1
|
Schulz A, Moch K, Hinz Y, Lunkenheimer P, Böhmer R. Translational and reorientational dynamics in carboxylic acid-based deep eutectic solvents. J Chem Phys 2024; 160:074503. [PMID: 38380750 DOI: 10.1063/5.0189533] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
The glass formation and the dipolar reorientational motions in deep eutectic solvents (DESs) are frequently overlooked, despite their crucial role in defining the room-temperature physiochemical properties. To understand the effects of these dynamics on the ionic conductivity and their relation to the mechanical properties of the DES, we conducted broadband dielectric and rheological spectroscopy over a wide temperature range on three well-established carboxylic acid-based natural DESs. These are the eutectic mixtures of choline chloride with oxalic acid (oxaline), malonic acid (maline), and phenylacetic acid (phenylaceline). In all three DESs, we observe signs of a glass transition in the temperature dependence of their dipolar reorientational and structural dynamics, as well as varying degrees of motional decoupling between the different observed dynamics. Maline and oxaline display a breaking of the Walden rule near the glass-transition temperature, while the relation between the dc conductivity and dipolar relaxation time in both maline and phenylaceline is best described by a power law. The glass-forming properties of the investigated systems not only govern the orientational dipolar motions and rheological properties, which are of interest from a fundamental point of view, but they also affect the dc conductivity, even at room temperature, which is of high technical relevance.
Collapse
Affiliation(s)
- A Schulz
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - K Moch
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Y Hinz
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - P Lunkenheimer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - R Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| |
Collapse
|
2
|
Lu Q, Li H, Tan Z. Zwitterionic Eutectogel-Based Wearable Strain Sensor with Superior Stretchability, Self-Healing, Self-Adhesion, and Wide Temperature Tolerance. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37410953 DOI: 10.1021/acsami.3c05848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Ionic conductive eutectogels have great application prospects in wearable strain sensors owing to their temperature tolerance, simplicity, and low cost. Eutectogels prepared by cross-linking polymers have good tensile properties, strong self-healing capacities, and excellent surface-adaptive adhesion. Herein, we emphasize for the first time the potential of zwitterionic deep eutectic solvents (DESs), in which betaine is a hydrogen bond acceptor. Polymeric zwitterionic eutectogels were prepared by directly polymerizing acrylamide in zwitterionic DESs. The obtained eutectogels owned excellent ionic conductivity (0.23 mS cm-1), superior stretchability (approximately 1400% elongation), self-healing (82.01%), self-adhesion, and wide temperature tolerance. Accordingly, the zwitterionic eutectogel was successfully applied in wearable self-adhesive strain sensors, which can adhere to skins and monitor body motions with high sensitivity and excellent cyclic stability over a wide temperature range (-80 to 80 °C). Moreover, this strain sensor owned an appealing sensing function on bidirectional monitoring. The findings in this work can pave the way for the design of soft materials with versatility and environmental adaptation.
Collapse
Affiliation(s)
- Qianwen Lu
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Hengfeng Li
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Zhijian Tan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, Hunan, P. R. China
| |
Collapse
|
3
|
Khatouri M, Lemaalem M, Ahfir R, El Khaoui S, Derouiche A, Filali M. Sol/gel transition of oil/water microemulsions controlled by surface grafted triblock copolymer dodecyl-PEO 227-dodecyl: molecular dynamics simulations with experimentally validated interaction potential. RSC Adv 2021; 11:20824-20835. [PMID: 35479396 PMCID: PMC9034022 DOI: 10.1039/d1ra02649f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/01/2021] [Indexed: 11/21/2022] Open
Abstract
We studied a large range of identical spherical oil/water microemulsion (O/W-MI) volume fractions. The O/W-MIs are stabilized by cetylpyridinium chloride ionic surfactant (CpCl) and octanol cosurfactant and dispersed in salt water. We grafted different numbers of dodecyl-(polyEthylene oxide)227-dodecyl triblock copolymer that we note (n(D-PEO227-D)), where n varies from 0 to 12. We accomplished the grafting process by replacing a small amount of CpCl and octanol with the appropriate n(D-PEO227-D). The aim is to determine the interaction/structure relationship of the covered microemulsions. Precisely, we are interested in a quantitative investigation of the influence of volume fraction Φ, temperature (T), and n(D-PEO227-D) on the microemulsion sol/gel transition. To this end, we first study the uncoated microemulsion structure depending only on Φ. Second, we determine the coated microemulsions structure as a function of n(D-PEO227-D) for different Φ. Third, we examine the effect of temperature on the uncoated and coated microemulsion. We show that the sol/gel transition is controlled by the three main parameters, Φ, T, and n(D-PEO227-D). Accordingly, the uncoated microemulsion sol/gel transition, at ambient temperature, occurred for Φ ≃ 33.65%. By increasing Φ, the O/W-MIs show a glass state, which occurs, along with the gel state, at Φ ≃ 37% and arises clearly at Φ ≃ 60%. The coated O/W-MI sol/gel transition is found to be linearly dependent on n(D-PEO227-D) and takes place for Φ ≃ 26.5% for n(D-PEO227-D) = 12. Ordinarily, the decrease in temperature leads to gel formation of microemulsions for low Φ. Additionally, in this work, we found that the gelation temperature increases linearly with n(D-PEO227-D). Thus, the parameter n(D-PEO227-D) can control the sol/gel transition of the O/W-MIs at ambient temperature and moderate Φ.
Collapse
Affiliation(s)
- M Khatouri
- Laboratoire de Physique Appliquée, Informatique et Statistique (LPAIS) Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz BP 1796, Atlas Fes Morocco
| | - M Lemaalem
- Laboratoire de Physique des Polymères et Phénomènes Critiques Sciences, Faculty Ben M'Sik, Hassan II University P.O. Box 7955 Casablanca Morocco
| | - R Ahfir
- Laboratoire de Physique Appliquée, Informatique et Statistique (LPAIS) Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz BP 1796, Atlas Fes Morocco
| | - S El Khaoui
- Laboratoire de Physique Appliquée, Informatique et Statistique (LPAIS) Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz BP 1796, Atlas Fes Morocco
| | - A Derouiche
- Laboratoire de Physique des Polymères et Phénomènes Critiques Sciences, Faculty Ben M'Sik, Hassan II University P.O. Box 7955 Casablanca Morocco
| | - M Filali
- Laboratoire de Physique Appliquée, Informatique et Statistique (LPAIS) Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz BP 1796, Atlas Fes Morocco
| |
Collapse
|
4
|
Virya A, Bagchi R, Lian K. Dimethyl sulfoxide additive to Na2SO4-based polymer electrolytes for low temperature capacitive devices. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Smith CJ, Wagle DV, Bhawawet N, Gehrke S, Hollóczki O, Pingali SV, O’Neill H, Baker GA. Combined Small-Angle Neutron Scattering, Diffusion NMR, and Molecular Dynamics Study of a Eutectogel: Illuminating the Dynamical Behavior of Glyceline Confined in Bacterial Cellulose Gels. J Phys Chem B 2020; 124:7647-7658. [DOI: 10.1021/acs.jpcb.0c04916] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chip J. Smith
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Durgesh V. Wagle
- Department of Chemistry and Physics, Florida Gulf Coast University, 10501 FGCU Boulevard, Fort Myers, Florida 33965, United States
| | - Nakara Bhawawet
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Sascha Gehrke
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4+6, Bonn 53115, Germany
| | - Oldamur Hollóczki
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4+6, Bonn 53115, Germany
| | - Sai Venkatesh Pingali
- Biology and Soft Matter Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831, United States
| | - Hugh O’Neill
- Biology and Soft Matter Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831, United States
| | - Gary A. Baker
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| |
Collapse
|
6
|
Tomé LC, Mecerreyes D. Emerging Ionic Soft Materials Based on Deep Eutectic Solvents. J Phys Chem B 2020; 124:8465-8478. [DOI: 10.1021/acs.jpcb.0c04769] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Liliana C. Tomé
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - David Mecerreyes
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
7
|
Zhao S, Huang W, Guan Z, Jin B, Xiao D. A novel bis(dihydroxypropyl) viologen-based all-in-one electrochromic device with high cycling stability and coloration efficiency. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.135] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Self‐Assembled Gels Formed in Deep Eutectic Solvents: Supramolecular Eutectogels with High Ionic Conductivity. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201810600] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Ruiz-Olles J, Slavik P, Whitelaw NK, Smith DK. Self-Assembled Gels Formed in Deep Eutectic Solvents: Supramolecular Eutectogels with High Ionic Conductivity. Angew Chem Int Ed Engl 2019; 58:4173-4178. [PMID: 30682215 DOI: 10.1002/anie.201810600] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Indexed: 12/27/2022]
Abstract
1,3:2,4-Dibenzylidene-d-sorbitol (DBS), a simple, commercially relevant compound, was found to self-assemble as a result of intermolecular noncovalent interactions into supramolecular gels in deep eutectic solvents (DESs) based on choline chloride combined with alcohols/ureas. DBS formed gels at a loading of 5 % w/v. Rheology confirmed the gel-like nature of the materials, electron microscopy and X-ray diffraction indicated underpinning nanofibrillar DBS networks, and differential scanning calorimetry showed the DES nature of the liquid-like phase was retained. The ionic conductivities of the gels were similar to those of the unmodified DESs, thus proving the deep eutectic nature of the ionic liquid-like phase. Gelation was tolerant of ionic additives Li+ , Mg2+ , and Ca2+ ; the resulting gels had similar conductivities to electrolyte dissolved in the native DES. The low-molecular-weight gelator DBS is thus a low-cost additive that forms gels in DESs from readily available constituents, with conductivity levels suitable for practical applications.
Collapse
Affiliation(s)
- Jorge Ruiz-Olles
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Petr Slavik
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Nicole K Whitelaw
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - David K Smith
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
10
|
Jarosz T, Gebka K, Stolarczyk A, Domagala W. Transparent to Black Electrochromism-The "Holy Grail" of Organic Optoelectronics. Polymers (Basel) 2019; 11:E273. [PMID: 30960257 PMCID: PMC6419085 DOI: 10.3390/polym11020273] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 11/16/2022] Open
Abstract
In the rapidly developing field of conjugated polymer science, the attribute of electrochromism these materials exhibit provides for a multitude of innovative application opportunities. Featuring low electric potential driven colour change, complemented by favourable mechanical and processing properties, an array of non-emissive electrochromic device (ECD) applications lays open ahead of them. Building up from the simplest two-colour cell, multielectrochromic arrangements are being devised, taking advantage of new electrochromic materials emerging at a fast pace. The ultimate device goal encompasses full control over the intensity and spectrum of passing light, including the two extremes of complete and null transmittance. With numerous electrochromic device architectures being explored and their operating parameters constantly ameliorated to pursue this target, a summary and overview of developments in the field is presented. Discussing the attributes of reported electrochromic systems, key research points and challenges are identified, providing an outlook for this exciting topic of polymer material science.
Collapse
Affiliation(s)
- Tomasz Jarosz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland.
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Silesian University of Technology, 6 Krzywoustego Street, 44-100 Gliwice, Poland.
| | - Karolina Gebka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland.
| | - Agnieszka Stolarczyk
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland.
| | - Wojciech Domagala
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland.
| |
Collapse
|
11
|
Chotsuwan C, Boonrungsiman S, Asawapirom U, Jiramitmongkon K, Jiemsakul T, Ngamaroonchote A, Rattanaamron T. Highly viscous composite gel electrolyte based on cellulose acetate and nanoparticles. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.09.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Su Y, Yang F, Zhou L, Geng Y, Zhang J, Jiang M. Flexible and Tailorable Alkylviologen/Cellulose Nanocrystals Composite Films for Sustainable Applications in Electrochromic Devices. ChemElectroChem 2018. [DOI: 10.1002/celc.201800113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yun Su
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong, Provincial Key Laboratory of Key Laboratory of Rubber-Plastics; Qingdao University of Science & Technology; Qingdao City 266042 China
| | - Fei Yang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong, Provincial Key Laboratory of Key Laboratory of Rubber-Plastics; Qingdao University of Science & Technology; Qingdao City 266042 China
| | - Lijuan Zhou
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong, Provincial Key Laboratory of Key Laboratory of Rubber-Plastics; Qingdao University of Science & Technology; Qingdao City 266042 China
| | - Yong Geng
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong, Provincial Key Laboratory of Key Laboratory of Rubber-Plastics; Qingdao University of Science & Technology; Qingdao City 266042 China
| | - Jianming Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong, Provincial Key Laboratory of Key Laboratory of Rubber-Plastics; Qingdao University of Science & Technology; Qingdao City 266042 China
| | - Min Jiang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong, Provincial Key Laboratory of Key Laboratory of Rubber-Plastics; Qingdao University of Science & Technology; Qingdao City 266042 China
| |
Collapse
|
13
|
Abstract
Electrochromic devices (ECDs) have aroused great interest because of their potential applicability in displays and smart systems, including windows, rearview mirrors, and helmet visors. In the last decades, different device structures and materials have been proposed to meet the requirements of commercial applications to boost market entry. To this end, employing simple device architectures and achieving a competitive electrolyte are crucial to accomplish easily implementable, high-performance ECDs. The present review outlines devices comprising gel electrolytes as a single electroactive layer ("all-in-one") ECD architecture, highlighting some advantages and opportunities they offer over other electrochromic systems. In this context, gel electrolytes not only overcome the drawbacks of liquid and solid electrolytes, such as liquid's low chemical stability and risk of leaking and soil's slow switching and lack of transparency, but also exhibit further strengths. These include easier processability, suitability for flexible substrates, and improved stabilization of the chemical species involved in redox processes, leading to better cyclability and opening wide possibilities to extend the electrochromic color palette, as discussed herein. Finally, conclusions and outlook are provided.
Collapse
|