1
|
Gao Y, Xie F, Bai H, Zeng L, Zhang J, Liu M, Zhu W. A carbon felt cathode modified by acidic oxidised carbon nanotubes for the high H 2O 2 generation and its application in electro-Fenton. ENVIRONMENTAL TECHNOLOGY 2024; 45:1669-1682. [PMID: 36408871 DOI: 10.1080/09593330.2022.2150093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Herein, a carbon felt (CF) cathode modified by the acidic oxidised carbon nanotubes (OCNTs) exhibited a high yield of the H2O2 generation in electro-Fenton. Rotating disk electrode (RDE) measurements showed that the selective generation of H2O2 occurred on the CF cathode coated by OCNTs (OCNTs/CF), which was attributed to the high amount of oxygen-containing functional groups in OCNTs. Moreover, the pollutant degradation efficiency could almost reach 100% within 60 min in electro-Fenton with OCNTs/CF as the cathode. Furthermore, the pollutant removal efficiency was kept constant after five consecutive cycles, indicating the high stability of OCNTs/CF cathode. Besides, the hydrophilicity of OCNTs/CF cathode was significantly enhanced owing to the abundant oxygen-contained functional groups on the surface of the OCNTs/CF cathode, which facilitated the mass transfer between the OCNTs/CF cathode and the reactants in the bulk solution. To reveal the possible mechanism in electro-Fenton equipped with the OCNTs/CF cathode, quenching experiments and electron paramagnetic resonance (EPR) investigations were further conducted. This work provided valuable insights into the fabrication of the non-metallic cathode with a high ability towards H2O2 generation in electro-Fenton for efficient pollutant removal.
Collapse
Affiliation(s)
- Ying Gao
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Fangshu Xie
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Huiling Bai
- College of literature, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Li Zeng
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Jingbin Zhang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Meiyu Liu
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Weihuang Zhu
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| |
Collapse
|
2
|
Guo H, Zhao C, Xu H, Zhang Y, Jiao Y, Hao H, Li N, Xu W. New insights into the slow-drying modified hydrophilic graphite felt gas-diffusion cathode using acetylene black/PTFE for efficient electro-Fenton removal of norfloxacin. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
3
|
Dong C, Fang W, Yi Q, Zhang J. A comprehensive review on reactive oxygen species (ROS) in advanced oxidation processes (AOPs). CHEMOSPHERE 2022; 308:136205. [PMID: 36049639 DOI: 10.1016/j.chemosphere.2022.136205] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/03/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
In this account, the reactive oxygen species (ROS) were comprehensively reviewed, which were based on electro-Fenton and photo-Fenton processes and correlative membrane filtration technology. Specifically, this review focuses on the fundamental principles and applications of advanced oxidation processes (AOPs) based on a series of nanomaterials, and we compare the pros and cons of each method and point out the perspective. Further, the emerging reviews regarding AOPs rarely emphasize the involved ROS and consider the convenience of radical classification and transformation mechanism, such a review is of paramount importance to be needed. Owing to the strong oxidation ability of radical (e.g., •OH, O2•-, and SO4•-) and non-radical (e.g., 1O2 and H2O2), these ROS would attack the organic contaminants of emerging concern, thus achieving the goal of environmental remediation. Hopefully, this review can offer detailed theoretical guidance for the researchers, and we believe it able to offer the frontier knowledge of AOPs for wastewater treatment plants (WWTPs).
Collapse
Affiliation(s)
- Chencheng Dong
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Wenzhang Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China
| | - Qiuying Yi
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China.
| |
Collapse
|
4
|
Santos MC, Antonin VS, Souza FM, Aveiro LR, Pinheiro VS, Gentil TC, Lima TS, Moura JPC, Silva CR, Lucchetti LEB, Codognoto L, Robles I, Lanza MRV. Decontamination of wastewater containing contaminants of emerging concern by electrooxidation and Fenton-based processes - A review on the relevance of materials and methods. CHEMOSPHERE 2022; 307:135763. [PMID: 35952792 DOI: 10.1016/j.chemosphere.2022.135763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
In recent years, there has been an increasingly growing interest regarding the use of electrochemical advanced oxidation processes (EAOPs) which are considered highly promising alternative treatment techniques for addressing environmental issues related to pollutants of emerging concern. In EAOPs, electrogenerated oxidizing agents, such as hydroxyl radical (HO•), can react non-selectively with a wide range of organic compounds, degrading and mineralizing their structures to unharmful molecules like CO2, H2O, and inorganic ions. To this date, a broad spectrum of advanced electrocatalysts have been developed and applied for the treatment of compounds of interest in different matrices, specifically aiming at enhancing the degradation performance. New combined methods have also been employed as alternative treatment techniques targeted at circumventing the major obstacles encountered in Fenton-based processes, such as high costs and energy consumption, which still contribute significantly toward inhibiting the large-scale application of these processes. First, some fundamental aspects of EAOPs will be presented. Further, we will provide an overview of electrode materials which have been recently developed and reported in the literature, highlighting different anode and cathode structures employed in EAOPs, their main advantages and disadvantages, as well as their contribution to the performance of the treatment processes. The influence of operating parameters, such as initial concentrations, pH effect, temperature, supporting electrolyte, and radiation source, on the treatment processes were also studied. Finally, hybrid techniques which have been reported in the literature and critically assess the most recent techniques used for evaluating the degradation efficiency of the treatment processes.
Collapse
Affiliation(s)
- Mauro C Santos
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil.
| | - Vanessa S Antonin
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil
| | - Felipe M Souza
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil; Departamento de Química, Instituto Federal de Educação, Ciência e Tecnologia Goiano, BR-153, Km 633, Zona Rural, CEP: 75650-000, Morrinhos, GO, Brazil
| | - Luci R Aveiro
- São Paulo Federal Institute of Education, Science and Technology, Rua Pedro Vicente, 625, Canindé São Paulo, CEP: 01109-010, SP, Brazil
| | - Victor S Pinheiro
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil
| | - Tuani C Gentil
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil
| | - Thays S Lima
- Department of Chemistry, Institute of Chemical and Pharmaceutical Environmental Sciences, Federal University of São Paulo (UNIFESP), Rua Prof. Artur Riedel, n 275 - Jd. Eldorado, CEP: 09972-270, Diadema, SP, Brazil
| | - João P C Moura
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil
| | - Carolina R Silva
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil
| | - Lanna E B Lucchetti
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil
| | - Lucia Codognoto
- Department of Chemistry, Institute of Chemical and Pharmaceutical Environmental Sciences, Federal University of São Paulo (UNIFESP), Rua Prof. Artur Riedel, n 275 - Jd. Eldorado, CEP: 09972-270, Diadema, SP, Brazil
| | - Irma Robles
- Center for Research and Technological Development in Electrochemistry, S.C., Parque Tecnológico Querétaro, 76703, Sanfandila, Pedro Escobedo, Querétaro, Mexico
| | - Marcos R V Lanza
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Avenida Trabalhador São-carlense 400, São Carlos, SP, 13566-590, Brazil
| |
Collapse
|
5
|
Xie F, Gao Y, Zhang J, Bai H, Zhang J, Li Z, Zhu W. A novel bifunctional cathode for the generation and activation of H2O2 in electro-Fenton: Characteristics and mechanism. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Recent Literature Review of Significance of Polypyrrole and Its Biocomposites in Adsorption of Dyes from Aqueous Solution. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/7047832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
The usage of dyes has been tremendously augmented due to industrialization and human’s intrinsic fascination with colors. Owing to their excessive usage in industries like textiles, food, cosmetics, paints, printing etc., it is indisputably a contributing factor in aquatic pollution. Dyes effluents have emerged as a burgeoning challenge. Owing to issues such as toxicity, mutagenicity, and disturbed photosynthesis associated with dye contamination, it is crucial to look for an explication to deal with this challenge. Polypyrrole-based biocomposites have been reported as good adsorbents for textile wastewater treatment. In the last decade, numerous studies have stated the effective removal of dyes via Polypyrrole-based biocomposites. This review concentrates on the implication of different Polypyrrole-based biocomposites for decontamination of dyes and synthesis methods, characteristics, and mechanism of dyes degradation by these biocomposites from wastewater.
Collapse
|
7
|
Use of WO2.72 Nanoparticles/Vulcan® XC72 GDE Electrocatalyst Combined with the Photoelectro-Fenton Process for the Degradation of 17α-Ethinylestradiol (EE2). Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00724-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Gao Y, Zhu W, Li Y, Zhang Q, Chen H, Zhang J, Huang T. Anthraquinone (AQS)/polyaniline (PANI) modified carbon felt (CF) cathode for selective H 2O 2 generation and efficient pollutant removal in electro-Fenton. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114315. [PMID: 34923409 DOI: 10.1016/j.jenvman.2021.114315] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/28/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
A novel binder-free anthraquinone (AQS)/polyaniline (PANI) modified carbon felt (CF) cathode for selective H2O2 generation and efficient pollutant removal in electro-Fenton was fabricated by CV electro-deposition method. AQS, the oxygen reduction reaction (ORR) catalyst, was immobilized by the PANI film, which contributed to the obtained high stability of the AQS/PANI@CF cathode. The concentration of the electro-generated H2O2 on AQS/PANI@CF cathode (83.3 μmol L-1) was about 10 times higher than that of the bare CF cathode. And the high yield of H2O2 was attributed to the catalytic reduction of O2 by AQS to generate more superoxide radical (O2•-), which combined with H+ to form H2O2. Additionally, the rhodamine B (RhB) degradation efficiency reached 98.8% within 60 min with the AQS/PANI@CF served as the cathode with high stability and good repeatability. The main generated reactive radicals were determined by the quenching experiments and the electron paramagnetic resonance (EPR) tests. Besides, a plausible mechanism of the AQS/PANI@CF cathode applied electro-Fenton process was proposed. This work provided a reliable reference for the subsequent investigations of the binder-free cathode with high performance and stability.
Collapse
Affiliation(s)
- Ying Gao
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Weihuang Zhu
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Yaqi Li
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Qingyu Zhang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Haonan Chen
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jianfeng Zhang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
9
|
Guo H, Xu H, Zhao C, Hao X, Yang Z, Xu W. High-effective generation of H2O2 by oxygen reduction utilizing organic acid anodized graphite felt as cathode. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Catalytic hydroprocessing of organic matter of sapropels. The effects of sapropel nature on the yield and composition of products. Catal Today 2021. [DOI: 10.1016/j.cattod.2021.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Cui T, Xiao Z, Wang Z, Liu C, Song Z, Wang Y, Zhang Y, Li R, Xu B, Qi F, Ikhlaq A. FeS 2/carbon felt as an efficient electro-Fenton cathode for carbamazepine degradation and detoxification: In-depth discussion of reaction contribution and empirical kinetic model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 282:117023. [PMID: 33823313 DOI: 10.1016/j.envpol.2021.117023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Carbamazepine (CBZ) decay by electro-Fenton (EF) oxidation using a novel FeS2/carbon felt (CF) cathode, instead of a soluble iron salt, was studied with the aim to accelerate the reaction between H2O2 and ferrous ions, which helps to produce more hydroxyl radicals (•OH) and eliminate iron sludge. First, fabricated FeS2 and its derived cathode were characterized by scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. Anodes were then screened, with DSA (Ti/IrO2-RuO2) showing the best performance under EF oxidation regarding CBZ degradation and electrochemical characterization. Several operating parameters of this EF process, such as FeS2 loading, current density, gap between electrodes (GBE), initial [CBZ], and electrolyte type, were also investigated. Accordingly, a nonconsecutive empirical kinetic model was established to predict changes in CBZ concentration under the given operational parameters. The contribution of different oxidation types to the EF process was calculated using kinetic analysis and quenching experiments to verify the role of the FeS2-modified cathode. The reaction contributions of anodic oxidation (AO), H2O2 electrolysis (EP), and EF oxidation to CBZ removal were 12.81%, 7.41%, and 79.77%, respectively. The •OH exposure of EP and EF oxidation was calculated, confirming that •OH exposure was approximately 22.45-fold higher using FeS2-modified CF. Finally, the 19 intermediates formed by CBZ degradation were identified by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Accordingly, four CBZ degradation pathways were proposed. ECOSAR software was used to assess the ecotoxicity of intermediates toward fish, daphnia, and green algae, showing that this novel EF oxidation process showed good toxicity reduction performance. A prolonged EF retention time was proposed to be necessary to obtain clean and safe water, even if the targeted compound was removed at an earlier time.
Collapse
Affiliation(s)
- Tingyu Cui
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Zhihui Xiao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Zhenbei Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Chao Liu
- Jiangsu Key Lab of Industrial Pollution Control and Resource Reuse, School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Zilong Song
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yiping Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yuting Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Ruoyu Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Bingbing Xu
- State Key Lab of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fei Qi
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Amir Ikhlaq
- Institute of Environment Engineering and Research, University of Engineering and Technology, GT Road, 54890, Lahore, Punjab, Pakistan
| |
Collapse
|
12
|
Wang N, Ma S, Zuo P, Duan J, Hou B. Recent Progress of Electrochemical Production of Hydrogen Peroxide by Two-Electron Oxygen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100076. [PMID: 34047062 PMCID: PMC8336511 DOI: 10.1002/advs.202100076] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/17/2021] [Indexed: 05/06/2023]
Abstract
Shifting electrochemical oxygen reduction reaction (ORR) via two-electron pathway becomes increasingly crucial as an alternative/green method for hydrogen peroxide (H2 O2 ) generation. Here, the development of 2e- ORR catalysts in recent years is reviewed, in aspects of reaction mechanism exploration, types of high-performance catalysts, factors to influence catalytic performance, and potential applications of 2e- ORR. Based on the previous theoretical and experimental studies, the underlying 2e- ORR catalytic mechanism is firstly unveiled, in aspect of reaction pathway, thermodynamic free energy diagram, limiting potential, and volcano plots. Then, various types of efficient catalysts for producing H2 O2 via 2e- ORR pathway are summarized. Additionally, the catalytic active sites and factors to influence catalysts' performance, such as electronic structure, carbon defect, functional groups (O, N, B, S, F etc.), synergistic effect, and others (pH, pore structure, steric hindrance effect, etc.) are discussed. The H2 O2 electrogeneration via 2e- ORR also has various potential applications in wastewater treatment, disinfection, organics degradation, and energy storage. Finally, potential future directions and prospects in 2e- ORR catalysts for electrochemically producing H2 O2 are examined. These insights may help develop highly active/selective 2e- ORR catalysts and shape the potential application of this electrochemical H2 O2 producing method.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Center for Ocean Mega‐ScienceChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Open Studio for Marine Corrosion and ProtectionPilot National Laboratory for Marine Science and Technology (Qingdao)1 Wenhai RoadQingdao266237China
| | - Shaobo Ma
- MITT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Pengjian Zuo
- MITT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Center for Ocean Mega‐ScienceChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Open Studio for Marine Corrosion and ProtectionPilot National Laboratory for Marine Science and Technology (Qingdao)1 Wenhai RoadQingdao266237China
| | - Baorong Hou
- Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Center for Ocean Mega‐ScienceChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Open Studio for Marine Corrosion and ProtectionPilot National Laboratory for Marine Science and Technology (Qingdao)1 Wenhai RoadQingdao266237China
| |
Collapse
|
13
|
Liang J, Xiang Q, Lei W, Zhang Y, Sun J, Zhu H, Wang S. Ferric iron reduction reaction electro-Fenton with gas diffusion device: A novel strategy for improvement of comprehensive efficiency in electro-Fenton. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125195. [PMID: 33951859 DOI: 10.1016/j.jhazmat.2021.125195] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/06/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Applying the optimal 2-electron oxygen reduction reaction potential in electro-Fenton (2e-ORR-EF) for degradation has become a common strategy because of the highest H2O2 generation rate in such condition. However, in 2e-ORR-EF system, the Fe(III) ions crystallize on the surface of cathode and form a layer of film according to SEM, XPS, XRD and Mössbauer spectrum resulting in poor reaction rate of EF. Hence, we propose FRR-EF, which is operated by applying the optimal potential of ferric iron reduction reaction (FRR) rather than that of 2e-ORR on cathode for EF. Gas diffusion device was also carried out to ensure the H2O2 generation rate. In this novel strategy, only - 0.1 V was applied on cathode. High H2O2 production rate (0.021 ± 0.002 mmol L-1 min-1 cm-2), and slow Fe(II) consumption rate (0.03 min-1) were achieved. The EIS result showed that at this potential, the formation of the Fe film was effectively alleviated, thus prolonging the degradation life of the cathode. This new strategy can balance both 2e-ORR and FRR, thus improving the comprehensive efficiency of EF, which provides essential references to the EF not only in potential operation but also in the design of reaction device.
Collapse
Affiliation(s)
- Jiaxiang Liang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Qi Xiang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Weidong Lei
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Yun Zhang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Jie Sun
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China.
| | - Hongxiang Zhu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Shuangfei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| |
Collapse
|
14
|
Lignin-derived (nano)materials for environmental pollution remediation: Current challenges and future perspectives. Int J Biol Macromol 2021; 178:394-423. [PMID: 33636266 DOI: 10.1016/j.ijbiomac.2021.02.165] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/12/2021] [Accepted: 02/21/2021] [Indexed: 12/31/2022]
Abstract
The supply of affordable drinking and sufficiently clean water for human consumption is one of the world's foremost environmental problems and a large number of scientific research works are addressing this issue Various hazardous/toxic environmental contaminants in water bodies, both inorganic and organic (specifically heavy metals and dyes), have become a serious global problem. Nowadays, extensive efforts have been made to search for novel, cost effective and practical biosorbents derived from biomass resources with special attention to value added, biomass-based renewable materials. Lignin and (nano)material adorned lignin derived entities can proficiently and cost effectively remove organic/inorganic contaminants from aqueous media. As low cost of preparation is crucial for their wide applications in water/wastewater treatment (particularly industrial water), future investigations must be devoted to refining and processing the economic viability of low cost, green lignin-derived (nano)materials. Production of functionalized lignin, lignin supported metal/metal oxide nanocomposites or hydrogels is one of the effective approaches in (nano)technology. This review outlines recent research progresses, trends/challenges and future prospects about lignin-derived (nano)materials and their sustainable applications in wastewater treatment/purification, specifically focusing on adsorption and/or catalytic reduction/(photo)degradation of a variety of pollutants.
Collapse
|
15
|
Sun C, Chen T, Huang Q, Duan X, Zhan M, Ji L, Li X, Wang S, Yan J. Biochar cathode: Reinforcing electro-Fenton pathway against four-electron reduction by controlled carbonization and surface chemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142136. [PMID: 32911157 DOI: 10.1016/j.scitotenv.2020.142136] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Porous biochars have attracted tremendous interests in electrochemical applications. In this study, a family of biochars were prepared from cellulose subject to different carbonization temperatures ranging from 400 to 700 °C, and the biochars were in-situ activated by a molten salt (ZnCl2) to construct a hierarchically porous architecture. The activated porous biochars (ZnBC) were used as a carbocatalyst for electro-Fenton (EF) oxidation of organic contaminants. Results showed that high-temperature carbonization improved the activity of biochar for four-electron oxygen reduction reaction (ORR) due to the rich carbon defects, while the mild-temperature treatment regulated the species and distribution of oxygen functional groups to increase the production of hydrogen peroxide (H2O2) via a selective two-electron ORR pathway. ZnBC-550 was the best cathode material with a high ORR activity without compromise in H2O2 selectivity; a high production rate of H2O2 (796.1 mg/g/h) was attained at -0.25 V vs RHE at pH of 1. Furthermore, Fe(II) addition induced an electro-Fenton system to attain fast decomposition of various organic pollutants at -0.25 V vs RHE (reversible hydrogen electrode) and pH of 3 with a satisfactory mineralization efficiency toward phenolic pollutants. The EF system maintains its excellent stability for 10 cycles. Hydroxyl radicals were identified as the dominant reactive oxygen species based on in situ electron paramagnetic resonance (EPR) analysis and radical quenching tests. This study gains new insights into electrocatalytic H2O2 production over porous biochars and provides a low-cost, robust and high-performance electro-Fenton cathode for wastewater purification.
Collapse
Affiliation(s)
- Chen Sun
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Tong Chen
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Qunxing Huang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Mingxiu Zhan
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China
| | - Longjie Ji
- National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Group Environmental Remediation Co. Ltd., Beijing 100015, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaodong Li
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jianhua Yan
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
16
|
Preparation of boron-doped diamond nanospikes on porous Ti substrate for high-performance supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136649] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Yu F, Wang K, Wang C, He X, Liao Y, Zhao S, Mao H, Li X, Ma J. Anthraquinone Covalently Modified Carbon Nanotubes for Efficient and Steady Electrocatalytic H2O2 Generation. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0161-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
18
|
Ye G, Luo P, Zhao Y, Qiu G, Hu Y, Preis S, Wei C. Three-dimensional Co/Ni bimetallic organic frameworks for high-efficient catalytic ozonation of atrazine: Mechanism, effect parameters, and degradation pathways analysis. CHEMOSPHERE 2020; 253:126767. [PMID: 32464763 DOI: 10.1016/j.chemosphere.2020.126767] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Herein, the potential of bimetallic MOFs in catalytic ozonation was investigated for the first time. Three novel ozonation catalysts, i.e. cobalt-based, nickel-based and cobalt/nickel-based metal-organic frameworks (Co-MOF, Ni-MOF and Co/Ni-MOF), were synthesized, characterized by XRD, SEM, N2 sorption-desorption isotherms, FTIR and XPS, and applied in catalytic ozonation for atrazine removal. It was found that the catalysts showed outstanding performance in the catalytic ozonation, especially Co/Ni-MOF which was attributed to multiple metal sites, higher coordination unsaturation, metal centers with larger electron density, and better efficiency in electron transfer than its single-metal counterparts. Under specific experimental conditions, 47.8%, 67.0%, 75.5%, and 93.9% of atrazine were removed after adsorption and degradation in the ozonation system without catalyst, and the catalytic ozonation systems with Co-MOF, Ni-MOF and Co/Ni-MOF, respectively. Higher removal rates could be achieved by growing initial pH, increasing oxidant dosage and reducing pollutant concentration, while an excess of Co/Ni-MOF was not favorable for the catalytic ozonation. Surface hydroxyl groups and acid sites were considered as the critical catalytic sites on Co/Ni-MOF. From the results of EPR tests, O2·-, 1O2 and ·OH were ascertained as the main reactive species in the degradation. It was suspected that O2·- and H2O2 played important roles in the formation of ·OH and the cycle of Co(II)/Co(III) and Ni(II)/Ni(III). Additionally, Co/Ni-MOF displayed good stability and reusability in cycling experiments, ascribed to the enhancement of the porosity and pore hydrophobicity. Finally, based on MS/MS analysis at different reaction times, major degradation pathways for atrazine were proposed.
Collapse
Affiliation(s)
- Guojie Ye
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Pei Luo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yasi Zhao
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yun Hu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Sergei Preis
- Department of Materials and Environment Technology, Tallinn University of Technology, Tallinn, 19086, Estonia
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Zhu W, Li Y, Gao Y, Wang C, Zhang J, Bai H, Huang T. A new method to fabricate the cathode by cyclic voltammetric electrodeposition for electro-Fenton application. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136415] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Li X, Liu L, Liu T, Zhang D, An C, Yang F. An active electro-Fenton PVDF/SS/PPy cathode membrane can remove contaminant by filtration and mitigate fouling by pairing with sacrificial iron anode. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118100] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Zhou Y, Li Z, Hao C, Zhang Y, Chai S, Han G, Xu H, Lu J, Dang Y, Sun X, Fu Y. Electrocatalysis enhancement of α, β-PbO2 nanocrystals induced via rare earth Er(III) doping strategy: Principle, degradation application and electrocatalytic mechanism. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135535] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
22
|
Yu F, Tao L, Cao T. High yield of hydrogen peroxide on modified graphite felt electrode with nitrogen-doped porous carbon carbonized by zeolitic imidazolate framework-8 (ZIF-8) nanocrystals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113119. [PMID: 31546080 DOI: 10.1016/j.envpol.2019.113119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 08/18/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
The aim of this work was to develop a new modified graphite felt (GF) as carbonaceous cathode for electro-Fenton (EF) application loaded with nitrogen-doped porous carbon (NPC) carbonized by zeolitic imidazolate framework-8 (ZIF-8) nanocrystals as carbon precursor. At initial pH 7, the highest generation rate of H2O2 was 0.74 mg h-1 cm-2 by applying 12.5 mA cm-2 by modified cathode, but in the same condition, the GF only had 0.067 mg h-1 cm-2. The production efficiency increased 10 times. Additionally, phenol (50 mg L-1) could be largely removed by NPC modified cathode, the mineralization ratio and TOC reached 100% and 82.61% at 120 min of optimization condition, respectively. The NPC cathode kept its stability after 5 cycles. The materials were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and linear sweep voltammetry (LSV). The results demonstrated that a homogenous NPC covered the carbon-based material GF. The existing graphitic-N and sp2 carbon of NPC promoted the electron transfer between carbon surface and oxygen molecules, as well as accelerated the oxygen reduction reaction (ORR) and the modified graphite felt had much higher electrocatalytic activity. In this work, several manufacturing parameters like the current, pH and load of NPC were optimized. The optimized design could improve the efficiency of new cathode with in situ electro-chemical production of H2O2 and significantly offer a potential material for degradation of organic pollutants.
Collapse
Affiliation(s)
- Fangke Yu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Ling Tao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Tianyi Cao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| |
Collapse
|
23
|
Zhang Y, Wang D, Wang X, Chen F. The influence of mesopore size distributions on the electrochemical activity and two-electron selectivity of the oxygen reduction reaction in nitrogen-doped and CoOx-loaded activated carbon. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Zhou W, Meng X, Gao J, Alshawabkeh AN. Hydrogen peroxide generation from O 2 electroreduction for environmental remediation: A state-of-the-art review. CHEMOSPHERE 2019; 225:588-607. [PMID: 30903840 PMCID: PMC6921702 DOI: 10.1016/j.chemosphere.2019.03.042] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 05/12/2023]
Abstract
The electrochemical production of hydrogen peroxide (H2O2) by 2-electron oxygen reduction reaction (ORR) is an attractive alternative to the present complex anthraquinone process. The objective of this paper is to provide a state-of-the-arts review of the most important aspects of this process. First, recent advances in H2O2 production are reviewed and the advantages of H2O2 electrogeneration via 2-electron ORR are highlighted. Second, the selectivity of the ORR pathway towards H2O2 formation as well as the development process of H2O2 production are presented. The cathode characteristics are the decisive factors of H2O2 production. Thus the focus is shifted to the introduction of commonly used carbon cathodes and their modification methods, including the introduction of other active carbon materials, hetero-atoms doping (i.e., O, N, F, B, and P) and decoration with metal oxides. Cathode stability is evaluated due to its significance for long-term application. Effects of various operational parameters, such as electrode potential/current density, supporting electrolyte, electrolyte pH, temperature, dissolved oxygen, and current mode on H2O2 production are then discussed. Additionally, the environmental application of electrogenerated H2O2 on aqueous and gaseous contaminants removal, including dyes, pesticides, herbicides, phenolic compounds, drugs, VOCs, SO2, NO, and Hg0, are described. Finally, a brief conclusion about the recent progress achieved in H2O2 electrogeneration via 2-electron ORR and an outlook on future research challenges are proposed.
Collapse
Affiliation(s)
- Wei Zhou
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China; Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Xiaoxiao Meng
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China
| | - Jihui Gao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China.
| | - Akram N Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
25
|
Wang YT, Tu CH, Lin YS. Application of Graphene and Carbon Nanotubes on Carbon Felt Electrodes for the Electro-Fenton System. MATERIALS 2019; 12:ma12101698. [PMID: 31130594 PMCID: PMC6567037 DOI: 10.3390/ma12101698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/15/2019] [Accepted: 05/23/2019] [Indexed: 12/02/2022]
Abstract
The electro-Fenton system has the ability to degrade wastewater and has received attention from many researchers. Currently, the core development objective is to effectively increase the degraded wastewater decolorization efficiency in the system. In this study, to improve the electro-Fenton system reaction rate and overall electrical properties, we used polyvinylidene difluoride to fix carbon nanotubes (CNTs) and graphene onto the system cathode (carbon felt electrode), which was then used to process Reactive Black 5 wastewater. Furthermore, we (1) used scanning electron microscopy to observe the structural changes in the electrode surface after modification; (2) used the Tafel curve to determine the electrode corrosion voltage and corrosion rate; and (3) analyzed the azo-dye decolorization level. The results showed that the maximum system decolorization rates of the CNT- and graphene-modified carbon felt electrodes were 55.3% and 70.1%, respectively. These rates were, respectively, 1.2 and 1.5 times higher than that of the unmodified carbon felt electrode, implying that we successfully improved the cathode characteristics. The modified electrode exhibited an improved conductivity and corrosion resistance, which, in turn, improved the system decolorization efficiency. This significantly increased the electro-Fenton system overall efficacy, making it valuable for future applications.
Collapse
Affiliation(s)
- Yi-Ta Wang
- Department of Mechanical and Electro-Mechanical Engineering, National I-Lan University, Yilan City 26047, Taiwan.
| | - Chang-Hung Tu
- Department of Mechanical and Electro-Mechanical Engineering, National I-Lan University, Yilan City 26047, Taiwan.
| | - Yue-Sheng Lin
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan.
| |
Collapse
|
26
|
Xiao K, Liang H, Chen S, Yang B, Zhang J, Li J. Enhanced photoelectrocatalytic degradation of bisphenol A and simultaneous production of hydrogen peroxide in saline wastewater treatment. CHEMOSPHERE 2019; 222:141-148. [PMID: 30703653 DOI: 10.1016/j.chemosphere.2019.01.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/14/2019] [Accepted: 01/20/2019] [Indexed: 06/09/2023]
Abstract
The degradation of organic pollutants in saline wastewater has been a challenge for environmental remediation. In this study, a two-chamber cell was structured to simultaneously degrade organic contaminants (bisphenol A, BPA) from saline wastewater and produce hydrogen peroxide (H2O2). In the anode chamber, a new solar-light-driven system was devised using chloride ions (Cl‾) as a medium and WO3 photoanode as a radical initiator. Under solar light irradiation, photogenerated holes yielded at the WO3 photoanode promoted the conversion of Cl‾ to reactive chlorine species, which could oxidize BPA more rapidly. The results indicated that the BPA removal can be significantly enhanced by increasing pH to 10.8 or increasing the Cl‾ concentration to 200 mM. At these conditions, 92% BPA was degraded into CO2 and H2O in 120 min. In the cathode chamber, a new dopamine modified carbon felt (CF-DPA) cathode was employed to produce H2O2, obtaining a high concentration of 5.4 mM under optimum conditions. The electrochemical analyses for CF-DPA revealed that dopamine modification promoted electron transfer and enhanced the two-electron oxygen reduction to increase H2O2 yields.
Collapse
Affiliation(s)
- Ke Xiao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Huiyu Liang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Siyuan Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, Shenzhen University, Shenzhen 518060, China.
| | - Junmin Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Juying Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
27
|
Liang J, Zhang Y, Song C, Tang D, Sun J. Double-potential electro-Fenton: A novel strategy coupling oxygen reduction reaction and Fe2+/Fe3+ recycling. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2018.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|