1
|
Mwanza D, Adeniyi O, Tesfalidet S, Nyokong T, Mashazi P. Capacitive label-free ultrasensitive detection of PSA on a covalently attached monoclonal anti-PSA antibody gold surface. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2
|
Nazeri MT, Javanbakht S, Nabi M, Shaabani A. Copper phthalocyanine-conjugated pectin via the Ugi four-component reaction: An efficient catalyst for CO2 fixation. Carbohydr Polym 2022; 283:119144. [DOI: 10.1016/j.carbpol.2022.119144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/02/2022]
|
3
|
Mwanza D, Mfamela N, Adeniyi O, Nyokong T, Mashazi P. Ultrasensitive detection of prostate-specific antigen using glucose-encapsulated nanoliposomes anti-PSA polyclonal antibody as detection nanobioprobes. Talanta 2022; 245:123483. [DOI: 10.1016/j.talanta.2022.123483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
|
4
|
Nxele SR, Nkhahle R, Nyokong T. The synergistic effects of coupling Au nanoparticles with an alkynyl Co(II) phthalocyanine on the detection of prostate specific antigen. Talanta 2022; 237:122948. [PMID: 34736674 DOI: 10.1016/j.talanta.2021.122948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
Prostate specific antigen (PSA) aptasensors are fabricated using a novel asymmetrically substituted Co phthalocyanine (CoPc), gold nanoparticles (AuNPs) and PSA-specific antigen. The fabricated aptasensors are: GCE-AuNPs-Aptamer, GCE@CoPc-Aptamer and GCE-AuNPs@CoPc-Aptamer (GCE = glassy carbon electrode). The fabricated sensors are characterized at each modification step to monitor the changes occurring at the sensor surface. Concentration studies were carried out using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) to determine detection limits. All the fabricated aptasensors were found to be highly specific and selective but the GCE-AuNPs@CoPc-Aptamer nanoconjugate performed the best. The aptasensors were also tested in spiked serum samples and detection limits, as well as % recoveries were determined. The results obtained showed that the GCE-AuNPs@CoPc-Aptamer has the potential to be used for clinical studies as the results agree with those obtained for detection of PSA in buffer.
Collapse
Affiliation(s)
- Siphesihle Robin Nxele
- Institute for Nanotechnology Innovation, Chemistry Department, Rhodes University, Grahamstown, 6140, South Africa
| | - Reitumetse Nkhahle
- Institute for Nanotechnology Innovation, Chemistry Department, Rhodes University, Grahamstown, 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Chemistry Department, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|
5
|
Mwanza D, Phal S, Nyokong T, Tesfalidet S, Mashazi P. Electrografting of isophthalic acid monolayer and covalent attachment of antibody onto carbon surfaces: Construction of capacitive biosensor for methotrexate detection. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Wu T, Brooksby PA, Fitchett CM, Downard AJ. Immobilisation of Iron Porphyrin from an Equilibrium Solution with Diazonium‐Functionalised Axial Ligand: Dependence of Film Composition on Grafting Potential. ChemElectroChem 2021. [DOI: 10.1002/celc.202100712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ting Wu
- School of Physical and Chemical Sciences University of Canterbury Christchurch 8140 New Zealand
| | - Paula A. Brooksby
- School of Physical and Chemical Sciences University of Canterbury Christchurch 8140 New Zealand
| | - Christopher M. Fitchett
- School of Physical and Chemical Sciences University of Canterbury Christchurch 8140 New Zealand
| | - Alison J. Downard
- School of Physical and Chemical Sciences University of Canterbury Christchurch 8140 New Zealand
| |
Collapse
|
7
|
Wu T, Fitchett CM, Brooksby PA, Downard AJ. Building Tailored Interfaces through Covalent Coupling Reactions at Layers Grafted from Aryldiazonium Salts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11545-11570. [PMID: 33683855 DOI: 10.1021/acsami.0c22387] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aryldiazonium ions are widely used reagents for surface modification. Attractive aspects of their use include wide substrate compatibility (ranging from plastics to carbons to metals and metal oxides), formation of stable covalent bonding to the substrate, simplicity of modification methods that are compatible with organic and aqueous solvents, and the commercial availability of many aniline precursors with a straightforward conversion to the active reagent. Importantly, the strong bonding of the modifying layer to the surface makes the method ideally suited to further on-surface (postfunctionalization) chemistry. After an initial grafting from a suitable aryldiazonium ion to give an anchor layer, a target species can be coupled to the layer, hugely expanding the range of species that can be immobilized. This strategy has been widely employed to prepare materials for numerous applications including chemical sensors, biosensors, catalysis, optoelectronics, composite materials, and energy conversion and storage. In this Review our goal is first to summarize how a target species with a particular functional group may be covalently coupled to an appropriate anchor layer. We then review applications of the resulting materials.
Collapse
Affiliation(s)
- Ting Wu
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, New Zealand
| | - Christopher M Fitchett
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, New Zealand
| | - Paula A Brooksby
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Alison J Downard
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
8
|
Tshenkeng K, Mashazi P. Covalent attachment of cobalt (II) tetra-(3-carboxyphenoxy) phthalocyanine onto pre-grafted gold electrode for the determination of catecholamine neurotransmitters. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Njoko N, Louzada M, Britton J, Khene S, Nyokong T, Mashazi P. Bioelectrocatalysis and surface analysis of gold coated with nickel oxide/hydroxide and glucose oxidase towards detection of glucose. Colloids Surf B Biointerfaces 2020; 190:110981. [DOI: 10.1016/j.colsurfb.2020.110981] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 10/24/2022]
|
10
|
Araújo ARL, Tomé AC, Santos CIM, Faustino MAF, Neves MGPMS, Simões MMQ, Moura NMM, Abu-Orabi ST, Cavaleiro JAS. Azides and Porphyrinoids: Synthetic Approaches and Applications. Part 2-Azides, Phthalocyanines, Subphthalocyanines and Porphyrazines. Molecules 2020; 25:molecules25071745. [PMID: 32290240 PMCID: PMC7180445 DOI: 10.3390/molecules25071745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
The reaction between organic azides and alkyne derivatives via the Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) is an efficient strategy to combine phthalocyanines and analogues with different materials. As examples of such materials, it can be considered the following ones: graphene oxide, carbon nanotubes, silica nanoparticles, gold nanoparticles, and quantum dots. This approach is also being relevant to conjugate phthalocyanines with carbohydrates and to obtain new sophisticated molecules; in such way, new systems with significant potential applications become available. This review highlights recent developments on the synthesis of phthalocyanine, subphthalocyanine, and porphyrazine derivatives where CuAAC reactions are the key synthetic step.
Collapse
Affiliation(s)
- Ana R. L. Araújo
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
| | - Augusto C. Tomé
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
| | - Carla I. M. Santos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
- CQE, Centro de Química Estrutural and IN—Institute of Nanoscience and Nanotechnology of Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Maria A. F. Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
| | - Maria G. P. M. S. Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
| | - Mário M. Q. Simões
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
| | - Nuno M. M. Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
- Correspondence: (N.M.M.M.); (J.A.S.C.); Tel.: +351-234-370-717 (J.A.S.C.)
| | | | - José A. S. Cavaleiro
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
- Correspondence: (N.M.M.M.); (J.A.S.C.); Tel.: +351-234-370-717 (J.A.S.C.)
| |
Collapse
|
11
|
Yáñez-Sedeño P, González-Cortés A, Campuzano S, Pingarrón JM. Copper(I)-Catalyzed Click Chemistry as a Tool for the Functionalization of Nanomaterials and the Preparation of Electrochemical (Bio)Sensors. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2379. [PMID: 31137612 PMCID: PMC6566994 DOI: 10.3390/s19102379] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 01/30/2023]
Abstract
Proper functionalization of electrode surfaces and/or nanomaterials plays a crucial role in the preparation of electrochemical (bio)sensors and their resulting performance. In this context, copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) has been demonstrated to be a powerful strategy due to the high yields achieved, absence of by-products and moderate conditions required both in aqueous medium and under physiological conditions. This particular chemistry offers great potential to functionalize a wide variety of electrode surfaces, nanomaterials, metallophthalocyanines (MPcs) and polymers, thus providing electrochemical platforms with improved electrocatalytic ability and allowing the stable, reproducible and functional integration of a wide range of nanomaterials and/or different biomolecules (enzymes, antibodies, nucleic acids and peptides). Considering the rapid progress in the field, and the potential of this technology, this review paper outlines the unique features imparted by this particular reaction in the development of electrochemical sensors through the discussion of representative examples of the methods mainly reported over the last five years. Special attention has been paid to electrochemical (bio)sensors prepared using nanomaterials and applied to the determination of relevant analytes at different molecular levels. Current challenges and future directions in this field are also briefly pointed out.
Collapse
Affiliation(s)
- P Yáñez-Sedeño
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - A González-Cortés
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - S Campuzano
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - J M Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
12
|
Husain A, Ganesan A, Ghazal B, Durmuş M, Zhang XF, Makhseed S. Dual-directional alkyne-terminated macrocycles: Enroute to non-aggregating molecular platforms. Org Chem Front 2019. [DOI: 10.1039/c9qo00695h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Derivatized phthalocyanines (Pcs) and their heteroatom analogues, azaphthalocyanines (AzaPcs), bearing a variety of highly active ligands, have many advantageous properties that make them suitable as novel macrocyclic platforms.
Collapse
Affiliation(s)
- Ali Husain
- Department of Chemistry
- Kuwait University
- Safat
- Kuwait
| | | | - Basma Ghazal
- Department of Chemistry
- Kuwait University
- Safat
- Kuwait
| | - Mahmut Durmuş
- Gebze Technical University
- Department of Chemistry
- 41400 Gebze-Kocaeli
- Turkey
| | | | | |
Collapse
|