1
|
Kouchi K, Tayoury M, Chari A, Hdidou L, Chchiyai Z, El Kamouny K, Tamraoui Y, Manoun B, Alami J, Dahbi M. Carbon-coated Ni 0.5Mg 0.5Fe 1.7Mn 0.3O 4 nanoparticles as a novel anode material for high energy density lithium-ion batteries. Phys Chem Chem Phys 2024; 26:7492-7503. [PMID: 38356390 DOI: 10.1039/d4cp00182f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Lithium-ion batteries (LIBs) have gained considerable attention from the scientific community due to their outstanding properties, such as high energy density, low self-discharge, and environmental sustainability. Among the prominent candidates for anode materials in next-generation LIBs are the spinel ferrites, represented by the MFe2O4 series, which offer exceptional theoretical capacities, excellent reversibility, cost-effectiveness, and eco-friendliness. In the scope of this study, Ni0.5Mg0.5Fe1.7Mn0.3O4 nanoparticles were synthesized using a sol-gel synthesis method and subsequently coated with a carbon layer to further enhance their electrochemical performance. TEM images confirmed the presence of the carbon coating layer on the Ni0.5Mg0.5Fe1.7Mn0.3O4/C composite. The analysis of the measured X-ray diffraction (XRD) and Raman spectroscopy results confirmed the formation of nanocrystalline Ni0.5Mg0.5Fe1.7Mn0.3O4 before coating and amorphous carbon in the Ni0.5Mg0.5Fe1.7Mn0.3O4/C after the coating. The Ni0.5Mg0.5Fe1.7Mn0.3O4 anode material exhibited a much higher specific capacity than the traditional graphite material, with initial discharge/charge capacities of 1275 and 874 mA h g-1, respectively, at a 100 mA g-1 current density and a first coulombic efficiency of 68.54%. The long-term cycling test showed a slight capacity fading, retaining approximately 85% of its initial capacity after 75 cycles. Notably, the carbon-coating layer greatly enhanced the stability and slightly increased the capacity of the as-prepared Ni0.5Mg0.5Fe1.7Mn0.3O4. The first discharge/charge capacities of Ni0.5Mg0.5Fe1.7Mn0.3O4/C at 100 mA g-1 current density reached 1032 and 723 mA h g-1, respectively, and a first coulombic efficiency of 70.06%, with an increase of discharge/charge capacities to 826.6 and 806.2 mA h g-1, respectively, after 75 cycles (with a capacity retention of 89.7%), and a high-rate capability of 372 mA h g-1 at 2C. Additionally, a full cell was designed using a Ni0.5Mg0.5Fe1.7Mn0.3O4/C anode and an NMC811 cathode. The output voltage was about 2.8 V, with a high initial specific capacity of 755 mA h g-1 at 0.125C, a high rate-capability of 448 mA h g-1 at 2C, and a high-capacity retention of 91% after 30 cycles at 2C. The carbon coating layer on Ni0.5Mg0.5Fe1.7Mn0.3O4 nanoparticles played a crucial role in the excellent electrochemical performance, providing conducting, buffering, and protective effects.
Collapse
Affiliation(s)
- Khadija Kouchi
- Materials Science, Energy, and Nano-engineering Department, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150, Ben Guerir, Morocco.
| | - Marwa Tayoury
- Materials Science, Energy, and Nano-engineering Department, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150, Ben Guerir, Morocco.
| | - Abdelwahed Chari
- Materials Science, Energy, and Nano-engineering Department, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150, Ben Guerir, Morocco.
| | - Loubna Hdidou
- Materials Science, Energy, and Nano-engineering Department, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150, Ben Guerir, Morocco.
| | - Zakaria Chchiyai
- Hassan First University, FST Settat, Rayonnement-Matière et Instrumentation, S3M, 26000, Settat, Morocco
| | - Khadija El Kamouny
- Green Tech Institute Department, Mohammed VI Polytechnic University UM6P, Ben Guerir, Morocco
| | - Youssef Tamraoui
- Materials Science, Energy, and Nano-engineering Department, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150, Ben Guerir, Morocco.
| | - Bouchaib Manoun
- Materials Science, Energy, and Nano-engineering Department, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150, Ben Guerir, Morocco.
- Hassan First University, FST Settat, Rayonnement-Matière et Instrumentation, S3M, 26000, Settat, Morocco
| | - Jones Alami
- Materials Science, Energy, and Nano-engineering Department, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150, Ben Guerir, Morocco.
| | - Mouad Dahbi
- Materials Science, Energy, and Nano-engineering Department, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150, Ben Guerir, Morocco.
| |
Collapse
|
2
|
Wang Z, Gao W, Ding C, Qi H, Kang S, Cui L. Boosting potassium-ion storage in large-diameter carbon nanotubes/MoP hybrid. J Colloid Interface Sci 2020; 584:875-884. [PMID: 33268067 DOI: 10.1016/j.jcis.2020.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 11/16/2022]
Abstract
Potassium-ion batteries (KIBs) as a substitute for lithium ion batteries have attracted tremendous attention in recent years thanks to the cost-effectiveness and abundance of potassium resources. However, the current lack of suitable electrode materials is a major obstacle against the practical application of KIBs. Hence, design and preparation of capable anode materials are critical for the development of KIBs. In this study, a promising electrode based on N, P-codoped large diameter hollow carbon nanotubes decorated with ultrasmall MoP nanoparticles (MoP@NP-HCNTs) were prepared. The hollow carbon nanotubes facilitate the rapid electron and ion transfer, and release the huge volume expansion during discharge/charge. The MoP@NP-HCNT electrode delivers high initial capacity of 485, 482 and 463 mAh g-1 corresponding to 100, 200 and 1000 mA g-1, respectively. The discharge specific capacity still maintains 300 mAh g-1 at 100 mA g-1 after over 80 cycles. It still shows ultralong cycling stability with a discharge capacity of 255 mAh g-1 at a high current density of 1000 mA g-1 after 120 cycles. This study opens up a new routine to develop high reversible capacity and promising electrode materials for KIBs.
Collapse
Affiliation(s)
- Zhide Wang
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, 200093 Shanghai, PR China
| | - Weikang Gao
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, 200093 Shanghai, PR China
| | - Chenjie Ding
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, 200093 Shanghai, PR China
| | - Haoyu Qi
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, 200093 Shanghai, PR China
| | - Shifei Kang
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, 200093 Shanghai, PR China.
| | - Lifeng Cui
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, 200093 Shanghai, PR China.
| |
Collapse
|
3
|
Huang P, Xu F, Zhu G, Dong C, Jin B, Li H, Jiang Q. Facile Synthesis of Flower-Like MnCo 2 O 4 @PANi-rGO: A High-Performance Anode Material for Lithium-Ion Batteries. Chempluschem 2020; 84:1596-1603. [PMID: 31943928 DOI: 10.1002/cplu.201900563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/01/2019] [Indexed: 01/24/2023]
Abstract
Flower-like MnCo2 O4 was prepared in a self-assembly process and used in the formation of MnCo2 O4 @polyaniline (MnCo2 O4 @PANi) that proceeds by a simple in situ polymerization. The MnCo2 O4 @PANi-reduced graphite oxide (MnCo2 O4 @PANi-rGO) composite was then synthesized by introducing rGO into MnCo2 O4 @PANi. This modification improves the overall electronic conductivity of the MnCo2 O4 @PANi-rGO because of the dual conductive functions of rGO and PANi; it also provides a buffer for the changes in electrode volume during cycling, thus improving the lithium-storage performance of MnCo2 O4 @PANi-rGO. The electrochemical performance of the samples was evaluated by charge/discharge cycling testing, cyclic voltammetry, and electrochemical impedance spectroscopy. MnCo2 O4 @PANi-rGO delivers a discharge capacity of 745 mAh g-1 and a Coulombic efficiency of 100 % after 1050 cycles at a current density of 500 mA g-1 , and is a promising anode material for lithium-ion batteries.
Collapse
Affiliation(s)
- Peng Huang
- Key Laboratory of Automobile Materials Ministry of Education and College of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Fengchao Xu
- Key Laboratory of Automobile Materials Ministry of Education and College of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Guoren Zhu
- China Transmission Institute, Jilin University, Changchun, 130022, P. R. China
| | - Chunwei Dong
- Key Laboratory of Automobile Materials Ministry of Education and College of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Bo Jin
- Key Laboratory of Automobile Materials Ministry of Education and College of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Huan Li
- Key Laboratory of Automobile Materials Ministry of Education and College of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Qing Jiang
- Key Laboratory of Automobile Materials Ministry of Education and College of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| |
Collapse
|
4
|
Hou L, Jiang X, Jiang Y, Jiao T, Cui R, Deng S, Gao J, Guo Y, Gao F. Facile Preparation of Porous Rod-like Cu x Co 3-x O 4/C Composites via Bimetal-Organic Framework Derivation as Superior Anodes for Lithium-Ion Batteries. ACS OMEGA 2019; 4:7565-7573. [PMID: 31459849 PMCID: PMC6648762 DOI: 10.1021/acsomega.9b00787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/16/2019] [Indexed: 05/28/2023]
Abstract
To meet growing demand of energy, lithium-ion batteries (LIBs) are under enormous attention. The development of well-designed ternary transition metal oxides with high capacity and high stability is important and challengeable for using as electrode materials for LIBs. Herein, a new and highly reversible carbon-coated Cu-Co bimetal oxide composite material (Cu x Co3-x O4/C) with a one-dimensional (1D) porous rod-like structure was prepared through a bimetal-organic framework (BMOF) template strategy followed by a morphology-inherited annealing treatment. During the annealing process, carbon derived from organic frameworks in situ fully covered the synthesized bimetal oxide nanoparticles, and a large number of porous spaces were generated in the MOF-derived final samples, thus ensuring high electrical conductivity and fast ion diffusion. Benefiting from the synergetic effect of bimetals, the unique 1D porous structure, and conductive carbon network, the as-synthesized Cu x Co3-x O4/C delivers a high capacity retention up to 92.4% after 100 cycles, with a high reversible capacity still maintained at 900 mA h g-1, indicating an excellent cycling stability. Also, a good rate performance is demonstrated. These outstanding electrochemical properties show us a concept of synthesis of MOF-derived bimetal oxides combining both advantages of carbon incorporation and porous structure for progressive lithium-ion batteries.
Collapse
Affiliation(s)
- Li Hou
- Hebei Key Laboratory of Applied
Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Xinyu Jiang
- Hebei Key Laboratory of Applied
Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Yang Jiang
- Hebei Key Laboratory of Applied
Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Tifeng Jiao
- Hebei Key Laboratory of Applied
Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Ruiwen Cui
- Hebei Key Laboratory of Applied
Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Shuolei Deng
- Hebei Key Laboratory of Applied
Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Jiajia Gao
- Hebei Key Laboratory of Applied
Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Yuanyuan Guo
- Hebei Key Laboratory of Applied
Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Faming Gao
- Hebei Key Laboratory of Applied
Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| |
Collapse
|
5
|
Zhu C, Fu Y, Yu Y. Designed Nanoarchitectures by Electrostatic Spray Deposition for Energy Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803408. [PMID: 30302831 DOI: 10.1002/adma.201803408] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/27/2018] [Indexed: 06/08/2023]
Abstract
The development of advanced electrode materials for various energy-storage systems, especially the fabrication of designed structures and morphologies of electrode materials, has attracted intense interest in both the academic and industrial fields. Among the various synthesis methods, electrostatic spray deposition (ESD) is a simple but versatile approach, by which materials can be fabricated with various morphologies, such as granular, dense, and porous, in an easily controllable manner. Herein, motivated by the rapid advancements of the given technology, a comprehensive introduction of ESD is provided, with emphasis on the kinds of materials and the types of morphology that can be obtained, along with the important control parameters. The progress on electrode materials, which are applied in a great variety of energy-storage systems, such as Li-ion batteries, Na-ion batteries, supercapacitors, Li-S batteries, and Li-O2 batteries, prepared by ESD is also summarized. How the specific morphologies designed by ESD improve the electrochemical performance for different types of electrode materials is also discussed. The aim is to promote the collaborative efforts among different communities to optimize and develop the ESD technique and to explore advanced electrode materials for energy storage.
Collapse
Affiliation(s)
- Changbao Zhu
- Department of Materials Science and Engineering, Sun-Yat Sen University, Guangzhou, 510275, Guangdong, China
| | - Yanpeng Fu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yan Yu
- Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Institute of Advanced Electrochemical Energy, Xi'an University of Technology, Xi'an, 710048, China
| |
Collapse
|
6
|
Chen Z, Yin D, Zhang M. Sandwich-like MoS 2 @SnO 2 @C with High Capacity and Stability for Sodium/Potassium Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703818. [PMID: 29542256 DOI: 10.1002/smll.201703818] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/13/2018] [Indexed: 05/28/2023]
Abstract
Sandwich-like MoS2 @SnO2 @C nanosheets are prepared by facile hydrothermal reactions. SnO2 nanosheets can attach to exfoliated MoS2 nanosheets to prevent restacking of adjacent MoS2 nanosheets, and carbon transformed from polyvinylpyrrolidone is coated on MoS2 @SnO2 , forming a sandwich structure to maintain cycling stability. As an anode for sodium-ion batteries, the electrode greatly deliverers a high initial discharge specific capacity of 530 mA h g-1 and maintains at 396 mA h g-1 after 150 cycles at 0.1 A g-1 . Even at a large current density of 1 A g-1 , it can hold 230 mA h g-1 after 450 cycles. Besides, as an anode for K+ storage, the electrode also shows a discharge capacity of 312 mA h g-1 after 25 cycles at 0.05 A g-1 . This work may provide a new strategy to prepare other composites which can be applied to new kind of rechargeable batteries.
Collapse
Affiliation(s)
- Zhi Chen
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Dangui Yin
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Ming Zhang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| |
Collapse
|