1
|
Li Y, Yao MS, He Y, Du S. Recent Advances of Electrocatalysts and Electrodes for Direct Formic Acid Fuel Cells: from Nano to Meter Scale Challenges. NANO-MICRO LETTERS 2025; 17:148. [PMID: 39960581 PMCID: PMC11832879 DOI: 10.1007/s40820-025-01648-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025]
Abstract
Direct formic acid fuel cells are promising energy devices with advantages of low working temperature and high safety in fuel storage and transport. They have been expected to be a future power source for portable electronic devices. The technology has been developed rapidly to overcome the high cost and low power performance that hinder its practical application, which mainly originated from the slow reaction kinetics of the formic acid oxidation and complex mass transfer within the fuel cell electrodes. Here, we provide a comprehensive review of the progress around this technology, in particular for addressing multiscale challenges from catalytic mechanism understanding at the atomic scale, to catalyst design at the nanoscale, electrode structure at the micro scale and design at the millimeter scale, and finally to device fabrication at the meter scale. The gap between the highly active electrocatalysts and the poor electrode performance in practical devices is highlighted. Finally, perspectives and opportunities are proposed to potentially bridge this gap for further development of this technology.
Collapse
Affiliation(s)
- Yang Li
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Ming-Shui Yao
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanping He
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650504, People's Republic of China.
| | - Shangfeng Du
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
2
|
Ma H, Cheng P, Chen C, Geng X, Yang K, Lv F, Ma J, Jiang Y, Liu Q, Su Y, Li J, Zhu N. Highly Selective Wearable Alcohol Homologue Sensors Derived from Pt-Coated Truncated Octahedron Au. ACS Sens 2022; 7:3067-3076. [PMID: 36173279 DOI: 10.1021/acssensors.2c01392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Unhealthy alcohol inhalation is among the top 10 causes of preventable death. However, the present alcohol sensors show poor selectivity among alcohol homologues. Herein, Pt-coated truncated octahedron Au (Ptm@Auto) as the electrocatalyst for a highly selective electrochemical sensor toward alcohol homologues has been designed. The alcohol sensor is realized by distinguishing the electro-oxidation behavior of methanol (MeOH), ethanol (EtOH), or isopropanol (2-propanol). Intermediates from alcohols are further oxidized to CO2 by Ptm@Auto, resulting in different oxidation peaks in cyclic voltammograms and successful distinction of alcohols. Ptm@Auto is then modified on wearable glove-based sensors for monitoring actual alcohol samples (MeOH fuel, vodka, and 2-propanol hand sanitizer), with good mechanical performance and repeatability. The exploration of the Ptm@Auto-based wearable alcohol sensor is expected to be suitable for environmental measurement with high selectivity for alcohol homologues or volatile organic compounds.
Collapse
Affiliation(s)
- Hongting Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Peihao Cheng
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Chuanrui Chen
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiaodong Geng
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Kaizhou Yang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Fengjuan Lv
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Junlin Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yue Jiang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Quanli Liu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yan Su
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jian Li
- Center for Reproductive Medicine, Dalian Women and Children's Medical Center (Group), Dalian 116037, China
| | - Nan Zhu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
3
|
Rogozhnikov NA. Quantum-Chemical Simulation of the Adsorption of OH– Ions on Au(111). RUSS J ELECTROCHEM+ 2021. [DOI: 10.1134/s1023193521010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Mie Y, Katagai S, Ikegami M. Electrochemical Oxidation of Monosaccharides at Nanoporous Gold with Controlled Atomic Surface Orientation and Non-Enzymatic Galactose Sensing. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5632. [PMID: 33019754 PMCID: PMC7582603 DOI: 10.3390/s20195632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022]
Abstract
Non-enzymatic saccharide sensors are of great interest in diagnostics, but their non-selectivity limits their practical diagnostic abilities. In this study, we investigated the electrochemical oxidation of monosaccharides at nanoporous gold (NPG) catalysts with different contributions of surface crystallographic orientations. Fructose elicited no clear electrochemical response, but glucose, galactose, and mannose produced clear oxidative current. The onset potentials for oxidation of these saccharides depended on the surface atomic structure of the NPG. The oxidation potential was approximately 100 mV less positive at the Au(100)-enhanced NPG than at the Au(111)-enhanced NPG. Furthermore, the voltammetric responses significantly differed among the saccharides. Galactose was oxidized at less positive potential and exhibited a higher current response than the other saccharides. This tendency was enhanced in the presence of chloride ions. These features enabled the selective and sensitive detection of galactose at an NPG electrode without enzymes under physiological conditions. A linear range of 10 μM to 1.8 mM was obtained in the calibration plot, which was comparable to those in previously reported enzymatic galactose sensors. Thus, we demonstrated that controlling the crystallographic orientation on the nanostructured electrode surface is useful in developing electrochemical sensors.
Collapse
Affiliation(s)
- Yasuhiro Mie
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan; (S.K.); (M.I.)
| | | | | |
Collapse
|
5
|
Mie Y, Takayama H, Hirano Y. Facile control of surface crystallographic orientation of anodized nanoporous gold catalyst and its application for highly efficient hydrogen evolution reaction. J Catal 2020. [DOI: 10.1016/j.jcat.2020.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Zhang J, She Y. Mechanism of methanol decomposition on the Pd/WC(0001) surface unveiled by first-principles calculations. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-019-1908-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Xu H, Liu S, Pu X, Shen K, Zhang L, Wang X, Qin J, Wang W. Dealloyed porous gold anchored by in situ generated graphene sheets as high activity catalyst for methanol electro-oxidation reaction. RSC Adv 2020; 10:1666-1678. [PMID: 35494686 PMCID: PMC9047550 DOI: 10.1039/c9ra09821f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 12/23/2019] [Indexed: 11/21/2022] Open
Abstract
A novel one-step method to prepare the nanocomposites of reduced graphene oxide (RGO)/nanoporous gold (NPG) is realized by chemically dealloying an Al2Au precursor. The RGO nanosheets anchored on the surface of NPG have a cicada wing like shape and act as both conductive agent and buffer layer to improve the catalytic ability of NPG for methanol electro-oxidation reaction (MOR). This improvement can also be ascribed to the microstructure change of NPG in dealloying with RGO. This work inspires a facile and economic method to prepare the NPG based catalyst for MOR. A novel one-step method to prepare the nanocomposites of reduced graphene oxide (RGO)/nanoporous gold (NPG) is realized by chemically dealloying an Al2Au precursor.![]()
Collapse
Affiliation(s)
- Hui Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- International Joint Laboratory for Advanced Fiber and Low-dimension Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
| | - Shuai Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Jinan 250061
- China
| | - Xiaoliang Pu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Jinan 250061
- China
| | - Kechang Shen
- Ulsan Ship and Ocean College
- Ludong University
- Yantai 264025
- China
| | - Laichang Zhang
- School of Engineering
- Edith Cowan University
- Perth
- Australia
| | - Xiaoguang Wang
- Laboratory of Adv. Mater. & Energy Electrochemistry
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Jingyu Qin
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Jinan 250061
- China
| | - Weimin Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Jinan 250061
- China
| |
Collapse
|
8
|
Rogozhnikov NA. Quantum-Chemical Study of Adsorption of Tl+ Ions on Au(111). RUSS J ELECTROCHEM+ 2019. [DOI: 10.1134/s102319351909012x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Gao D, Li S, Lv Y, Zhuo H, Zhao S, Song L, Yang S, Qin Y, Li C, Wei Q, Chen G. PtNi colloidal nanoparticle clusters: Tuning electronic structure and boundary density of nanocrystal subunits for enhanced electrocatalytic properties. J Catal 2019. [DOI: 10.1016/j.jcat.2019.06.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Zhao L, Zhao L, Tian S, Ming H, Gu X, Zhou Q, Zheng J. Ordered SiO2 cavity promoted formation of gold single crystal nanoparticles towards an efficient electrocatalytic application. NEW J CHEM 2018. [DOI: 10.1039/c8nj03235a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A [111] facet dominated gold single crystal electrode with improved electrocatalytic ability for the oxidation of ethanol and nitrite.
Collapse
Affiliation(s)
- Lili Zhao
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| | - Ling Zhao
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| | - Shu Tian
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| | - Hai Ming
- Research Institute of Chemical Defense
- Beijing 100191
- P. R. China
| | - Xuefang Gu
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| | - Qun Zhou
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| | - Junwei Zheng
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| |
Collapse
|