1
|
Aladeemy SA, Arunachalam P, Amer MS, Al-Mayouf AM. Electrochemically embedded heterostructured Ni/NiS anchored onto carbon paper as bifunctional electrocatalysts for urea oxidation and hydrogen evolution reaction. RSC Adv 2025; 15:14-25. [PMID: 39758907 PMCID: PMC11698127 DOI: 10.1039/d4ra07418a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/13/2024] [Indexed: 01/07/2025] Open
Abstract
Developing high-efficiency, cost-effective, and long-term stable nanostructured catalysts for electrocatalytic water splitting remains one of the most challenging aspects of hydrogen fuel production. Urea electrooxidation reaction (UOR) can produce hydrogen energy from nitrogen-rich wastewater, making it a more sustainable and cheaper source of hydrogen. In this study, we have developed Ni/NiS hybrid structures with cauliflower-like morphology on carbon paper electrodes through the application of dimethylsulfoxide solvents. These electrodes serve as highly efficient and long-lasting electrocatalysts for the hydrogen evolution reactions (HER) and UOR. In particular, the Ni/NiS cauliflower-like morphology is confirmed via X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Furthermore, electrochemical characterization of the Ni/NiS@CP catalyst showed a 1.35 V onset potential versus RHE for the UOR in 1.0 M KOH and superior electrocatalytic performance compared to bare Ni@CP. Additionally, the Ni/NiS@CP catalyst also exhibits a low overpotential of 125 mV at 10 mA cm-2 for HER in 0.5 M H2SO4 with excellent durability, which is apparently lower than bare Ni@/CP (397 mV). Based on the results obtained, the synthesized Ni/NiS@CP catalyst may be a promising electrode candidate for handling urea-rich wastewater and generating hydrogen.
Collapse
Affiliation(s)
- Saba A Aladeemy
- Electrochemical Sciences Research Chair (ESRC), Chemistry Department, King Saud University P.O Box 2455 Riyadh 11451 Saudi Arabia
| | - Prabhakarn Arunachalam
- Electrochemical Sciences Research Chair (ESRC), Chemistry Department, King Saud University P.O Box 2455 Riyadh 11451 Saudi Arabia
| | - Mabrook S Amer
- Electrochemical Sciences Research Chair (ESRC), Chemistry Department, King Saud University P.O Box 2455 Riyadh 11451 Saudi Arabia
| | - Abdullah M Al-Mayouf
- Electrochemical Sciences Research Chair (ESRC), Chemistry Department, King Saud University P.O Box 2455 Riyadh 11451 Saudi Arabia
| |
Collapse
|
2
|
Acharya A, Mandal K, Kumari N, Chatterjee K. Synergistic Inclusion of Reaction Activator and Reaction Accelerator to Ni-MOF Toward Extra-Ordinary Performance of Urea Oxidation Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407377. [PMID: 39580688 DOI: 10.1002/smll.202407377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/15/2024] [Indexed: 11/26/2024]
Abstract
Recently electrochemical urea oxidation reaction (UOR) has emerged as the technology of demand for commercialization of urea-based energy conversion. However, the nascent idea is limited by the energy burden of threshold voltage and the sluggish reaction kinetics involving a six-electron transfer mechanism. Herein, for the first time, the engineering of electrocatalysts are proposed with simultaneous inclusion of UOR activator and UOR accelerator. Nitrogen-doped carbon-decorated Ni-based Metal Organic Framework (MOF) has been synthesized as the base catalyst material. MoO2 and rGO with varied loading have been attached to the MOF to get the desired MoO2/Ni-MOF/rGO heterostructure incorporating defects and crystal strain within the materials. Investigations reveal that the invoked lattice strain and atomic defects promote plenteous Ni3+ active sites. The optimized sample demonstrates extraordinary performance of UOR having the potential value as low as 1.32 V versus RHE to reach the current density of 10 mA cm-2 and the tafel slope is only 31 mV dec-1 reflecting very fast reaction kinetics. Here MoO2 plays the role of UOR activator whereas optimized loading of rGO proliferates the reaction speed. This work, experimentally and theoretically, presents a new insight to enhance electrocatalytic urea oxidation reaction opening an avenue of urea-based energy-harvesting technology.
Collapse
Affiliation(s)
- Animesh Acharya
- Department of Physics, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Koustav Mandal
- Department of Physics, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Neetu Kumari
- Department of Chemical Engineering, MNIT, Jaipur, Rajasthan, 302017, India
| | - Kuntal Chatterjee
- Department of Physics, Vidyasagar University, Midnapore, West Bengal, 721102, India
| |
Collapse
|
3
|
Sun ML, Wang HY, Feng Y, Ren JT, Wang L, Yuan ZY. Electrodegradation of nitrogenous pollutants in sewage: from reaction fundamentals to energy valorization applications. Chem Soc Rev 2024; 53:11908-11966. [PMID: 39498737 DOI: 10.1039/d4cs00517a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The excessive accumulation of nitrogen pollutants (mainly nitrate, nitrite, ammonia nitrogen, hydrazine, and urea) in water bodies seriously disrupts the natural nitrogen cycle and poses a significant threat to human life and health. Electrolysis is considered a promising method to degrade these nitrogenous pollutants in sewage, with the advantages of high efficiency, wide generality, easy operability, retrievability, and environmental friendliness. For particular energy devices, including metal-nitrate batteries, direct fuel cells, and hybrid water electrolyzers, the realization of energy valorization from sewage purification processes (e.g., valuable chemical generation, electricity output, and hydrogen production) becomes feasible. Despite the progress in the research on pollutant electrodegradation, the development of electrocatalysts with high activity, stability, and selectivity for pollutant removal, coupled with corresponding energy devices, remains a challenge. This review comprehensively provides advanced insights into the electrodegradation processes of nitrogenous pollutants and relevant energy valorization strategies, focusing on the reaction mechanisms, activity descriptors, electrocatalyst design, and actuated electrodes and operation parameters of tailored energy conversion devices. A feasibility analysis of electrodegradation on real wastewater samples from the perspective of pollutant concentration, pollutant accumulation, and electrolyte effects is provided. Challenges and prospects for the future development of electrodegradation systems are also discussed in detail to bridge the gap between experimental trials and commercial applications.
Collapse
Affiliation(s)
- Ming-Lei Sun
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Hao-Yu Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Yi Feng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Jin-Tao Ren
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Lei Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Zhong-Yong Yuan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| |
Collapse
|
4
|
Tumuluri K, Abu-Dahrieh JK, Mathiyalagan K, Munusamy Kalidhas A, Perumal T, Srinivasan S, Mangesh VL, Siva Kumar N, Alreshaidan SB, Chandrasekaran K, Arunachalam V, Al-Fatesh AS. Selective Oxidation of Cyclohexene over the Mesoporous H-Beta Zeolite on Copper/Nickel Bimetal Catalyst in Continuous Reactor. ACS OMEGA 2024; 9:25800-25811. [PMID: 38911787 PMCID: PMC11191118 DOI: 10.1021/acsomega.3c10503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024]
Abstract
The copper/nickel-metal on commercial H-Beta zeolite supports was synthesized with different wt % (Ni) of 5, 10, 15, and 20, and was used in the cyclohexene epoxidation process. The synthesized catalyst has been used in a continuous reactor for the cyclohexene epoxidation process, with mild conditions and H2O2 as an oxidant. The catalytic performance was ascertained by adjusting parameters such as the temperature, pressure, WHSV, reaction time, and solvents. The catalytic performance showed the resulting yield in both cyclohexene conversion and selectivity was more than 98.5%. The catalyst's textural attributes, morphology, chemical composition, and stability were determined using FT-IR, XRD, BET, HR-SEM, and TPD. The most active catalyst among those that were synthesized was evaluated, and the reaction parameters were selected to optimize yield and conversion. The H-Beta/Cu/Ni (15%) catalyst has the best conversion (98.5%) and selectivity (100%) for cyclohexene among the catalysts examined. Cu and Ni(15%) metals were successfully added to the H-Beta zeolite, causing little damage to the crystalline structure and resulting in good reusability over five cycles, as well as little loss of catalytic selectivity. Acetonitrile was the solvent that provided the highest conversion and selectivity among the others. These findings show that H-Beta/Cu/Ni bimetallic catalysts have the potential to be effective epoxidation catalysts. Because of their outstanding conversion and selectivity, the continuous reaction technique used in this work makes them appropriate for industrial production-level applications.
Collapse
Affiliation(s)
- Kanthimathi Tumuluri
- Department
of Mechanical Engineering, Koneru Lakshmaiah
Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh 522502, India
| | - Jehad K. Abu-Dahrieh
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, Belfast BT9 5AG, U.K.
| | - Kulothungan Mathiyalagan
- Department
of Chemistry, Dwaraka Doss Goverdhan Doss
Vaishnav College (Autonomous) (Affiliated to the University of Madras,
Chennai), 833, Gokul Bagh, E.V.R. Periyar Road, Arumbakkam, Chennai 600 106, Tamil Nadu, India
| | - Aravindan Munusamy Kalidhas
- Department
of Mechanical Engineering, Faculty of Engineering and Technology, Jain Deemed to Be University, Bengaluru 560004, India
| | - Tamizhdurai Perumal
- Department
of Chemistry, Dwaraka Doss Goverdhan Doss
Vaishnav College (Autonomous) (Affiliated to the University of Madras,
Chennai), 833, Gokul Bagh, E.V.R. Periyar Road, Arumbakkam, Chennai 600 106, Tamil Nadu, India
| | - Santhosh Srinivasan
- Department
of Chemistry, Dwaraka Doss Goverdhan Doss
Vaishnav College (Autonomous) (Affiliated to the University of Madras,
Chennai), 833, Gokul Bagh, E.V.R. Periyar Road, Arumbakkam, Chennai 600 106, Tamil Nadu, India
| | | | - Nadavala Siva Kumar
- Department
of Chemical Engineering, College of Engineering,
King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Salwa B. Alreshaidan
- Department
of Chemistry, Faculty of Science, King Saud
University, P.O. Box
800, Riyadh 11451, Saudi Arabia
| | - Kavitha Chandrasekaran
- Department
of Chemistry, Dwaraka Doss Goverdhan Doss
Vaishnav College (Autonomous) (Affiliated to the University of Madras,
Chennai), 833, Gokul Bagh, E.V.R. Periyar Road, Arumbakkam, Chennai 600 106, Tamil Nadu, India
| | - Vijayaraj Arunachalam
- Department
of Chemistry, Dwaraka Doss Goverdhan Doss
Vaishnav College (Autonomous) (Affiliated to the University of Madras,
Chennai), 833, Gokul Bagh, E.V.R. Periyar Road, Arumbakkam, Chennai 600 106, Tamil Nadu, India
| | - Ahmed S. Al-Fatesh
- Department
of Chemical Engineering, College of Engineering,
King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| |
Collapse
|
5
|
Gao X, Zhang S, Wang P, Jaroniec M, Zheng Y, Qiao SZ. Urea catalytic oxidation for energy and environmental applications. Chem Soc Rev 2024; 53:1552-1591. [PMID: 38168798 DOI: 10.1039/d3cs00963g] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Urea is one of the most essential reactive nitrogen species in the nitrogen cycle and plays an indispensable role in the water-energy-food nexus. However, untreated urea or urine wastewater causes severe environmental pollution and threatens human health. Electrocatalytic and photo(electro)catalytic urea oxidation technologies under mild conditions have become promising methods for energy recovery and environmental remediation. An in-depth understanding of the reaction mechanisms of the urea oxidation reaction (UOR) is important to design efficient electrocatalysts/photo(electro)catalysts for these technologies. This review provides a critical appraisal of the recent advances in the UOR by means of both electrocatalysis and photo(electro)catalysis, aiming to comprehensively assess this emerging field from fundamentals and materials, to practical applications. The emphasis of this review is on the design and development strategies for electrocatalysts/photo(electro)catalysts based on reaction pathways. Meanwhile, the UOR in natural urine is discussed, focusing on the influence of impurity ions. A particular emphasis is placed on the application of the UOR in energy and environmental fields, such as hydrogen production by urea electrolysis, urea fuel cells, and urea/urine wastewater remediation. Finally, future directions, prospects, and remaining challenges are discussed for this emerging research field. This critical review significantly increases the understanding of current progress in urea conversion and the development of a sustainable nitrogen economy.
Collapse
Affiliation(s)
- Xintong Gao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shuai Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Pengtang Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry & Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
| | - Yao Zheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
6
|
Yin X, Zhu K, Ye K, Yan J, Cao D, Zhang D, Yao J, Wang G. FeNi supported on carbon sponge for efficient urea oxidation in direct urea fuel cell. J Colloid Interface Sci 2024; 654:36-45. [PMID: 37832233 DOI: 10.1016/j.jcis.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
The direct urea fuel cell (DUFC) is a power generation equipment with urea-rich wastewater or urine as fuel source. It has the unique ability to purify sewage while simultaneously generating electricity, making it a highly efficient and environmentally friendly option. In this paper, pomegranate seed-like Ni nano-blocks and Fe nanosheets were synthesized by electrodeposition and chemical reduction and attached to the carbonized melamine sponge matrix. The N-doped carbon sponge (NCS) provided a large number of polyhedral holes, which allowed for efficient gas escape through channels. The combination of Fe reduces the initial urea oxidation potential, reaction activation energy and reaction resistance. The synthesized FeNi supported on N-doped carbon sponge composite (FeNi@NCS) has a catalytic current density of 625 mA cm-2 and a Tafel slope of 42.51 mV dec-1 for urea electrooxidation reaction (UOR). Assembling the direct urine-hydrogen peroxide fuel cell (DUrHPFC) resulted in the highest performance output. The open circuit voltage (OCV) was 0.98 V, and the peak power density reached 9.61 mW cm-2. The results show that the prepared catalyst provides an opportunity to solve the problems that hinder the development of urea green cycle at present.
Collapse
Affiliation(s)
- Xianzhi Yin
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Kai Zhu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Ke Ye
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Jun Yan
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Dianxue Cao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Dongming Zhang
- Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, North University of China, Taiyuan 030051, PR China.
| | - Jiaxin Yao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| | - Guiling Wang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| |
Collapse
|
7
|
Pei C, Chen S, Zhou M, Chen X, Sun B, Lan S, Hahn H, Feng T. Direct Urea/H 2O 2 Fuel Cell with a Hierarchical Porous Nanoglass Anode for High-Efficiency Energy Conversion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24319-24328. [PMID: 37096959 DOI: 10.1021/acsami.3c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Direct urea/H2O2 fuel cells (DUFCs) constitute a sustainable bifunctional energy conversion technique devoted to simultaneously eliminating environmental wastewater with urea and generating clean energy. However, exploring an efficient anode material for DUFCs still remains a huge challenge. In this work, a Ni-P hierarchical porous nanoglass (HPNG) catalytic electrode was developed via a low-cost, industrially available electrodeposition technique, which exhibits one of the best performances reported so far in the urea oxidation reaction (UOR), with a potential of 1.330 V at a current density of 10 mA cm-2 and a Tafel slope of 9.77 mV dec-1. The superior UOR performance of the HPNG electrode is attributed to the excellent intrinsic catalytic activity of NG with a high-energy state and an extremely enlarged surface area from the unique 3D hierarchical porous structure. Furthermore, a DUFC system with the HPNG anode shows a performance breakthrough as indicated by the maximum power density of 38.15 mW cm-2 for 0.5 M urea, representing one of the best yet reported DUFCs. Our work demonstrates the feasibility of the scalable production of HPNG electrodes and is expected to be a great contribution to the development of the practical use of DUFCs in the near future for bifunctional energy conversion.
Collapse
Affiliation(s)
- Chaoqun Pei
- School of Material Science and Engineering, Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Shuangqin Chen
- School of Material Science and Engineering, Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingjie Zhou
- School of Material Science and Engineering, Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xianhao Chen
- School of Material Science and Engineering, Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Baoan Sun
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Si Lan
- School of Material Science and Engineering, Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Horst Hahn
- School of Material Science and Engineering, Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe 76021, Germany
| | - Tao Feng
- School of Material Science and Engineering, Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
8
|
Ni sulfide nano-sheets as an efficient standalone electrode in direct ethanol fuel cells. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
9
|
Molybdenum carbide/Ni nanoparticles-incorporated carbon nanofibers as effective non-precious catalyst for urea electrooxidation reaction. Sci Rep 2022; 12:22574. [PMID: 36585465 PMCID: PMC9803659 DOI: 10.1038/s41598-022-26975-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
In this study, molybdenum carbide and carbon were investigated as co-catalysts to enhance the nickel electro-activity toward urea oxidation. The proposed electrocatalyst has been formulated in the form of nanofibrous morphology to exploit the advantage of the large axial ratio. Typically, calcination of electropsun polymeric nanofibers composed of poly(vinyl alcohol), molybdenum chloride and nickel acetate under vacuum resulted in producing good morphology molybdenum carbide/Ni NPs-incorporated carbon nanofibers. Investigation on the composition and morphology of the proposed catalyst was achieved by XRD, SEM, XPS, elemental mapping and TEM analyses which concluded formation of molybdenum carbide and nickel nanoparticles embedded in a carbon nanofiber matrix. As an electrocatalyst for urea oxidation, the electrochemical measurements indicated that the proposed composite has a distinct activity when the molybdenum content is optimized. Typically, the nanofibers prepared from electrospun nanofibers containing 25 wt% molybdenum precursor with respect to nickel acetate revealed the best performance. Numerically, using 0.33 M urea in 1.0 M KOH, the obtained current densities were 15.5, 44.9, 52.6, 30.6, 87.9 and 17.6 mA/cm2 for nanofibers prepared at 850 °C from electropsun mats containing 0, 5, 10, 15, 25 and 35 molybdenum chloride, respectively. Study the synthesis temperature of the proposed composite indicated that 1000 °C is the optimum calcination temperature. Kinetic studies indicated that electrooxidation reaction of urea does not follow Arrhenius's law.
Collapse
|
10
|
Le TH, Thakur D, Nguyen PKT. Modeling and optimization of direct urea-hydrogen peroxide fuel cell using the integration of artificial neural network and bio-inspired algorithms. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Vera-Estrada IL, Olivares-Ramírez JM, Rodríguez-Reséndiz J, Dector A, Mendiola-Santibañez JD, Amaya-Cruz DM, Sosa-Domínguez A, Ortega-Díaz D, Dector D, Ovando-Medina VM, Antonio-Carmona ID. Digital Pregnancy Test Powered by an Air-Breathing Paper-Based Microfluidic Fuel Cell Stack Using Human Urine as Fuel. SENSORS (BASEL, SWITZERLAND) 2022; 22:6641. [PMID: 36081100 PMCID: PMC9460395 DOI: 10.3390/s22176641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
The direct integration of paper-based microfluidic fuel cells (μFC's) toward creating autonomous lateral flow assays has attracted attention. Here, we show that an air-breathing paper-based μFC could be used as a power supply in pregnancy tests by oxidizing the human urine used for the diagnosis. We present an air-breathing paper-based μFC connected to a pregnancy test, and for the first time, as far as we know, it is powered by human urine without needing any external electrolyte. It uses TiO2-Ni as anode and Pt/C as cathode; the performance shows a maximum value of voltage and current and power densities of ∼0.96 V, 1.00 mA cm-2, and 0.23 mW cm-2, respectively. Furthermore, we present a simple design of a paper-based μFC's stack powered with urine that shows a maximum voltage and maximum current and power densities of ∼1.89 V, 2.77 mA cm-2 and 1.38 mW cm-2, respectively, which powers the display of a pregnancy test allowing to see the analysis results.
Collapse
Affiliation(s)
- Irma Lucia Vera-Estrada
- Departamento de Energías Renovables, Universidad Tecnológica de San Juan del Río, Av. La Palma No 125 Vista Hermosa, San Juan del Río 76800, Mexico
| | - Juan Manuel Olivares-Ramírez
- Departamento de Energías Renovables, Universidad Tecnológica de San Juan del Río, Av. La Palma No 125 Vista Hermosa, San Juan del Río 76800, Mexico
| | | | - Andrés Dector
- Departamento de Energías Renovables, Conacyt-Universidad Tecnológica de San Juan del Río, Av. La Palma No 125 Vista Hermosa, San Juan del Río 76800, Mexico
| | | | - Diana María Amaya-Cruz
- Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amealco, Camacho Guzmán, Amealco 76894, Mexico
| | - Adrían Sosa-Domínguez
- Facultad de Química, Universidad Autónoma de Querétaro, Campus Universitario, Cerro de las Campanas S/N-Edificio 5, Centro Universitario, Querétaro 76010, Mexico
| | - David Ortega-Díaz
- Departamento de Energías Renovables, Universidad Tecnológica de San Juan del Río, Av. La Palma No 125 Vista Hermosa, San Juan del Río 76800, Mexico
| | - Diana Dector
- Departamento de Energías Renovables, Universidad Tecnológica de San Juan del Río, Av. La Palma No 125 Vista Hermosa, San Juan del Río 76800, Mexico
| | - Victor Manuel Ovando-Medina
- Facultad de Ingeniería Química, Universidad Autónoma de San Luis Potosí, Coordinación Académica Región Altiplano (COARA), Matehuala 78700, Mexico
| | | |
Collapse
|
12
|
Preparation of NiCuGO composite and investigation of its electrocatalytic properties in methanol oxidation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Kim OH, Choi HJ, Kang SY, Jang GY, Karuppannan M, Park JE, Sung YE, Kwon OJ, Cho YH. Towards outstanding performance of direct urea fuel cells through optimization of anode catalyst layer and operating conditions. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Amer MS, Arunachalam P, Alsalman AM, Al-Mayouf AM, Almutairi ZA, Aladeemy SA, Hezam M. Facile synthesis of amorphous nickel iron borate grown on carbon paper as stable electrode materials for promoted electrocatalytic urea oxidation. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Ge J, Liu Z, Guan M, Kuang J, Xiao Y, Yang Y, Tsang CH, Lu X, Yang C. Investigation of the electrocatalytic mechanisms of urea oxidation reaction on the surface of transition metal oxides. J Colloid Interface Sci 2022; 620:442-453. [DOI: 10.1016/j.jcis.2022.03.152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
|
16
|
Tragacanth Gum Hydrogel-Derived Trimetallic Nanoparticles Supported on Porous Carbon Catalyst for Urea Electrooxidation. Gels 2022; 8:gels8050292. [PMID: 35621590 PMCID: PMC9141339 DOI: 10.3390/gels8050292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
The fabrication of electrocatalysts with high catalytic activity, high durability and low cost towards urea oxidation by a facile method is a great challenge. In this study, non-precious NiCoFe trimetallic supported on porous carbon (NiCoFe@PC) was prepared via gelation and pyrolysis method, presenting a remarkable electrocatalytic activity with low onset potential for urea oxidation in an alkaline medium. Field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) were used to clarify the morphology of the NiCoFe@PC nanostructure and its nanoparticle size of 17.77 nm. The prepared catalyst with the composition ratio of 24.67, 5.92 and 5.11% for Ni, Fe and Co, respectively, with highly crystalline nanoparticles, fixed on porous carbon, according to energy-dispersive X-ray (EDX) and X-ray diffraction (XRD) analysis. The FeCoNi@PC catalyst showed a catalytic activity of 44.65 mA/cm2 at 0.57 V vs. Ag/AgCl and a low onset potential of 218 mV, which is superior to many other transition bi/trimetallic-based catalysts previously reported.
Collapse
|
17
|
Zhao X, Wang Y, Zhang Y, Luo S, Zhang H, Leung DYC. Ni-Fe Layered Double Hydroxide Nanosheets Supported on Exfoliated Graphite for Efficient Urea Oxidation in Direct Urea Fuel Cells. CHEMSUSCHEM 2022; 15:e202102614. [PMID: 35179829 DOI: 10.1002/cssc.202102614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Urea-rich wastewater can cause serious eutrophication problem to the water environment. On the other hand, urea is a potential fuel with high energy density, which can be effectively utilized by direct urea fuel cell. In this work, exfoliated graphite (EG) with high surface area and electrical conductivity was obtained by microwave irradiation, which was used to support the Ni-Fe layered double hydroxide (LDH), leading to a highly efficient and low-cost urea oxidation catalyst. Compared with commercial RuO2 , the as-prepared Ni-Fe LDH/EG exhibited a lower onset potential of 1.25 V vs. reversible hydrogen electrode as well as a lower Tafel slope of 44 mV dec-1 . The catalyst durability was also proved to be excellent. The optimized Ni/Fe molar ratio was confirmed to be 3 : 1, while the most suitable catalyst/EG ratio was 3 : 50. When applied in a dual-electrolyte direct urea fuel cell, the peak power density reached 12 mW cm-2 , and the long-term discharge was also stable with negligible voltage loss at 10 mA cm-2 for 3 h. Such a low-cost and efficient urea oxidation catalyst can be widely utilized in future direct urea fuel cells, which achieve wastewater treatment and renewable electricity generation at the same time.
Collapse
Affiliation(s)
- Xiaolong Zhao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, P. R. China
| | - Yifei Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, P. R. China
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, P. R. China
| | - Yingguang Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, P. R. China
| | - Shijing Luo
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, P. R. China
| | - Huimin Zhang
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, P. R. China
| | - Dennis Y C Leung
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, P. R. China
| |
Collapse
|
18
|
Wang X, Li J, Duan Y, Li J, Wang H, Yang X, Gong M. Electrochemical Urea Oxidation in Different Environment: From Mechanism to Devices. ChemCatChem 2022. [DOI: 10.1002/cctc.202101906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xue Wang
- East China University of Science and Technology School of Mechanical and Power Engineering CHINA
| | - Jianping Li
- East China University of Science and Technology School of Resource and Environmental Engineering CHINA
| | - Yanghua Duan
- University of California Berkeley Civil and Environmental Engineering UNITED STATES
| | - Jianan Li
- East China University of Science and Technology School of Resource and Environmental Engineering CHINA
| | - Hualin Wang
- East China University of Science and Technology School of Resource and Environmental Engineering CHINA
| | - Xuejing Yang
- East China University of Science and Technology National Engineering Laboratory for Industrial Wastewater Treatment 130 Meilong Road 200237 Shanghai CHINA
| | - Ming Gong
- Fudan University Department of Chemistry CHINA
| |
Collapse
|
19
|
Hefnawy MA, Fadlallah SA, El-Sherif RM, Medany SS. Synergistic effect of Cu-doped NiO for enhancing urea electrooxidation: Comparative electrochemical and DFT studies. JOURNAL OF ALLOYS AND COMPOUNDS 2022; 896:162857. [DOI: 10.1016/j.jallcom.2021.162857] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
|
20
|
A Facile Hydrothermal Synthesis of MWCNT(SH)/CeO2@Se Nanohybrid Materials with Enhanced Antimicrobial Activity. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Putri YMTA, Gunlazuardi J, Yulizar Y, Wibowo R, Einaga Y, Ivandini TA. Recent progress in direct urea fuel cell. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Abstract
Direct urea fuel cell (DUFC) has attracted many researchers’ attention due to the use of wastewater, for example urine, which contains urea for the fuel. The main factor to improve the electrochemical oxidation performance of urea and further enhance the performances of DUFC is the use of a good anode catalyst. Non-noble metal catalyst, such as nickel, is reported to have a good catalytic activity in alkaline medium towards urea electro-oxidation. Besides optimizing the anode catalyst, the use of supporting electrode which has a large surface area as well as the use of H2O2 as an oxidant to replace O2 could help to improve the performances. The recent progress in anode catalysts for DUFC is overviewed in this article. In addition, the advantages and disadvantages as well as the factors that could help to escalate the performance of DUFC are discussed together with the challenges and future perspectives.
Collapse
Affiliation(s)
| | - Jarnuzi Gunlazuardi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia , Depok 16424 , Indonesia
| | - Yoki Yulizar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia , Depok 16424 , Indonesia
| | - Rahmat Wibowo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia , Depok 16424 , Indonesia
| | - Yasuaki Einaga
- Department of Chemistry, Faculty of Sciences and Technology, Keio University , Yokohama 223-8522 , Japan
| | - Tribidasari A. Ivandini
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia , Depok 16424 , Indonesia
| |
Collapse
|
22
|
Francklin Philips M, Thangarathinam J, Princy J, Crispin Tina CA, Crispin Tina CA, Kasthuri A. Synthesis of Nanocomposites of V₂ OO 5©Selenium Nanoparticles and Multiwalled Carbon Nanotubes for Antimicrobial Activity. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5673-5680. [PMID: 33980379 DOI: 10.1166/jnn.2021.19482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The authors report the preparation of the nanocomposite comprising of vanadium pentoxide (V₂O5) and selenium (Se) nanoparticles and functionalized multiwalled carbon nanotubes (MWCNTs) (V₂O5@Se NPs/MWCNTs). Since Se NPs possesses extraordinary physicochemical properties including larger surface area with higher adsorption capacity, V₂O5 NPs were adsorbed onto Se NPs surface through physisorption process (designated as V₂O5@Se NPs). The nanocomposite synthesized hydrothermally was evaluated for its antimicrobial activity. The morphology and microstructure of the nanocomposite were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis, respectively. Fourier transform infrared spectroscopy (FTIR) and UV-Visible spectroscopy (UV-Vis) were employed to analyze the spectral properties of nanocomposite. The microbicidal efficacy of nanocomposite was tested against Gram-negative (G-)ZGram-positive (G+) bacteria and fungus. This is the first report on the synthesis of V₂O5@Se NPs/MWCNTs nanocomposites by chemical method that showed microbicidal effect on micro-organisms. The thiol (-SH) units facilitates the enrichment of V₂O5@Se NPs onto MWCNTs surface. Ultimately, it reflects on the significant antimicrobial activity of V₂O5@Se NPs/MWCNTs.
Collapse
Affiliation(s)
| | - Jothirathinam Thangarathinam
- P.G. and Research Department of Chemistry, Bishop Heber College (Autonomous), Tiruchirappalli 620017, Tamilnadu, India
| | - Jayakumar Princy
- P.G. and Research Department of Chemistry, Bishop Heber College (Autonomous), Tiruchirappalli 620017, Tamilnadu, India
| | - Cyril Arockiaraj Crispin Tina
- P.G. and Research Department of Chemistry, Bishop Heber College (Autonomous), Tiruchirappalli 620017, Tamilnadu, India
| | - Cyril Arockiaraj Crispin Tina
- P.G. and Research Department of Chemistry, Bishop Heber College (Autonomous), Tiruchirappalli 620017, Tamilnadu, India
| | - Annadurai Kasthuri
- P.G. and Research Department of Chemistry, Bishop Heber College (Autonomous), Tiruchirappalli 620017, Tamilnadu, India
| |
Collapse
|
23
|
Wala M, Simka W. Effect of Anode Material on Electrochemical Oxidation of Low Molecular Weight Alcohols-A Review. Molecules 2021; 26:2144. [PMID: 33918545 PMCID: PMC8070219 DOI: 10.3390/molecules26082144] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
The growing climate crisis inspires one of the greatest challenges of the 21st century-developing novel power sources. One of the concepts that offer clean, non-fossil electricity production is fuel cells, especially when the role of fuel is played by simple organic molecules, such as low molecular weight alcohols. The greatest drawback of this technology is the lack of electrocatalytic materials that would enhance reaction kinetics and good stability under process conditions. Currently, electrodes for direct alcohol fuel cells (DAFCs) are mainly based on platinum, which not only provides a poor reaction rate but also readily deactivates because of poisoning by reaction products. Because of these disadvantages, many researchers have focused on developing novel electrode materials with electrocatalytic properties towards the oxidation of simple alcohols, such as methanol, ethanol, ethylene glycol or propanol. This paper presents the development of electrode materials and addresses future challenges that still need to be overcome before direct alcohol fuel cells can be commercialized.
Collapse
Affiliation(s)
| | - Wojciech Simka
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Str. 6, 44-100 Gliwice, Poland;
| |
Collapse
|
24
|
Electrooxidation of Urea in Alkaline Solution Using Nickel Hydroxide Activated Carbon Paper Electrodeposited from DMSO Solution. Catalysts 2021. [DOI: 10.3390/catal11010102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Electrooxidation of urea plays a substantial role in the elimination of urea-containing wastewater and industrial urea. Here, we report the electrodeposition of nickel hydroxide catalyst on commercial carbon paper (CP) electrodes from dimethyl sulphoxide solvent (Ni(OH)2-DMSO/CP) for urea electrooxidation under alkaline conditions. The physicochemical features of Ni(OH)2-DMSO/CP catalysts using scanning electron microscopy and X-ray photoelectron spectroscopy revealed that the Ni(OH)2-DMSO/CP catalyst shows nanoparticle features, with loading of <1 wt%. The cyclic voltammetry and electrochemical impedance spectroscopy revealed that the Ni(OH)2-DMSO/CP electrode has a urea oxidation onset potential of 0.33 V vs. Ag/AgCl and superior electrocatalytic performance, which is a more than 2-fold higher activity in comparison with the counterpart Ni(OH)2 catalyst prepared from the aqueous electrolyte. As expected, the enhancement in electrocatalytic activity towards urea was associated with the superficial enrichment in the electrochemically active surface area of the Ni(OH)2-DMSO/CP electrodes. The results might be a promising way to activate commercial carbon paper with efficient transition metal electrocatalysts, for urea electrooxidation uses in sustainable energy systems, and for relieving water contamination.
Collapse
|
25
|
Lee U, Lee YN, Yoon YS. Enhanced Electrochemical Properties of Catalyst by Phosphorous Addition for Direct Urea Fuel Cell. Front Chem 2020; 8:777. [PMID: 33195019 PMCID: PMC7604380 DOI: 10.3389/fchem.2020.00777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/24/2020] [Indexed: 11/23/2022] Open
Abstract
An anode bimetallic catalyst comprising Ni-Pd alloy nanoparticles was loaded on acid-treated multi-walled carbon nanotubes (MWCNTs) for application in a direct urea fuel cell. The bimetallic catalyst and MWCNTs were synthesized by a hydrothermal method at 160°C for 5 h. To reduce the catalyst particle size, alkaline resistance, and facilitate their uniform distribution on the surface of the MWCNTs, phosphorus (P) was added to the Ni-Pd/MWCNT catalyst. The effects of P on the distribution and reduction in size of catalyst particles were investigated by Brunauer-Emmett-Teller analysis, transmission electron microscopy, and X-ray diffraction analysis. The enhanced catalytic activity and durability of the P-containing catalyst was confirmed by the high current density [1897.76 mA/cm2 (vs. Ag/AgCl)] obtained at 0.45 V in a 3 M KOH/1.0 M urea alkaline aqueous solution compared with that of the catalyst without P [604.87 mA/cm2 (vs. Ag/AgCl)], as determined by cyclic voltammetry and chronoamperometry. A Urea-O2 fuel cell assembled with a membrane electrode assembly comprising the Ni-Pd(P)/MWCNT catalyst delivered peak power densities of 0.756 and 3.825 mW/cm2 at 25 and 60°C, respectively, in a 3 M KOH/1 M urea solution.
Collapse
Affiliation(s)
| | | | - Young Soo Yoon
- Materials Science and Engineering, Gachon University, Seongnam-si, South Korea
| |
Collapse
|
26
|
Barbosa JR, Paranhos CH, Alves OC, Checca NR, Serna JP, Rossi AL, Silva JCM. Low loading platinum dispersed on Ni/C nanoparticles as high active catalysts for urea electrooxidation reaction. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Elishav O, Mosevitzky Lis B, Miller EM, Arent DJ, Valera-Medina A, Grinberg Dana A, Shter GE, Grader GS. Progress and Prospective of Nitrogen-Based Alternative Fuels. Chem Rev 2020; 120:5352-5436. [PMID: 32501681 DOI: 10.1021/acs.chemrev.9b00538] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Alternative fuels are essential to enable the transition to a sustainable and environmentally friendly energy supply. Synthetic fuels derived from renewable energies can act as energy storage media, thus mitigating the effects of fossil fuels on environment and health. Their economic viability, environmental impact, and compatibility with current infrastructure and technologies are fuel and power source specific. Nitrogen-based fuels pose one possible synthetic fuel pathway. In this review, we discuss the progress and current research on utilization of nitrogen-based fuels in power applications, covering the complete fuel cycle. We cover the production, distribution, and storage of nitrogen-based fuels. We assess much of the existing literature on the reactions involved in the ammonia to nitrogen atom pathway in nitrogen-based fuel combustion. Furthermore, we discuss nitrogen-based fuel applications ranging from combustion engines to gas turbines, as well as their exploitation by suggested end-uses. Thereby, we evaluate the potential opportunities and challenges of expanding the role of nitrogen-based molecules in the energy sector, outlining their use as energy carriers in relevant fields.
Collapse
Affiliation(s)
- Oren Elishav
- The Nancy and Stephen Grand Technion Energy Program, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Bar Mosevitzky Lis
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Elisa M Miller
- Materials and Chemical Science and Technology Directorate, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Douglas J Arent
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Agustin Valera-Medina
- College of Physical Sciences and Engineering, Cardiff University, Wales, United Kingdom
| | - Alon Grinberg Dana
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gennady E Shter
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Gideon S Grader
- The Nancy and Stephen Grand Technion Energy Program, Technion - Israel Institute of Technology, Haifa 3200003, Israel.,The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
28
|
Khalafallah D, Ouyang C, Zhi M, Hong Z. Carbon Anchored Epitaxially Grown Nickel Cobalt‐Based Carbonate Hydroxide for Urea Electrooxidation Reaction with a High Activity and Durability. ChemCatChem 2020. [DOI: 10.1002/cctc.201902304] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Diab Khalafallah
- State Key Laboratory of Silicon Material School of Materials Science and EngineeringZhejiang University 38 Zheda Road Hangzhou 310027 P.R. China
- Mechanical Design and Materials Department Faculty of Energy EngineeringAswan University P.O. Box 81521 Aswan Egypt
| | - Chong Ouyang
- State Key Laboratory of Silicon Material School of Materials Science and EngineeringZhejiang University 38 Zheda Road Hangzhou 310027 P.R. China
| | - Mingjia Zhi
- State Key Laboratory of Silicon Material School of Materials Science and EngineeringZhejiang University 38 Zheda Road Hangzhou 310027 P.R. China
| | - Zhanglian Hong
- State Key Laboratory of Silicon Material School of Materials Science and EngineeringZhejiang University 38 Zheda Road Hangzhou 310027 P.R. China
| |
Collapse
|
29
|
Nickel-Rhodium bimetallic dispersions supported on nickel foam as the efficient catalyst for urea electrooxidation in alkaline medium. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135211] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Abd El-Lateef HM, Almulhim NF, Mohamed IM. Physicochemical and electrochemical investigations of an electrodeposited CeNi2@NiO nanomaterial as a novel anode electrocatalyst material for urea oxidation in alkaline media. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Yuan M, Wang R, Sun Z, Lin L, Yang H, Li H, Nan C, Sun G, Ma S. Morphology-Controlled Synthesis of Ni-MOFs with Highly Enhanced Electrocatalytic Performance for Urea Oxidation. Inorg Chem 2019; 58:11449-11457. [DOI: 10.1021/acs.inorgchem.9b01124] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mengwei Yuan
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Rui Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zemin Sun
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Liu Lin
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Han Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Huifeng Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Caiyun Nan
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Genban Sun
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shulan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
32
|
Basumatary P, Konwar D, Yoon YS. Nanoneedle‐structured Anode Catalyst for Low‐Temperature Proton Exchange Membrane Fuel Cells. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Padmini Basumatary
- Department of Chemical EngineeringGachon University Seongnam‐si 1342 Republic of Korea
| | - Dimpul Konwar
- Department of Chemical EngineeringGachon University Seongnam‐si 1342 Republic of Korea
| | - Young Soo Yoon
- Department of Chemical EngineeringGachon University Seongnam‐si 1342 Republic of Korea
- Department of Materials Science and EngineeringGachon University Seongnam‐si 1342 Republic of Korea
| |
Collapse
|
33
|
Electrochemical Oxidation of Urea on NiCu Alloy Nanoparticles Decorated Carbon Nanofibers. Catalysts 2019. [DOI: 10.3390/catal9050397] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bimetallic Cu3.8Ni alloy nanoparticles (NPs)-anchored carbon nanofibers (composite NFs) were synthesized using a simple electrospinning machine. XRD, SEM, TEM, and TGA were employed to examine the physiochemical characteristics of these composite NFs. The characterization techniques proved that Cu3.8Ni alloy NPs-anchored carbon NFs were successfully fabricated. Urea oxidation (UO) processes as a source of hydrogen and electrical energy were investigated using the fabricated composite NFs. The corresponding onset potential of UO and the oxidation current density (OCD) were measured via cyclic voltammetry as 380 mV versus Ag/AgCl electrode and 98 mA/cm2, respectively. Kinetic study indicated that the electrochemical oxidation of urea followed the diffusion controlled process and the reaction order is 0.5 with respect to urea concentration. The diffusion coefficient of urea using the introduced electrocatalyst was found to be 6.04 × 10−3 cm2/s. Additionally, the composite NFs showed steady state stability for 900 s using chronoamperometry test.
Collapse
|
34
|
Abdel Hameed R, Medany SS. Improved electrocatalytic kinetics of nickel hydroxide nanoparticles on Vulcan XC-72R carbon black towards alkaline urea oxidation reaction. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2019; 44:3636-3648. [DOI: 10.1016/j.ijhydene.2018.12.079] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
|
35
|
Hu N, Yang C, He L, Guan Q, Miao R. Ni–Cu/Al2O3 catalysts for the selective hydrogenation of acetylene: a study on catalytic performance and reaction mechanism. NEW J CHEM 2019. [DOI: 10.1039/c9nj03956b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Employing in situ DRIFTS spectra have successfully elucidated the reaction mechanism of Ni&Cu-NP/γ-Al2O3 catalyzed C2H2 semihydrogenation reaction.
Collapse
Affiliation(s)
- Ningmeng Hu
- Faculty of Environmental Science and Engineering
- Kunming University of Science and Technology
- Kunming 650500
- China
| | - Chenghuan Yang
- Faculty of Environmental Science and Engineering
- Kunming University of Science and Technology
- Kunming 650500
- China
| | - Liang He
- Faculty of Chemical Engineering
- Kunming University of Science and Technology
- Kunming 650500
- China
| | - Qingqing Guan
- Faculty of Environmental Science and Engineering
- Kunming University of Science and Technology
- Kunming 650500
- China
| | - Rongrong Miao
- Faculty of Environmental Science and Engineering
- Kunming University of Science and Technology
- Kunming 650500
- China
| |
Collapse
|
36
|
Konwar D, Basumatary P, Woo SP, Lee Y, Yoon YS. Enhanced performance for proton conducting fuel cells at low temperature. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.09.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Recent Advances in the Electro-Oxidation of Urea for Direct Urea Fuel Cell and Urea Electrolysis. Top Curr Chem (Cham) 2018; 376:42. [PMID: 30367274 DOI: 10.1007/s41061-018-0219-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/09/2018] [Indexed: 01/12/2023]
Abstract
This paper provides an overview of recent advances in urea electro-oxidation. Urea sources are abundant from human urine, urea-containing wastewater, and industrial urea, thus becoming an attractive option as anodic fuel for the application in direct urea fuel cells (DUFCs). Besides, as a hydrogen-rich chemical fuel, urea can also be electrolyzed to produce hydrogen for energy storage in the near future. The exact mechanisms of urea decomposition are pretty different in alkaline or neutral mediums and are separately discussed in detail. More importantly, the development of anodic electro-catalysts is of great significance for improving the electrochemical performance of both DUFCs and urea electrolysis cells, which is systematically summarized in our review. Challenges and prospects on the future development of urea electro-oxidation are particularly proposed.
Collapse
|