:2183-2191. [PMID: 36845937 PMCID: PMC9944687 DOI: 10.1039/d2sc06772b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
Anode-free lithium metal batteries (AF-LMBs) can deliver the maximum energy density. However, achieving AF-LMBs with a long lifespan remains challenging because of the poor reversibility of Li+ plating/stripping on the anode. Here, coupled with a fluorine-containing electrolyte, we introduce a cathode pre-lithiation strategy to extend the lifespan of AF-LMBs. The AF-LMB is constructed with Li-rich Li2Ni0.5Mn1.5O4 cathodes as a Li-ion extender; the Li2Ni0.5Mn1.5O4 can deliver a large amount of Li+ in the initial charging process to offset the continuous Li+ consumption, which benefits the cycling performance without sacrificing energy density. Moreover, the cathode pre-lithiation design has been practically and precisely regulated using engineering methods (Li-metal contact and pre-lithiation Li-biphenyl immersion). Benefiting from the highly reversible Li metal on the Cu anode and Li2Ni0.5Mn1.5O4 cathode, the further fabricated anode-free pouch cells achieve 350 W h kg-1 energy density and 97% capacity retention after 50 cycles.
Collapse
Affiliation(s)
- Leiyu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 PR China
| | - Chao-Lung Chiang
- National Synchrotron Radiation Research Center Hsinchu 30076 Taiwan Republic of China
| | - Xiaohong Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 PR China
| | - Yonglin Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 PR China
| | - Guifan Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 PR China
| | - Shiyuan Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 PR China
| | - Baodan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 PR China
| | - Haitang Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 PR China
| | - Yawen Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 PR China
| | - Tingting Liu
- School of Environmental Science and Engineering, Suzhou University of Science and TechnologySuzhou 215009China
| | - Hong-Gang Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 PR China
| | - Xiaoxiao Kuai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 PR China .,Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory) Xiamen 361005 PR China
| | - Yan-Gu Lin
- National Synchrotron Radiation Research Center Hsinchu 30076 Taiwan Republic of China
| | - Yu Qiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 PR China .,Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory) Xiamen 361005 PR China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 PR China
| |
Collapse
|
4
|
Abe Y, Sawa K, Tomioka M, Watanabe R, Yodose T, Kumagai S. Electrochemical performance of LiNi1/3Co1/3Mn1/3O2 cathode recovered from pyrolysis residue of waste Li-ion batteries. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Zhang W, Yin J, Chen C, Qiu X. Carbon nitride derived nitrogen-doped carbon nanosheets for high-rate lithium-ion storage. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116709] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Enhancing Lithium Manganese Oxide Electrochemical Behavior by Doping and Surface Modifications. COATINGS 2021. [DOI: 10.3390/coatings11040456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lithium manganese oxide is regarded as a capable cathode material for lithium-ion batteries, but it suffers from relative low conductivity, manganese dissolution in electrolyte and structural distortion from cubic to tetragonal during elevated temperature tests. This review covers a comprehensive study about the main directions taken into consideration to supress the drawbacks of lithium manganese oxide: structure doping and surface modification by coating. Regarding the doping of LiMn2O4, several perspectives are studied, which include doping with single or multiple cations, only anions and combined doping with cations and anions. Surface modification approach consists in coating with different materials like carbonaceous compounds, oxides, phosphates and solid electrolyte solutions. The modified lithium manganese oxide performs better than pristine samples, showing improved cyclability, better behaviour at high discharge c-rates and elevated temperate and improves lithium ions diffusion coefficient.
Collapse
|
7
|
Effect of fluoroethylene carbonate and vinylene carbonate additives on full-cell optimization of Li-ion capacitors. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2020.106905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Li S, Han Y, Geng T, Wang P, Li W, Yang L, Li Z. Investigation on the temperature tolerance of LiMn 2O 4 in lithium-ion batteries. NEW J CHEM 2020. [DOI: 10.1039/c9nj05530d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
LiMn2O4 is one of the most popular cathode materials for lithium-ion batteries.
Collapse
Affiliation(s)
- Shiyou Li
- College of Petrochemical Technology
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
- Gansu Engineering Laboratory of Cathode Material for Lithium-ion Battery
| | - Yamin Han
- College of Petrochemical Technology
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
- Gansu Engineering Laboratory of Cathode Material for Lithium-ion Battery
| | - Tongtong Geng
- College of Petrochemical Technology
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
- Gansu Engineering Laboratory of Cathode Material for Lithium-ion Battery
| | - Peng Wang
- College of Petrochemical Technology
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
- Gansu Engineering Laboratory of Cathode Material for Lithium-ion Battery
| | - Wenbo Li
- College of Petrochemical Technology
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
- Gansu Engineering Laboratory of Cathode Material for Lithium-ion Battery
| | - Li Yang
- College of Petrochemical Technology
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
- Gansu Engineering Laboratory of Cathode Material for Lithium-ion Battery
| | - Zhaojuan Li
- College of Petrochemical Technology
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
- Gansu Engineering Laboratory of Cathode Material for Lithium-ion Battery
| |
Collapse
|
9
|
Noori A, El-Kady MF, Rahmanifar MS, Kaner RB, Mousavi MF. Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem Soc Rev 2019; 48:1272-1341. [DOI: 10.1039/c8cs00581h] [Citation(s) in RCA: 527] [Impact Index Per Article: 87.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electrochemical energy storage (EES) materials and devices should be evaluated against clear and rigorous metrics to realize the true promises as well as the limitations of these fast-moving technologies.
Collapse
Affiliation(s)
| | - Maher F. El-Kady
- Department of Chemistry and Biochemistry
- Department of Materials Science and Engineering, and California NanoSystems Institute
- University of California
- Los Angeles (UCLA)
- USA
| | | | - Richard B. Kaner
- Department of Chemistry and Biochemistry
- Department of Materials Science and Engineering, and California NanoSystems Institute
- University of California
- Los Angeles (UCLA)
- USA
| | - Mir F. Mousavi
- Department of Chemistry
- Tarbiat Modares University
- Tehran
- Iran
| |
Collapse
|
10
|
Effect of Prelithiation Process for Hard Carbon Negative Electrode on the Rate and Cycling Behaviors of Lithium-Ion Batteries. BATTERIES-BASEL 2018. [DOI: 10.3390/batteries4040071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two prelithiation processes (shallow Li-ion insertion, and thrice-repeated deep Li-ion insertion and extraction) were applied to the hard carbon (HC) negative electrode (NE) used in lithium-ion batteries (LIBs). LIB full-cells were assembled using Li(Ni0.5Co0.2Mn0.3)O2 positive electrodes (PEs) and the prelithiated HC NEs. The assembled full-cells were charged and discharged under a low current density, increasing current densities in a stepwise manner, and then constant under a high current density. The prelithiation process of shallow Li-ion insertion resulted in the high Coulombic efficiency (CE) of the full-cell at the initial charge-discharge cycles as well as in a superior rate capability. The prelithiation process of thrice-repeated Li-ion insertion and extraction attained an even higher CE and a high charge-discharge specific capacity under a low current density. However, both prelithiation processes decreased the capacity retention during charge-discharge cycling under a high current density, ascertaining a trade-off relationship between the increased CE and the cycling performance. Further elimination of the irreversible capacity of the HC NE was responsible for the higher utilization of both the PE and NE, attaining higher initial performances, but allowing the larger capacity to fade throughout charge-discharge cycling.
Collapse
|
11
|
Li M, Lu J, Chen Z, Amine K. 30 Years of Lithium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800561. [PMID: 29904941 DOI: 10.1002/adma.201800561] [Citation(s) in RCA: 1407] [Impact Index Per Article: 201.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/07/2018] [Indexed: 05/20/2023]
Abstract
Over the past 30 years, significant commercial and academic progress has been made on Li-based battery technologies. From the early Li-metal anode iterations to the current commercial Li-ion batteries (LIBs), the story of the Li-based battery is full of breakthroughs and back tracing steps. This review will discuss the main roles of material science in the development of LIBs. As LIB research progresses and the materials of interest change, different emphases on the different subdisciplines of material science are placed. Early works on LIBs focus more on solid state physics whereas near the end of the 20th century, researchers began to focus more on the morphological aspects (surface coating, porosity, size, and shape) of electrode materials. While it is easy to point out which specific cathode and anode materials are currently good candidates for the next-generation of batteries, it is difficult to explain exactly why those are chosen. In this review, for the reader a complete developmental story of LIB should be clearly drawn, along with an explanation of the reasons responsible for the various technological shifts. The review will end with a statement of caution for the current modern battery research along with a brief discussion on beyond lithium-ion battery chemistries.
Collapse
Affiliation(s)
- Matthew Li
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Ave, Lemont, IL, 60439, USA
- Department of Chemical Engineering, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
| | - Jun Lu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Ave, Lemont, IL, 60439, USA
| | - Zhongwei Chen
- Department of Chemical Engineering, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
| | - Khalil Amine
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Ave, Lemont, IL, 60439, USA
- Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, 34212, Saudi Arabia
- Material Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
12
|
Fu R, Chang Z, Shen C, Guo H, Huang H, Xia Y, Liu Z. Surface oxo-functionalized hard carbon spheres enabled superior high-rate capability and long-cycle stability for Li-ion storage. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.12.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|