1
|
Basso Peressut A, Di Virgilio M, Bombino A, Latorrata S, Muurinen E, Keiski RL, Dotelli G. Investigation of Sulfonated Graphene Oxide as the Base Material for Novel Proton Exchange Membranes. Molecules 2022; 27:1507. [PMID: 35268613 PMCID: PMC8912047 DOI: 10.3390/molecules27051507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
This work deals with the development of graphene oxide (GO)-based self-assembling membranes as possible innovative proton conductors to be used in polymer electrolyte membrane fuel cells (PEMFCs). Nowadays, the most adopted electrolyte is Chemours' Nafion; however, it reveals significant deficiencies such as strong dehydration at high temperature and low humidity, which drastically reduces its proton conductivity. The presence of oxygenated moieties in the GO framework makes it suitable for functionalization, which is required to enhance the promising, but insufficient, proton-carrying features of GO. In this study, sulfonic acid groups (-SO3H) that should favor proton transport were introduced in the membrane structure via a reaction between GO and concentrated sulfuric acid. Six acid-to-GO molar ratios were adopted in the synthesis procedure, giving rise to final products with different sulfonation degrees. All the prepared samples were characterized by means of TGA, ATR-FTIR and Raman spectroscopy, temperature-dependent XRD, SEM and EDX, which pointed out morphological and microstructural changes resulting from the functionalization stage, confirming its effectiveness. Regarding functional features, electrochemical impedance spectroscopy (EIS) as well as measurements of ion exchange capacity (IEC) were carried out to describe the behavior of the various samples, with pristine GO and commercial Nafion® 212 used as reference. EIS tests were performed at five different temperatures (20, 40, 60, 80 and 100 °C) under high (95%) and medium (42%) relative humidity conditions. Compared to both GO and Nafion® 212, the sulfonated specimens demonstrate an increase in the number of ion-carrying groups, as proved by both IEC and EIS tests, which reveal the enhanced proton conductivity of these novel membranes. Specifically, an acid-to-GO molar ratio of 10 produces a six-fold improvement of IEC (4.23 meq g-1) with respect to pure GO (0.76 meq g-1), while a maximum eight-fold improvement (5.72 meq g-1) is achieved in SGO-15.
Collapse
Affiliation(s)
- Andrea Basso Peressut
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (A.B.P.); (A.B.); (S.L.)
| | - Matteo Di Virgilio
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (A.B.P.); (A.B.); (S.L.)
| | - Antonella Bombino
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (A.B.P.); (A.B.); (S.L.)
| | - Saverio Latorrata
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (A.B.P.); (A.B.); (S.L.)
| | - Esa Muurinen
- Environmental and Chemical Engineering Research Unit, Faculty of Technology, University of Oulu, Pentti Kaiteran katu 1, FI-90014 Oulu, Finland; (E.M.); (R.L.K.)
| | - Riitta L. Keiski
- Environmental and Chemical Engineering Research Unit, Faculty of Technology, University of Oulu, Pentti Kaiteran katu 1, FI-90014 Oulu, Finland; (E.M.); (R.L.K.)
| | - Giovanni Dotelli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (A.B.P.); (A.B.); (S.L.)
| |
Collapse
|
2
|
Yogarathinam LT, Jaafar J, Ismail AF, Goh PS, Bin Mohamed MH, Radzi Hanifah MF, Gangasalam A, Peter J. Polyaniline decorated graphene oxide on sulfonated poly(ether ether ketone) membrane for direct methanol fuel cells application. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lukka Thuyavan Yogarathinam
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering Universiti Teknologi Malaysia Skudai Malaysia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering Universiti Teknologi Malaysia Skudai Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering Universiti Teknologi Malaysia Skudai Malaysia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering Universiti Teknologi Malaysia Skudai Malaysia
| | - Mohd Hilmi Bin Mohamed
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering Universiti Teknologi Malaysia Skudai Malaysia
| | - Mohamad Fahrul Radzi Hanifah
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering Universiti Teknologi Malaysia Skudai Malaysia
| | - Arthanareeswaran Gangasalam
- Membrane Research Laboratory, Department of Chemical Engineering National Institute of Technology Tiruchirappalli Tamil Nadu India
| | - Jerome Peter
- Division of Materials Science and Engineering (MSE) Hanyang University (ERICA) Ansan South Korea
| |
Collapse
|
3
|
Constructing anhydrous proton exchange membranes through alternate depositing graphene oxide and chitosan on sulfonated poly(vinylidenefluoride) or sulfonated poly(vinylidene fluoride-co-hexafluoropropylene) membranes. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
4
|
Junoh H, Jaafar J, Nordin NAHM, Ismail AF, Othman MHD, Rahman MA, Aziz F, Yusof N. Performance of Polymer Electrolyte Membrane for Direct Methanol Fuel Cell Application: Perspective on Morphological Structure. MEMBRANES 2020; 10:E34. [PMID: 32106509 PMCID: PMC7142913 DOI: 10.3390/membranes10030034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/24/2020] [Accepted: 02/10/2020] [Indexed: 01/01/2023]
Abstract
Membrane morphology plays a great role in determining the performance of polymer electrolyte membranes (PEMs), especially for direct methanol fuel cell (DMFC) applications. Membrane morphology can be divided into two types, which are dense and porous structures. Membrane fabrication methods have different configurations, including dense, thin and thick, layered, sandwiched and pore-filling membranes. All these types of membranes possess the same densely packed structural morphology, which limits the transportation of protons, even at a low methanol crossover. This paper summarizes our work on the development of PEMs with various structures and architecture that can affect the membrane's performance, in terms of microstructures and morphologies, for potential applications in DMFCs. An understanding of the transport behavior of protons and methanol within the pores' limits could give some perspective in the delivery of new porous electrolyte membranes for DMFC applications.
Collapse
Affiliation(s)
- Hazlina Junoh
- School of Chemical and Energy Engineering, Faculty of Engineering, Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, UTM Skudai 81310, Johor Bahru, Malaysia; (H.J.); (A.F.I.); (M.H.D.O.); (M.A.R.); (F.A.); (N.Y.)
| | - Juhana Jaafar
- School of Chemical and Energy Engineering, Faculty of Engineering, Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, UTM Skudai 81310, Johor Bahru, Malaysia; (H.J.); (A.F.I.); (M.H.D.O.); (M.A.R.); (F.A.); (N.Y.)
| | - Nik Abdul Hadi Md Nordin
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia;
| | - Ahmad Fauzi Ismail
- School of Chemical and Energy Engineering, Faculty of Engineering, Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, UTM Skudai 81310, Johor Bahru, Malaysia; (H.J.); (A.F.I.); (M.H.D.O.); (M.A.R.); (F.A.); (N.Y.)
| | - Mohd Hafiz Dzarfan Othman
- School of Chemical and Energy Engineering, Faculty of Engineering, Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, UTM Skudai 81310, Johor Bahru, Malaysia; (H.J.); (A.F.I.); (M.H.D.O.); (M.A.R.); (F.A.); (N.Y.)
| | - Mukhlis A. Rahman
- School of Chemical and Energy Engineering, Faculty of Engineering, Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, UTM Skudai 81310, Johor Bahru, Malaysia; (H.J.); (A.F.I.); (M.H.D.O.); (M.A.R.); (F.A.); (N.Y.)
| | - Farhana Aziz
- School of Chemical and Energy Engineering, Faculty of Engineering, Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, UTM Skudai 81310, Johor Bahru, Malaysia; (H.J.); (A.F.I.); (M.H.D.O.); (M.A.R.); (F.A.); (N.Y.)
| | - Norhaniza Yusof
- School of Chemical and Energy Engineering, Faculty of Engineering, Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, UTM Skudai 81310, Johor Bahru, Malaysia; (H.J.); (A.F.I.); (M.H.D.O.); (M.A.R.); (F.A.); (N.Y.)
| |
Collapse
|
5
|
Shukla A, Dhanasekaran P, Sasikala S, Nagaraju N, Bhat SD, Pillai VK. Covalent grafting of polystyrene sulfonic acid on graphene oxide nanoplatelets to form a composite membrane electrolyte with sulfonated poly(ether ether ketone) for direct methanol fuel cells. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117484] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
A facile synthesis of graphene nanoribbon-quantum dot hybrids and their application for composite electrolyte membrane in direct methanol fuel cells. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.162] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Ru C, Li Z, Zhao C, Duan Y, Zhuang Z, Bu F, Na H. Enhanced Proton Conductivity of Sulfonated Hybrid Poly(arylene ether ketone) Membranes by Incorporating an Amino-Sulfo Bifunctionalized Metal-Organic Framework for Direct Methanol Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7963-7973. [PMID: 29439561 DOI: 10.1021/acsami.7b17299] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Novel side-chain-type sulfonated poly(arylene ether ketone) (SNF-PAEK) containing naphthalene and fluorine moieties on the main chain was prepared in this work, and a new amino-sulfo-bifunctionalized metal-organic framework (MNS, short for MIL-101-NH2-SO3H) was synthesized via a hydrothermal technology and postmodification. Then, MNS was incorporated into a SNF-PAEK matrix as an inorganic nanofiller to prepare a series of organic-inorganic hybrid membranes (MNS@SNF-PAEK-XX). The mechanical property, methanol resistance, electrochemistry, and other properties of MNS@SNF-PAEK-XX hybrid membranes were characterized in detail. We found that the mechanical strength and methanol resistances of these hybrid membranes were improved by the formation of an ionic cross-linking structure between -NH2 of MNS and -SO3H on the side chain of SNF-PAEK. Particularly, the proton conductivity of these hybrid membranes increased obviously after the addition of MNS. MNS@SNF-PAEK-3% exhibited the proton conductivity of 0.192 S·cm-1, which was much higher than those of the pristine membrane (0.145 S·cm-1) and recast Nafion (0.134 S·cm-1) at 80 °C. This result indicated that bifunctionalized MNS rearranged the microstructure of hybrid membranes, which could accelerate the transfer of protons. The hybrid membrane (MNS@SNF-PAEK-3%) showed a better direct methanol fuel cell performance with a higher peak power density of 125.7 mW/cm2 at 80 °C and a higher open-circuit voltage (0.839 V) than the pristine membrane.
Collapse
|