1
|
Abbas Dalhatu A, Faisal Al-Betar AR, Dahiru A, Shaheen Shah S, Abdul Aziz M. Optimizing Electrodeposition of Polyaniline on Various Woven Steel Mesh Sizes for Enhanced Supercapacitor Performance. Chem Asian J 2024; 19:e202400341. [PMID: 38923319 DOI: 10.1002/asia.202400341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
The development of efficient supercapacitors hinges on the innovation of superior electrodes, which are pivotal in augmenting their energy storage capabilities. Supercapacitors, recognized for their high-power density and extended cycle life, play a crucial role as sustainable solutions in addressing energy storage challenges. A fundamental aspect of supercapacitor functionality involves the electrode material, which works in concert with other key components such as the current collector, separator, and electrolyte. This study focuses on evaluating the impact of the current collector material on the performance of symmetric supercapacitors. We investigated the electropolymerization of polyaniline on woven steel mesh current collectors of varying mesh sizes, ranging from 20 to 200 mesh per inch, using assorted deposition conditions. The electrochemically modified woven steel meshes were utilized to construct symmetric supercapacitors. The electrochemical performance of the assembled supercapacitors, configured in a two-electrode system, was investigated using a variety of electrochemical techniques to better understand the kinetics of electrolyte ion migration. Notably, the 20-mesh size, characterized by the fewest pores per inch, demonstrated superior performance with an optimum capacitance of 4730 mF/cm2, an energy density of 317.8 μWh/cm2, and a power density of 400 μW/cm2 at a current density of 1 mA/cm2.
Collapse
Affiliation(s)
- Ahmad Abbas Dalhatu
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Abdul-Rahman Faisal Al-Betar
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Abubakar Dahiru
- Materials Science and Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
2
|
Islam MR, Afroj S, Yin J, Novoselov KS, Chen J, Karim N. Advances in Printed Electronic Textiles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304140. [PMID: 38009793 PMCID: PMC10853734 DOI: 10.1002/advs.202304140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/11/2023] [Indexed: 11/29/2023]
Abstract
Electronic textiles (e-textiles) have emerged as a revolutionary solution for personalized healthcare, enabling the continuous collection and communication of diverse physiological parameters when seamlessly integrated with the human body. Among various methods employed to create wearable e-textiles, printing offers unparalleled flexibility and comfort, seamlessly integrating wearables into garments. This has spurred growing research interest in printed e-textiles, due to their vast design versatility, material options, fabrication techniques, and wide-ranging applications. Here, a comprehensive overview of the crucial considerations in fabricating printed e-textiles is provided, encompassing the selection of conductive materials and substrates, as well as the essential pre- and post-treatments involved. Furthermore, the diverse printing techniques and the specific requirements are discussed, highlighting the advantages and limitations of each method. Additionally, the multitude of wearable applications made possible by printed e-textiles is explored, such as their integration as various sensors, supercapacitors, and heated garments. Finally, a forward-looking perspective is provided, discussing future prospects and emerging trends in the realm of printed wearable e-textiles. As advancements in materials science, printing technologies, and design innovation continue to unfold, the transformative potential of printed e-textiles in healthcare and beyond is poised to revolutionize the way wearable technology interacts and benefits.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Centre for Print Research (CFPR)University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| | - Shaila Afroj
- Centre for Print Research (CFPR)University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| | - Junyi Yin
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
| | - Kostya S. Novoselov
- Institute for Functional Intelligent MaterialsDepartment of Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
| | - Jun Chen
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
| | - Nazmul Karim
- Centre for Print Research (CFPR)University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
- Nottingham School of Art and DesignNottingham Trent UniversityShakespeare StreetNottinghamNG1 4GGUK
| |
Collapse
|
3
|
Du X, Lin Z, Wang X, Zhang K, Hu H, Dai S. Electrode Materials, Structural Design, and Storage Mechanisms in Hybrid Supercapacitors. Molecules 2023; 28:6432. [PMID: 37687261 PMCID: PMC10563087 DOI: 10.3390/molecules28176432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Currently, energy storage systems are of great importance in daily life due to our dependence on portable electronic devices and hybrid electric vehicles. Among these energy storage systems, hybrid supercapacitor devices, constructed from a battery-type positive electrode and a capacitor-type negative electrode, have attracted widespread interest due to their potential applications. In general, they have a high energy density, a long cycling life, high safety, and environmental friendliness. This review first addresses the recent developments in state-of-the-art electrode materials, the structural design of electrodes, and the optimization of electrode performance. Then we summarize the possible classification of hybrid supercapacitor devices, and their potential applications. Finally, the fundamental theoretical aspects, charge-storage mechanism, and future developing trends are discussed. This review is intended to provide future research directions for the next generation of high-performance energy storage devices.
Collapse
Affiliation(s)
- Xiaobing Du
- School of Physical and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Zhuanglong Lin
- School of Physical and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoxia Wang
- School of Physical and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Kaiyou Zhang
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Hao Hu
- School of Material Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Shuge Dai
- School of Physical and Engineering, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
4
|
Mahfoz W, Das HT, Shah SS, Sanhoob M, Anjum A, Al-Betar AR, Aziz MA. Designing High-Performing Symmetric Supercapacitor by Engineering Polyaniline on Steel Mesh Surface via Electrodeposition. Chem Asian J 2023; 18:e202201223. [PMID: 36576425 DOI: 10.1002/asia.202201223] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 12/29/2022]
Abstract
Energy storage is one of the most stimulating requirements to keep civilization on the wheel of progress. Supercapacitors generally exhibit a high-power density, have a maximum life cycle, quick charging time, and are eco-friendly. Polyaniline (PANI), a conductive polymer, is considered an efficacious electrode material for supercapacitors due to its good electroactivity, including pseudocapacitive behavior. Here, we present the fabrication of a symmetric supercapacitor device based on steel mesh electrodeposited with PANI. Due to its effective conductivity, porous nature, and low cost, steel mesh is a good choice as a current collector to fabricate a high-performance supercapacitor at a low cost. The optimum fabricated supercapacitor has a high specific capacitance of ∼353 mF cm-2 . Furthermore, the supercapacitor obtained an energy density of ∼26.4 μW h cm-2 at a power density of ∼400 μW cm-2 . The fabricated supercapacitor shows high stability, as the initial capacitance remained almost the same after 1000 charge/discharge cycles. PANI is a promising candidate for mass production and wide applications due to its low cost and high performance.
Collapse
Affiliation(s)
- Wael Mahfoz
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Himadri Tanaya Das
- Centre for Advanced Materials and Applications, Utkal University Vanivihar, Bhubaneswar, 51004, India
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku, Kyoto, 615-8520, Japan
| | - Mohammed Sanhoob
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Ahtisham Anjum
- Physics Department, King Fahd University of Petroleum & Minerals, KFUPM Box 5047, Dhahran, 31261, Saudi Arabia
| | - Abdul-Rahman Al-Betar
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.,Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,K.A. CARE Energy Research & Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
5
|
Yang YX, Ge KK, ur Rehman S, Bi H. Nanocarbon-based electrode materials applied for supercapacitors. RARE METALS 2022; 41:3957-3975. [DOI: 10.1007/s12598-022-02091-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/25/2022] [Accepted: 03/06/2022] [Indexed: 01/06/2025]
|
6
|
Islam MR, Afroj S, Novoselov KS, Karim N. Smart Electronic Textile-Based Wearable Supercapacitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203856. [PMID: 36192164 PMCID: PMC9631069 DOI: 10.1002/advs.202203856] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/05/2022] [Indexed: 05/05/2023]
Abstract
Electronic textiles (e-textiles) have drawn significant attention from the scientific and engineering community as lightweight and comfortable next-generation wearable devices due to their ability to interface with the human body, and continuously monitor, collect, and communicate various physiological parameters. However, one of the major challenges for the commercialization and further growth of e-textiles is the lack of compatible power supply units. Thin and flexible supercapacitors (SCs), among various energy storage systems, are gaining consideration due to their salient features including excellent lifetime, lightweight, and high-power density. Textile-based SCs are thus an exciting energy storage solution to power smart gadgets integrated into clothing. Here, materials, fabrications, and characterization strategies for textile-based SCs are reviewed. The recent progress of textile-based SCs is then summarized in terms of their electrochemical performances, followed by the discussion on key parameters for their wearable electronics applications, including washability, flexibility, and scalability. Finally, the perspectives on their research and technological prospects to facilitate an essential step towards moving from laboratory-based flexible and wearable SCs to industrial-scale mass production are presented.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Centre for Print Research (CFPR)The University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| | - Shaila Afroj
- Centre for Print Research (CFPR)The University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| | - Kostya S. Novoselov
- Institute for Functional Intelligent Materials, Department of Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
- Chongqing 2D Materials InstituteLiangjiang New AreaChongqing400714China
| | - Nazmul Karim
- Centre for Print Research (CFPR)The University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| |
Collapse
|
7
|
Gudkov MV, Stolyarova DY, Shiyanova KA, Mel’nikov VP. Polymer Composites with Graphene and Its Derivatives as Functional Materials of the Future. POLYMER SCIENCE SERIES C 2022. [DOI: 10.1134/s1811238222010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Phase-Inverted Copolymer Membrane for the Enhancement of Textile Supercapacitors. Polymers (Basel) 2022; 14:polym14163399. [PMID: 36015656 PMCID: PMC9415922 DOI: 10.3390/polym14163399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
This paper presents a universal fabrication process for single-layer textile supercapacitors, independent of textile properties such as weave pattern, thickness and material. To achieve this, an engineered copolymer membrane was fabricated within these textiles with an automated screen printing, phase inversion and vacuum curing process. This membrane, together with the textile yarns, acts as a porous, flexible and mechanically durable separator. This process was applied to four textiles, including polyester, two polyester-cottons and silk. Carbon-based electrodes were subsequently deposited onto both sides of the textile to form the textile supercapacitors. These supercapacitors achieved a range of areal capacitances between 3.12 and 38.2 mF·cm−2, with energy densities between 0.279 and 0.681 mWh·cm−3 with average power densities of between 0.334 and 0.32 W·cm−3. This novel membrane facilitates the use of thinner textiles for single-layered textile supercapacitors without significantly sacrificing electrochemical performance and will enable future high energy density textile energy storage, from supercapacitors to batteries.
Collapse
|
9
|
Recent Trends in Carbon Nanotube Electrodes for Flexible Supercapacitors: A Review of Smart Energy Storage Device Assembly and Performance. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060223] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In order to upgrade existing electronic technology, we need simultaneously to advance power supply devices to match emerging requirements. Owing to the rapidly growing wearable and portable electronics markets, the demand to develop flexible energy storage devices is among the top priorities for humankind. Flexible supercapacitors (FSCs) have attracted tremendous attention, owing to their unrivaled electrochemical performances, long cyclability and mechanical flexibility. Carbon nanotubes (CNTs), long recognized for their mechanical toughness, with an elastic strain limit of up to 20%, are regarded as potential candidates for FSC electrodes. Along with excellent mechanical properties, high electrical conductivity, and large surface area, their assemblage adaptability from one-dimensional fibers to two-dimensional films to three-dimensional sponges makes CNTs attractive. In this review, we have summarized various assemblies of CNT structures, and their involvement in various device configurations of FSCs. Furthermore, to present a clear scenario of recent developments, we discuss the electrochemical performance of fabricated flexible devices of different CNT structures and their composites, including additional properties such as compressibility and stretchability. Additionally, the drawbacks and benefits of the study and further potential scopes are distinctly emphasized for future researchers.
Collapse
|
10
|
Hu P, Jin H, Wang K, Zhao Z, Qu W. Lignin-based carbon nanofibe rs: Morphologies, properties, and features as substrates for pseudocapacitor electrodes. Int J Biol Macromol 2021; 193:519-527. [PMID: 34695494 DOI: 10.1016/j.ijbiomac.2021.10.108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/07/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022]
Abstract
In this work, lignin-based carbon nanofibers (LCNFs) were for the first time served as substrate for in-situ electrodeposition of polyaniline (PANI) and tested as pseudocapacitor. Two LCNFs with different lignin ratios were designed to distinguish their morphology and structural properties. Next, PANI deposition mechanisms on both LCNFs were investigated and the electrochemical performance of the resulting LCNF/PANIs were evaluated. It was found although LCNF2 was composed of less uniform nanofibers due to more presence of lignin in precursor dope, it had higher tensile strength/modulus than LCNF1 (strength: 34.3MPa to 24.2 MPa; Modulus: 2.40 GPa to 1.45GPa) and was more cost-effective. Particularly, the beaded fibers on LCNF2 contributes to the deposition of PANI with higher specific mass capacitance (612.8 F g-1 to 547.0 F g-1). Upon assembling into solid-state supercapacitors, the Cm of LCNF2/PANI device was determined to be 229 F g-1 and the maximum energy density was 11.13Wh kg-1 at a power density of 0.08 kW kg-1. This work showed LCNF produced from renewable and low-cost lignin could be directly used as substrate for PANI deposition. Moreover, the composition in spinning dope played an important role in determining the performances of resulting pseudocapacitors.
Collapse
Affiliation(s)
- Pengyu Hu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Hong Jin
- Xi'an Jiaotong University Suzhou Academy, Suzhou 215123, China
| | - Keliang Wang
- Fraunhofer USA Inc., Center Midwest, Division for Coatings and Diamond Technologies, Michigan State University, East Lansing, MI 48824, USA
| | - Zizhu Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wangda Qu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
11
|
Payami E, Teimuri‐Mofrad R. CNT‐containing redox active nanohybrid: a promising ferrocenyl‐based electrode material for outstanding energy storage application. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Elmira Payami
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Reza Teimuri‐Mofrad
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| |
Collapse
|
12
|
Zhang H, Yang D, Lau A, Ma T, Lin H, Jia B. Hybridized Graphene for Supercapacitors: Beyond the Limitation of Pure Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007311. [PMID: 33634597 DOI: 10.1002/smll.202007311] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Graphene-based supercapacitors have been attracting growing attention due to the predicted intrinsic high surface area, high electron mobility, and many other excellent properties of pristine graphene. However, experimentally, the state-of-the-art graphene electrodes face limitations such as low surface area, low electrical conductivity, and low capacitance, which greatly limit their electrochemical performances for supercapacitor applications. To tackle these issues, hybridizing graphene with other species (e.g., atom, cluster, nanostructure, etc.) to enlarge the surface area, enhance the electrical conductivity, and improve capacitance behaviors are strongly desired. In this review, different hybridization principles (spacers hybridization, conductors hybridization, heteroatoms doping, and pseudocapacitance hybridization) are discussed to provide fundamental guidance for hybridization approaches to solve these challenges. Recent progress in hybridized graphene for supercapacitors guided by the above principles are thereafter summarized, pushing the performance of hybridized graphene electrodes beyond the limitation of pure graphene materials. In addition, the current challenges of energy storage using hybridized graphene and their future directions are discussed.
Collapse
Affiliation(s)
- Huihui Zhang
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC, 3122, Australia
| | - Dan Yang
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC, 3122, Australia
| | - Alan Lau
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC, 3122, Australia
| | - Tianyi Ma
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC, 3122, Australia
| | - Han Lin
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC, 3122, Australia
| | - Baohua Jia
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
13
|
Cymann A, Sawczak M, Ryl J, Klugmann-Radziemska E, Wilamowska-Zawłocka M. Capacitance Enhancement by Incorporation of Functionalised Carbon Nanotubes into Poly(3,4-Ethylenedioxythiophene)/Graphene Oxide Composites. MATERIALS 2020; 13:ma13102419. [PMID: 32466234 PMCID: PMC7287990 DOI: 10.3390/ma13102419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/02/2023]
Abstract
This paper reports on the role of oxidised carbon nanotubes (oxMWCNTs) present in poly-3,4-ethylenedioxytiophene (PEDOT)/graphene oxide (GOx) composite. The final ternary composites (pEDOT/GOx/oxMWCNTs) are synthesised by an electrodeposition process from the suspension-containing monomer, oxidised carbon nanotubes and graphene oxide. Dissociated functional groups on the surface of graphene oxide play a role of counter-ions for the polymer chains. Detailed physicochemical and electrochemical characterisation of the ternary composites is presented in the paper. The results prove that the presence of oxMWCNTs in the ternary composites doubles the capacitance values compared to the binary ones (450 vs. 270 F cm-3 for PEDOT/GOx/oxMWCNTs and PEDOT/GOx, respectively). The amount of carbon nanotubes in the synthesis solution is crucial for physicochemical properties of the composites, their adhesion to the electrode substrate and the electrochemical performance.
Collapse
Affiliation(s)
- Anita Cymann
- Department of Energy Conversion and Storage, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.C.); (E.K.-R.)
| | - Mirosław Sawczak
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland;
| | - Jacek Ryl
- Department of Electrochemistry, Corrosion and Materials Engineering, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland;
| | - Ewa Klugmann-Radziemska
- Department of Energy Conversion and Storage, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.C.); (E.K.-R.)
| | - Monika Wilamowska-Zawłocka
- Department of Energy Conversion and Storage, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.C.); (E.K.-R.)
- Correspondence: ; Tel.: +48-58-347-24-74
| |
Collapse
|
14
|
Wang X, Wu D, Song X, Du W, Zhao X, Zhang D. Review on Carbon/Polyaniline Hybrids: Design and Synthesis for Supercapacitor. Molecules 2019; 24:molecules24122263. [PMID: 31216668 PMCID: PMC6630649 DOI: 10.3390/molecules24122263] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/14/2019] [Accepted: 06/16/2019] [Indexed: 11/20/2022] Open
Abstract
Polyaniline has been widely used in high-performance pseudocapacitors, due to its low cost, easy synthesis, and high theoretical specific capacitance. However, the poor mechanical properties of polyaniline restrict its further development. Compared with polyaniline, functionalized carbon materials have excellent physical and chemical properties, such as porous structures, excellent specific surface area, good conductivity, and accessibility to active sites. However, it should not be neglected that the specific capacity of carbon materials is usually unsatisfactory. There is an effective strategy to combine carbon materials with polyaniline by a hybridization approach to achieve a positive synergistic effect. After that, the energy storage performance of carbon/polyaniline hybridization material has been significantly improved, making it a promising and important electrode material for supercapacitors. To date, significant progress has been made in the synthesis of various carbon/polyaniline binary composite electrode materials. In this review, the corresponding properties and applications of polyaniline and carbon hybrid materials in the energy storage field are briefly reviewed. According to the classification of different types of functionalized carbon materials, this article focuses on the recent progress in carbon/polyaniline hybrid materials, and further analyzes their corresponding properties to provide guidance for the design, synthesis, and component optimization for high-performance supercapacitors.
Collapse
Affiliation(s)
- Xiaoning Wang
- School of Environment and Material Engineering, Yantai University, Yantai 264005, China.
| | - Dan Wu
- School of Environment and Material Engineering, Yantai University, Yantai 264005, China.
| | - Xinhui Song
- School of Environment and Material Engineering, Yantai University, Yantai 264005, China.
| | - Wei Du
- School of Environment and Material Engineering, Yantai University, Yantai 264005, China.
| | - Xiangjin Zhao
- College of Nuclear Equipment and Nuclear Engineering, Yantai University, Yantai 264005, China.
| | - Dongmei Zhang
- Shandong Institute for Food and Drug Control, Jinan 250101, China.
| |
Collapse
|
15
|
Li Z, Xu K, Pan Y. Recent development of Supercapacitor Electrode Based on Carbon Materials. NANOTECHNOLOGY REVIEWS 2019; 8:35-49. [DOI: 10.1515/ntrev-2019-0004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
AbstractSupercapacitor has gained significant attention due to its fast charging/discharging speed, high power density and long-term cycling stability in contrast to traditional batteries. In this review, state-of-the-art achievements on supercapacitor electrode based on carbon materials is summarized. In all-carbon composite materials part, various carbon materials including graphene, carbon nanotube, carbon foam and carbon cloth are composited to fabricate larger specific surface area and higher electrical conductivity electrodes. However, obstacles of low power density as well as low cycling life still remain to be addressed. In metal-oxide composites part, carbon nanotube, graphene, carbon fiber fabric and hollow carbon nanofibers combine with MnO2respectively, which significantly address drawbacks of all-carbon material electrodes. Additionally, TiO2is incorporated into graphene electrode to overcome the low mechanical flexibility of graphene. In organic active compounds part, conducting polymers are employed to combinate with carbon materials to fabricate high specific capacitance, long-term thermal stability and outstanding electroconductivity flexible textile supercapacitors. In each part, innovation, fabrication process and performance of the resulting composites are demonstrated. Finally, future directions that could enhance the performance of supercapacitors are discussed.
Collapse
|
16
|
Ma J, Tao XY, Zhou SX, Song XZ, Lin-Guo, Yao-Wang, Zhu YB, Guo LT, Liu ZS, Fan HL, Wei XY. Facile fabrication of Ag/PANI/g-C3N4 composite with enhanced electrochemical performance as supercapacitor electrode. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.12.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Affiliation(s)
- Yongqin Han
- Department of Polymer Materials College of Materials Science and Engineering Shandong University of Science and Technology Qingdao 266510 P. R. China
- Center of Advanced Science and Engineering for Carbon (Case4carbon) Department of Macromolecular Science and Engineering Case Western Reserve University Cleveland 44106 OH USA
| | - Liming Dai
- Center of Advanced Science and Engineering for Carbon (Case4carbon) Department of Macromolecular Science and Engineering Case Western Reserve University Cleveland 44106 OH USA
| |
Collapse
|
18
|
Wang HT, Liu YN, Kang XH, Wang YF, Yang SY, Bian SW, Zhu Q. Flexible hybrid yarn-shaped supercapacitors based on porous nickel cobalt sulfide nanosheet array layers on gold metalized cotton yarns. J Colloid Interface Sci 2018; 532:527-535. [DOI: 10.1016/j.jcis.2018.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 11/27/2022]
|
19
|
Holla S, Selvakumar M. Effect of Different Electrolytes on the Supercapacitor Behavior of Single and Multilayered Electrode Materials Based on Multiwalled Carbon Nanotube/Polyaniline Composite. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sowmya Holla
- Department of Chemistry; Manipal Institute of Technology; Manipal Academy of Higher Education; Manipal 576 104 Karnataka India
| | - Muthu Selvakumar
- Department of Chemistry; Manipal Institute of Technology; Manipal Academy of Higher Education; Manipal 576 104 Karnataka India
| |
Collapse
|
20
|
Wang HT, Jin C, Liu YN, Kang XH, Bian SW, Zhu Q. Cotton yarns modified with three-dimensional metallic Ni conductive network and pseudocapacitive Co-Ni layered double hydroxide nanosheet array as electrode materials for flexible yarn supercapacitors. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.090] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Yao J, Ji P, Sheng N, Guan F, Zhang M, Wang B, Chen S, Wang H. Hierarchical core-sheath polypyrrole@carbon nanotube/bacterial cellulose macrofibers with high electrochemical performance for all-solid-state supercapacitors. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.086] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Liu YN, Jin LN, Wang HT, Kang XH, Bian SW. Fabrication of three-dimensional composite textile electrodes by metal-organic framework, zinc oxide, graphene and polyaniline for all-solid-state supercapacitors. J Colloid Interface Sci 2018; 530:29-36. [PMID: 29960905 DOI: 10.1016/j.jcis.2018.06.062] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 11/28/2022]
Abstract
Textile electrode materials have attracted intense attention in the flexible supercapacitor field due to their flexibility, light weight, hierarchical porosity and mechanical robustness. However, their electrochemical performance is not good due to the low conductivity, ineffective ion diffusion and small electroactive surface area. In this study, a three-dimensional (3D) textile electrode material was constructed by utilizing ZIF-8 (Zeolitic Imidazolate Framework), metal oxides, conductive polymers and graphene sheets. The polyaniline/ZnO/ZIF-8/graphene/polyester textile electrode exhibited good electrochemical performance with a high areal capacitance of 1.378 F/cm2 at 1 mA/cm2 and high stability under different mechanical deformations. A flexible all-solid-state symmetric supercapacitor device was further fabricated, which can provide a high energy density of 235 μWh/cm3 at a power density of 1542 μW/cm3.
Collapse
Affiliation(s)
- Ya-Nan Liu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Li-Na Jin
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Hai-Tao Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Xiao-Hui Kang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Shao-Wei Bian
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
23
|
Bao C, He Q, Han J, Cheng J, Zhang R. Functionalized graphene–polyaniline nanocomposite as electrode material for asymmetric supercapacitors. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-4005-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
24
|
Xie K, Zhang M, Yang Y, Zhao L, Qi W. Synthesis and Supercapacitor Performance of Polyaniline/Nitrogen-Doped Ordered Mesoporous Carbon Composites. NANOSCALE RESEARCH LETTERS 2018; 13:163. [PMID: 29797190 PMCID: PMC5968012 DOI: 10.1186/s11671-018-2577-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
The electrochemical property of ordered mesoporous carbon (OMC) can be changed significantly due to the incorporating of electron-donating heteroatoms into OMC. Here, we demonstrate the successful fabrication of nitrogen-doped ordered mesoporous carbon (NOMC) materials to be used as carbon substrates for loading polyaniline (PANI) by in situ polymerization. Compared with NOMC, the PANI/NOMC prepared with a different mass ratio of PANI and NOMC exhibits remarkably higher electrochemical specific capacitance. In a typical three-electrode configuration, the hybrid has a specific capacitance about 276.1 F/g at 0.2 A/g with a specific energy density about 38.4 Wh/kg. What is more, the energy density decreases very slowly with power density increasing, which is a different phenomenon from other reports. PANI/NOMC materials exhibit good rate performance and long cycle stability in alkaline electrolyte (~ 80% after 5000 cycles). The fabrication of PANI/NOMC with enhanced electrochemical properties provides a feasible route for promoting its applications in supercapacitors.
Collapse
Affiliation(s)
- Kangjun Xie
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
- Institute of Applied Electromagnetic Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Manman Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
- Institute of Applied Electromagnetic Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Yang Yang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
- Institute of Applied Electromagnetic Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Long Zhao
- Institute of Applied Electromagnetic Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Wei Qi
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
- Institute of Applied Electromagnetic Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
| |
Collapse
|
25
|
Liu P, Yan J, Gao X, Huang Y, Zhang Y. Construction of layer-by-layer sandwiched graphene/polyaniline nanorods/carbon nanotubes heterostructures for high performance supercapacitors. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.198] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Jin C, Wang HT, Liu YN, Kang XH, Liu P, Zhang JN, Jin LN, Bian SW, Zhu Q. High-performance yarn electrode materials enhanced by surface modifications of cotton fibers with graphene sheets and polyaniline nanowire arrays for all-solid-state supercapacitors. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.067] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Facile green synthesis of 3D porous glucose-based carbon aerogels for high-performance supercapacitors. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.11.146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Zhang JN, Liu P, Jin C, Jin LN, Bian SW, Zhu Q, Wang B. Flexible three-dimensional carbon cloth/carbon fibers/NiCo2O4 composite electrode materials for high-performance all-solid-state electrochemical capacitors. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.10.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|