1
|
Zhang J, Ni J. Correction of Range-Variant Motion Error and Residual RCM in Sparse Regularization SAR Imaging. SENSORS (BASEL, SWITZERLAND) 2022; 22:7927. [PMID: 36298278 PMCID: PMC9608217 DOI: 10.3390/s22207927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Lq (0 < q ≤ 1) regularization has been confirmed effective when applied to sparse SAR imaging. However, the inaccuracies caused by motion errors in the observation model will lead to various degradations and defocus in the reconstructed image. For high-resolution and light-small SAR systems, the range-variant motion errors will decrease the accuracy of range cell migration correction (RCMC), and residual range cell migration (RCM) will exceed multiple range resolution cells and degrade the image quality substantially. Aiming at this problem, in this paper, a novel azimuth-range decoupled sparse SAR imaging method with coarse-to-fine range-variant motion errors and residual RCM correction method is proposed. First, a one-step motion compensation (MOCO) operator is proposed using the inertial navigation systems (INS)/global positioning systems (GPS) information, which can significantly reduce the residual RCM and improve the reconstruction accuracy. Second, a fine high-order phase-error correction method is performed to correct the range and cross-range-varying phase errors using a joint imaging and phase-error estimation scheme, which will further improve the image focusing quality. Experimental results indicate the effectiveness of the proposed method.
Collapse
Affiliation(s)
- Jingyi Zhang
- Teachering and Research Supporting Center, Air Force Engineering University, Xi’an 710051, China
| | - Jiacheng Ni
- Information and Navigation College, Air Force Engineering University, Xi’an 710077, China
| |
Collapse
|
2
|
Muhamad Azim M, Arifutzzaman A, Saidur R, Khandaker M, Bradley D. Recent progress in emerging hybrid nanomaterials towards the energy storage and heat transfer applications: A review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
3
|
Tang J, Chen Z, Chen Y, Xu X, Zhu J, Lu T, Pan L. In situ constructed
Ti
3
C
2
T
x
MXene
/polypyrrole composite with enhanced sodium storage capacity for efficient hybrid capacitive deionization. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jian Tang
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance East China Normal University Shanghai China
| | - Zeqiu Chen
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance East China Normal University Shanghai China
| | - Yaoyu Chen
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance East China Normal University Shanghai China
| | - Xingtao Xu
- International Center for Materials Nanoarchitectonics (WPI‐MANA) National Institute for Materials Science Tsukuba Japan
| | - Jing Zhu
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance East China Normal University Shanghai China
| | - Ting Lu
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance East China Normal University Shanghai China
| | - Likun Pan
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance East China Normal University Shanghai China
| |
Collapse
|
4
|
Li K, Li J, Zhu Q, Xu B. Three-Dimensional MXenes for Supercapacitors: A Review. SMALL METHODS 2022; 6:e2101537. [PMID: 35238178 DOI: 10.1002/smtd.202101537] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Supercapacitors have the characteristics of high power density and long cycle life, but the low energy density limits their further development. The 2D transitional metal carbides/nitrides (MXenes) show great application prospects in the field of supercapacitors due to their superior volumetric capacitance, metallic-like conductivity, tunable surface terminations, and structural advantages. However, like other 2D materials, MXenes suffer from the inevitable problem of nanosheet restacking and aggregation, which reduces the overall active surface sites and blocks the accessibility of the electrolyte ions. The transformation of 2D MXene nanosheets into 3D architectures is proven effective to overcome the restacking problem. The review briefly summarizes the preparation strategies of 3D MXene materials, including template-assisted method, framework-assisted method, chemical assembly method, foaming method, and other methods with the discussion centered on the performances of 3D MXenes in supercapacitors. Finally, an outlook on the current progress and opportunities is given to highlight the increasing popularity of 3D MXenes in supercapacitors.
Collapse
Affiliation(s)
- Kangle Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiapeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qizhen Zhu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bin Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
5
|
Yu LP, Zhou XH, Lu L, Xu L, Wang FJ. MXene/Carbon Nanotube Hybrids: Synthesis, Structures, Properties, and Applications. CHEMSUSCHEM 2021; 14:5079-5111. [PMID: 34570428 DOI: 10.1002/cssc.202101614] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Since the successful preparation of few-layer transition metal carbides from three-dimensional MAX phases in 2011, MXenes (known as a family of layered transition metal carbides, nitrides, and carbonitrides) have been intensively studied. Though MXenes have been adopted as active materials in many applications, issues including aggregation and restacking are likely to hamper their potential applications. In order to address these prevailing challenges, the concept of MXene/carbon nanotube (CNT) hybrids was proposed initially in 2015, where CNTs were incorporated as the spacers and conductive additives. Ever since, MXene/CNT hybrids with different architectures have been synthesized by a number of methods and applied in numerous fields. Herein, after the discussion about general synthesis approaches, architectures, and properties of the hybrids, this Review summarized the recent advances in the application of MXene/CNT hybrids in energy storage devices, sensors, electrocatalysis, electromagnetic interference shielding, and water treatment, in which the function of individual components was clarified. In the end, the current research trend in this field were discussed and several technical issues were highlighted along with some suggestions on future research directions.
Collapse
Affiliation(s)
- Le Ping Yu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu, 214153, P. R. China
| | - Xiao Hong Zhou
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu, 214153, P. R. China
| | - Lu Lu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu, 214153, P. R. China
| | - Lyu Xu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu, 214153, P. R. China
| | - Feng Jun Wang
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu, 214153, P. R. China
| |
Collapse
|
6
|
Momodu D, Zeraati AS, Pablos FL, Sundararaj U, Roberts EPL. Hybrid energy storage using nitrogen-doped graphene and layered-MXene (Ti3C2) for stable high-rate supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138664] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Liang W, Zhitomirsky I. Composite Fe 3O 4-MXene-Carbon Nanotube Electrodes for Supercapacitors Prepared Using the New Colloidal Method. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2930. [PMID: 34072315 PMCID: PMC8199491 DOI: 10.3390/ma14112930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/23/2022]
Abstract
MXenes, such as Ti3C2Tx, are promising materials for electrodes of supercapacitors (SCs). Colloidal techniques have potential for the fabrication of advanced Ti3C2Tx composites with high areal capacitance (CS). This paper reports the fabrication of Ti3C2TX-Fe3O4-multiwalled carbon nanotube (CNT) electrodes, which show CS of 5.52 F cm-2 in the negative potential range in 0.5 M Na2SO4 electrolyte. Good capacitive performance is achieved at a mass loading of 35 mg cm-2 due to the use of Celestine blue (CB) as a co-dispersant for individual materials. The mechanisms of CB adsorption on Ti3C2TX, Fe3O4, and CNTs and their electrostatic co-dispersion are discussed. The comparison of the capacitive behavior of Ti3C2TX-Fe3O4-CNT electrodes with Ti3C2TX-CNT and Fe3O4-CNT electrodes for the same active mass, electrode thickness and CNT content reveals a synergistic effect of the individual capacitive materials, which is observed due to the use of CB. The high CS of Ti3C2TX-Fe3O4-CNT composites makes them promising materials for application in negative electrodes of asymmetric SC devices.
Collapse
Affiliation(s)
| | - Igor Zhitomirsky
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada;
| |
Collapse
|
8
|
Liu H, Li L, Cui G, Wang X, Zhang Z, Lv X. Heterostructure Composites of CoS Nanoparticles Decorated on Ti 3C 2T x Nanosheets and Their Enhanced Electromagnetic Wave Absorption Performance. NANOMATERIALS 2020; 10:nano10091666. [PMID: 32858800 PMCID: PMC7560137 DOI: 10.3390/nano10091666] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/06/2020] [Accepted: 08/20/2020] [Indexed: 11/25/2022]
Abstract
As a typical two-dimensional material, MXene possesses excellent conductivity and tunable interlayer space, which makes it have an impressive development potential in the field of electromagnetic (EM) waves absorbing materials. In this work, we fabricated a sandwich structure CoS@Ti3C2Tx composite using a simple solvothermal process. The CoS nanoparticles are anchored on the Ti3C2Tx MXene sheets, forming a heterolayered structure. The results demonstrate that the CoS@Ti3C2Tx composites with the sandwich-like architecture showed excellent EM absorbing performance due to the synergistic effects of the conductivity loss, interface polarization, and dipole polarization. When the doping ratio was 40 wt %, the maximum reflection loss value of CoS@Ti3C2Tx was up to –59.2 dB at 14.6 GHz, and the corresponding effective absorption bandwidth (below –10 dB) reached 5.0 GHz when the thickness was only 2.0 mm. This work endows a new candidate for the design of MXene-based absorption materials with optimal performance.
Collapse
Affiliation(s)
- Hui Liu
- Graduate School, The Army Engineering University of PLA, Nanjing 210007, China; (H.L.); (X.W.); (Z.Z.)
| | - Ling Li
- Engineering College of Field Engineering, The Army Engineering University of PLA, Nanjing 210007, China;
- Correspondence: (L.L.); (G.C.)
| | - Guangzhen Cui
- Graduate School, The Army Engineering University of PLA, Nanjing 210007, China; (H.L.); (X.W.); (Z.Z.)
- Correspondence: (L.L.); (G.C.)
| | - Xinxin Wang
- Graduate School, The Army Engineering University of PLA, Nanjing 210007, China; (H.L.); (X.W.); (Z.Z.)
| | - Zhi Zhang
- Graduate School, The Army Engineering University of PLA, Nanjing 210007, China; (H.L.); (X.W.); (Z.Z.)
| | - Xuliang Lv
- Engineering College of Field Engineering, The Army Engineering University of PLA, Nanjing 210007, China;
| |
Collapse
|
9
|
Wei L, Ma J, Zhang W, Pan Z, Ma Z, Kang S, Fan Q. Enhanced Antistatic and Self-Heatable Wearable Coating with Self-Tiered Structure Caused by Amphiphilic MXene in Waterborne Polymer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6580-6588. [PMID: 32423221 DOI: 10.1021/acs.langmuir.9b03943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The antistatic and self-heatable flexible coating is highly desired for next-generation multifunctional clothing. MXene is a promising filler that possesses an excellent conductivity, an efficient photothermal conversion, and an outstanding compatibility with the waterborne polymer. In this study, MXene was integrated with waterborne polyacrylate by a solution-blending method. The polyacrylate/MXene composites display a self-tiered structure, and the composite coated leather possesses a surface resistivity of 7.85 × 109 Ω with 2 wt % loading, satisfying the B-level of the antistatic standard. The polyacrylate/MXene-0.5 wt % shows a higher temperature increase of 46.9 °C than that of pure polyacrylate after being irradiated by a 275 W IR light for 5 min, and the surface temperature of polyacrylate/MXene-0.5 wt % composite coated leather is 5.4 °C higher than that of polyacrylate coated leather after being irradiated by sunlight for 30 min. The tensile strength of the polyacrylate/MXene-1 wt % composite is increased by 28.3% compared with that of pure polyacrylate. All of the results prove its promising application in the multifunctional coating. Moreover, amphiphilic MXene was produced by changing the etching degree, which resulted in a self-tiered structure of the polyacrylate/MXene composite owing to the improved interfacial activity of MXene. The amphiphilic MXene possesses a decreased surface tension and can serve as a stabilizer for a Pickering emulsion, which suggests novel routes for constructing a multifunctional polymer/MXene composite.
Collapse
Affiliation(s)
- Linfeng Wei
- School of Materials Science & Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Wenbo Zhang
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Zhaoying Pan
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Zhonglei Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Songlei Kang
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Qianqian Fan
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| |
Collapse
|
10
|
Chen J, Huang Q, Huang H, Mao L, Liu M, Zhang X, Wei Y. Recent progress and advances in the environmental applications of MXene related materials. NANOSCALE 2020; 12:3574-3592. [PMID: 32016223 DOI: 10.1039/c9nr08542d] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
MXenes are a new type of two-dimensional (2D) transition metal carbide or carbonitride material with a 2D structure similar to graphene. The general formula of MXenes is Mn+1XnTx, in which M is an early transition metal element, X represents carbon, nitrogen and boron, and T is a surface oxygen-containing or fluorine-containing group. These novel 2D materials possess a unique 2D layered structure, large specific surface area, good conductivity, stability, and mechanical properties. Benefitting from these properties, MXenes have received increasing attention and emerged as new substrate materials for exploration of various applications including, energy storage and conversion, photothermal treatment, drug delivery, environmental adsorption and catalytic degradation. The progress on various applications of MXene-based materials has been reviewed; while only a few of them covered environmental remediation, surface modification of MXenes has never been highlighted. In this review, we highlight recent advances and achievements in surface modification and environmental applications (such as environmental adsorption and catalytic degradation) of MXene-based materials. The current studies on the biocompatibility and toxicity of MXenes and related materials are summarized in the following sections. The challenges and future directions of the environmental applications of MXene-based materials are also discussed and highlighted.
Collapse
Affiliation(s)
- Junyu Chen
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Qiang Huang
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Hongye Huang
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Liucheng Mao
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Meiying Liu
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Xiaoyong Zhang
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China. and Department of Chemistry and Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan
| |
Collapse
|
11
|
Nickel cobalt sulfide nanoparticles grown on titanium carbide MXenes for high-performance supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135514] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Organ-like Ti3C2 Mxenes/polyaniline composites by chemical grafting as high-performance supercapacitors. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113203] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|