1
|
Liu G, Shih AJ, Deng H, Ojha K, Chen X, Luo M, McCrum IT, Koper MTM, Greeley J, Zeng Z. Site-specific reactivity of stepped Pt surfaces driven by stress release. Nature 2024; 626:1005-1010. [PMID: 38418918 DOI: 10.1038/s41586-024-07090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/18/2024] [Indexed: 03/02/2024]
Abstract
Heterogeneous catalysts are widely used to promote chemical reactions. Although it is known that chemical reactions usually happen on catalyst surfaces, only specific surface sites have high catalytic activity. Thus, identifying active sites and maximizing their presence lies at the heart of catalysis research1-4, in which the classic model is to categorize active sites in terms of distinct surface motifs, such as terraces and steps1,5-10. However, such a simple categorization often leads to orders of magnitude errors in catalyst activity predictions and qualitative uncertainties of active sites7,8,11,12, thus limiting opportunities for catalyst design. Here, using stepped Pt(111) surfaces and the electrochemical oxygen reduction reaction (ORR) as examples, we demonstrate that the root cause of larger errors and uncertainties is a simplified categorization that overlooks atomic site-specific reactivity driven by surface stress release. Specifically, surface stress release at steps introduces inhomogeneous strain fields, with up to 5.5% compression, leading to distinct electronic structures and reactivity for terrace atoms with identical local coordination, and resulting in atomic site-specific enhancement of ORR activity. For the terrace atoms flanking both sides of the step edge, the enhancement is up to 50 times higher than that of the atoms in the middle of the terrace, which permits control of ORR reactivity by either varying terrace widths or controlling external stress. Thus, the discovery of the above synergy provides a new perspective for both fundamental understanding of catalytically active atomic sites and design principles of heterogeneous catalysts.
Collapse
Affiliation(s)
- Guangdong Liu
- Hunan Provincial Key Laboratory of High-Energy Scale Physics and Applications, School of Physics and Electronics, Hunan University, Changsha, China
| | - Arthur J Shih
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Huiqiu Deng
- Hunan Provincial Key Laboratory of High-Energy Scale Physics and Applications, School of Physics and Electronics, Hunan University, Changsha, China
| | - Kasinath Ojha
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Xiaoting Chen
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Mingchuan Luo
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Ian T McCrum
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY, USA
| | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Jeffrey Greeley
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Zhenhua Zeng
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
2
|
Stolov M, Keisar O, Cohen Y, Freger V. Elucidating the Effect of Aliphatic Molecular Plugs on Ion-Rejecting Properties of Polyamide Membranes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13335-13343. [PMID: 35263078 DOI: 10.1021/acsami.1c24977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polyamide RO membranes are widely used for seawater desalination owing to their high salt rejection and water permeability; however, improved selectivity-permeability trade-off is still desired. "Molecular plugs," small molecules immobilized within the polyamide structure, offer an attractive approach; however, their overall effect on polyamide physicochemical properties poses many questions. Here, we analyze the effect of decylamine, a promising plug, and a few charged and uncharged mimics on polyamide films using several in situ techniques. Electrochemical impedance spectroscopy (EIS) reveals a complex pH-dependent response, whereby, upon exposure to amine solution, conductivity first rapidly drops; however, under alkaline conditions, when amine is uncharged, the trend subsequently slowly reverses, and conductivity increases. This slow reversal was observed for noncharged alcohols of similar size as well, but not for larger surfactant molecules. The reversal was assigned to the uptake of plug molecules within polyamide, as opposed to the fast initial drop assigned to surface adsorption. EIS and quartz-crystal microbalance (QCM) results showed that exposure to decylamine under alkaline conditions ultimately led to an irreversible decrease in conductivity, that is, stronger ion rejection, remaining after re-exposure of polyamide to amine-free buffer. This suggests that plug uptake within polyamide resulted in polymer stress, indeed observed in surface stress measurements, and subsequent relaxation. The results indicate that the moderate size of decylamine and conditions minimizing its charge were optimal for irreversible change; however, charge interactions helped maximize its binding within polymer and induce the desired sustained change in selectivity. The results have many potential implications for improving current membrane desalination technology and increasing inherent membrane selectivity toward hard-to-remove species.
Collapse
Affiliation(s)
- Mikhail Stolov
- Wolfson Department of Chemical Engineering, Technion - IIT, Haifa 32000, Israel
| | - Or Keisar
- Nancy and Stephen Grand Technion Energy Program, Technion - IIT, Haifa 32000, Israel
- Nuclear Research Centre-Negev, P.O.B. 9001, Be'er Sheva 84190, Israel
| | - Yair Cohen
- Nuclear Research Centre-Negev, P.O.B. 9001, Be'er Sheva 84190, Israel
| | - Viatcheslav Freger
- Wolfson Department of Chemical Engineering, Technion - IIT, Haifa 32000, Israel
- Nancy and Stephen Grand Technion Energy Program, Technion - IIT, Haifa 32000, Israel
- Grand Water Research Institute, Technion - IIT, Haifa 32000, Israel
| |
Collapse
|
3
|
Hao Y, Li A, Feng G, Zhong X. Modulation rate on adsorption and catalysis of 2D Pt: the effects of adsorbate-induced surface stress. Catal Sci Technol 2022. [DOI: 10.1039/d1cy00261a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently it is reported for ultrathin 2D metals, positive surface stress of clean surface (τ1) can induce considerable compressive lattice strain towards optimized adsorption energy and catalytic properties (Science 363,...
Collapse
|
4
|
Cruz-Martínez H, Guerra-Cabrera W, Flores-Rojas E, Ruiz-Villalobos D, Rojas-Chávez H, Peña-Castañeda YA, Medina DI. Pt-Free Metal Nanocatalysts for the Oxygen Reduction Reaction Combining Experiment and Theory: An Overview. Molecules 2021; 26:molecules26216689. [PMID: 34771098 PMCID: PMC8588335 DOI: 10.3390/molecules26216689] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/13/2021] [Indexed: 12/02/2022] Open
Abstract
The design and manufacture of highly efficient nanocatalysts for the oxygen reduction reaction (ORR) is key to achieve the massive use of proton exchange membrane fuel cells. Up to date, Pt nanocatalysts are widely used for the ORR, but they have various disadvantages such as high cost, limited activity and partial stability. Therefore, different strategies have been implemented to eliminate or reduce the use of Pt in the nanocatalysts for the ORR. Among these, Pt-free metal nanocatalysts have received considerable relevance due to their good catalytic activity and slightly lower cost with respect to Pt. Consequently, nowadays, there are outstanding advances in the design of novel Pt-free metal nanocatalysts for the ORR. In this direction, combining experimental findings and theoretical insights is a low-cost methodology—in terms of both computational cost and laboratory resources—for the design of Pt-free metal nanocatalysts for the ORR in acid media. Therefore, coupled experimental and theoretical investigations are revised and discussed in detail in this review article.
Collapse
Affiliation(s)
- Heriberto Cruz-Martínez
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Abasolo S/N, Barrio del Agua Buena, Santiago Suchilquitongo, Oaxaca 68230, Mexico; (H.C.-M.); (D.R.-V.)
| | - Wilbert Guerra-Cabrera
- Tecnológico Nacional de México, Instituto Tecnológico del Istmo, Panamericana 821, 2da., Juchitán de Zaragoza, Oaxaca 70000, Mexico;
| | - Ernesto Flores-Rojas
- Instituto Politécnico Nacional, CICATA-Legaria, Legaria 694, Col. Irrigación, Ciudad de México 11500, Mexico;
| | - Dunia Ruiz-Villalobos
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Abasolo S/N, Barrio del Agua Buena, Santiago Suchilquitongo, Oaxaca 68230, Mexico; (H.C.-M.); (D.R.-V.)
| | - Hugo Rojas-Chávez
- Tecnológico Nacional de México, Instituto Tecnológico de Tláhuac II, Camino Real 625, Tláhuac, Ciudad de México 13508, Mexico;
| | - Yesica A. Peña-Castañeda
- Colegio de Ciencia y Tecnología, Universidad Autónoma de la Ciudad de México, Av. Fray Servando Teresa de Mier 92, Cuauhtémoc, Ciudad de México 06080, Mexico
- Correspondence: (Y.A.P.-C.); (D.I.M.)
| | - Dora I. Medina
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza 52926, Estado de Mexico, Mexico
- Correspondence: (Y.A.P.-C.); (D.I.M.)
| |
Collapse
|
5
|
Warburton RE, Castro FC, Deshpande S, Madsen KE, Bassett KL, Dos Reis R, Gewirth AA, Dravid VP, Greeley J. Oriented LiMn 2O 4 Particle Fracture from Delithiation-Driven Surface Stress. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49182-49191. [PMID: 32972133 DOI: 10.1021/acsami.0c13305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The insertion and removal of Li+ ions into Li-ion battery electrodes can lead to severe mechanical fatigue because of the repeated expansion and compression of the host lattice during electrochemical cycling. In particular, the lithium manganese oxide spinel (LiMn2O4, LMO) experiences a significant surface stress contribution to electrode chemomechanics upon delithiation that is asynchronous with the potentials where bulk phase transitions occur. In this work, we probe the stress evolution and resulting mechanical fracture from LMO delithation using an integrated approach consisting of cyclic voltammetry, electron microscopy, and density functional theory (DFT) calculations. High-rate electrochemical cycling is used to exacerbate the mechanical deficiencies of the LMO electrode and demonstrates that mechanical degradation leads to slowing of delithiation and lithiation kinetics. These observations are further supported through the identification of significant fracturing in LMO using scanning electron microscopy. DFT calculations are used to model the mechanical response of LMO surfaces to electrochemical delithiation and suggest that particle fracture is unlikely in the [001] direction because of tensile stresses from delithiation near the (001) surface. Transmission electron microscopy and electron backscatter diffraction of the as-cycled LMO particles further support the computational analyses, indicating that particle fracture instead tends to preferentially occur along the {111} planes. This joint computational and experimental analysis provides molecular-level details of the chemomechanical response of the LMO electrode to electrochemical delithiation and how surface stresses may lead to particle fracture in Li-ion battery electrodes.
Collapse
Affiliation(s)
- Robert E Warburton
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Fernando C Castro
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Siddharth Deshpande
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kenneth E Madsen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kimberly L Bassett
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Roberto Dos Reis
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Andrew A Gewirth
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Jeffrey Greeley
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Wang L, Zeng Z, Gao W, Maxson T, Raciti D, Giroux M, Pan X, Wang C, Greeley J. Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science 2019; 363:870-874. [PMID: 30792302 DOI: 10.1126/science.aat8051] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/12/2018] [Accepted: 01/23/2019] [Indexed: 12/17/2022]
Abstract
Tuning surface strain is a powerful strategy for tailoring the reactivity of metal catalysts. Traditionally, surface strain is imposed by external stress from a heterogeneous substrate, but the effect is often obscured by interfacial reconstructions and nanocatalyst geometries. Here, we report on a strategy to resolve these problems by exploiting intrinsic surface stresses in two-dimensional transition metal nanosheets. Density functional theory calculations indicate that attractive interactions between surface atoms lead to tensile surface stresses that exert a pressure on the order of 105 atmospheres on the surface atoms and impart up to 10% compressive strain, with the exact magnitude inversely proportional to the nanosheet thickness. Atomic-level control of thickness thus enables generation and fine-tuning of intrinsic strain to optimize catalytic reactivity, which was confirmed experimentally on Pd(110) nanosheets for the oxygen reduction and hydrogen evolution reactions, with activity enhancements that were more than an order of magnitude greater than those of their nanoparticle counterparts.
Collapse
Affiliation(s)
- Lei Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Zhenhua Zeng
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Wenpei Gao
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697, USA
| | - Tristan Maxson
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - David Raciti
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael Giroux
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xiaoqing Pan
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697, USA.,Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA
| | - Chao Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Jeffrey Greeley
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
7
|
Jiao W, Chen C, You W, Zhang J, Liu J, Che R. Yolk-Shell Fe/Fe 4 N@Pd/C Magnetic Nanocomposite as an Efficient Recyclable ORR Electrocatalyst and SERS Substrate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805032. [PMID: 30650258 DOI: 10.1002/smll.201805032] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/27/2018] [Indexed: 06/09/2023]
Abstract
A yolk-shell Fe/Fe4 N@Pd/C (FFPC) nanocomposite is synthesized successfully by two facile steps: interfacial polymerization and annealing treatment. The concentration of Pd2+ is the key factor for the density of Pd nanoparticles (Pd NPs) embedded in the carbon shells, which plays a role in the oxygen reduction reaction (ORR) and surface-enhanced Raman scattering (SERS) properties. The ORR and SERS performances of FFPC nanocomposites under different concentrations of PdCl2 are investigated. The optimal ORR performance exhibits that onset potential and tafel slope can reach 0.937 V (vs reversible hydrogen electrode (RHE)) and 74 mV dec-1 , respectively, which is attributed to the synergistic effects of good electrical conductivity, large electrochemically active areas, and strong interfacial charge polarization. Off-axis electron holography reveals that interfacial charge polarization could facilitate the ORR of Pd NPs and defective carbon simultaneously and the shell with low density of Pd NPs is easier to form strong interfacial charge polarization. Moreover, FFPC-3 with maximum EF of 2.3 × 105 results from more hot-spots, local positive charge centers to attract rhodamine 6G molecules, and magnetic cores. This work not only offers a recyclable multifunctional nanocomposite with excellent performance, but also has instructional implications for interfacial engineering for electrocatalysts design.
Collapse
Affiliation(s)
- Wenling Jiao
- Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, China
| | - Chen Chen
- Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Wenbin You
- Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, China
| | - Jie Zhang
- Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, China
| | - Jiwei Liu
- Department of Materials Science and Engineering, Changzhou University, Jiangsu, 213164, China
| | - Renchao Che
- Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|