1
|
Xing D, Li W, Yu H, Wang Z, Li L, Cui Y, Zheng J, Zhou Y, Yan F. Ionic Liquid-Inspired Highly Aligned Fibrous Ionogel for Boosted Thermoelectric Harvesting. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27049-27060. [PMID: 40298119 DOI: 10.1021/acsami.5c03411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Ionogels represent promising materials for thermoelectric generators that efficiently convert low-grade heat into electricity due to their flexibility, stability, nonvolatility, and high thermopower. However, improving their thermoelectric performance presents challenges stemming from the complex interplay between ionic conductivity and thermal conduction. In this study, we developed a highly oriented nanofibrous ionogel membrane through the electrospinning of poly(ethylene oxide) (PEO) blended with a linear CO2-derived polycarbonate oligomer and an ionic liquid, ethylmethylimidazolium dicyanamide. The ionic liquid facilitated the formation of highly aligned nanofiber structures, which demonstrated superior ionic conductivity and reduced thermal conduction compared to the bulk counterparts, primarily due to the size effect inherent in nanofibers. Additionally, the incorporation of CO2-derived polycarbonate can increase the amorphous region of the PEO matrix and strengthen the ion-polymer interaction without compromising the orientation of the nanofibers thanks to its compatibility with PEO and its abundance of electron-withdrawing carbonate groups. This strategy effectively decouples ionic conductivity from thermal conduction, thereby enhancing the thermoelectric efficiency of ionogels. This advancement paves the way for the development of nanofibrous ionogels for use in flexible electronics and energy harvesting applications.
Collapse
Affiliation(s)
- Doudou Xing
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Weizheng Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hao Yu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhihan Wang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Legeng Li
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yongheng Cui
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jiaming Zheng
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yingjie Zhou
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Feng Yan
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Li J, Li J, Wan L, Li Z. Advances in poly(ethylene oxide)-based solid-state lithium-ion battery research. SOFT MATTER 2025; 21:3410-3424. [PMID: 40207371 DOI: 10.1039/d4sm01297f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Solid-state lithium-ion batteries are increasingly recognized as a pivotal advancement for the next generation of energy storage technology, owing to their superior safety, high energy density, and extended cycle life. Among the various solid-state polymer materials for Li-ion batteries, poly(ethylene oxide) (PEO)-based solid-state electrolytes have garnered significant attention owing to their excellent interfacial affinity and high solubility for different lithium salts. However, PEO-based solid electrolytes continue to face obstacles, such as diminished ionic conductivity at ambient temperature, inadequate mechanical characteristics, and severe concentration polarization in practical applications. Researchers have proposed a series of modification strategies to enhance the room temperature ionic conductivity by exploring polymer copolymerization, blending, and hyperbranched methods. To optimize the mechanical properties, studies mainly focus on adding high-strength fillers, introducing cross-linking networks, and developing self-repairing materials. To mitigate the concentration polarization effect, a polyanionic configuration is introduced into the polymer backbone, accompanied by the addition of fillers having anionic receptor groups. In this review, the physicochemical properties and Li+ migration mechanisms of PEO-based solid polymer electrolytes are systematically described, focusing on the aforementioned modification strategies and their research progress. Additionally, it offers insights into future development trends.
Collapse
Affiliation(s)
- Jiahao Li
- Department of Polymer Materials, School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China.
| | - Jiapeng Li
- Department of Polymer Materials, School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China.
| | - Lu Wan
- Department of Polymer Materials, School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China.
| | - Zhaolei Li
- Department of Polymer Materials, School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China.
| |
Collapse
|
3
|
Leifer N, Aurbach D, Greenbaum SG. NMR studies of lithium and sodium battery electrolytes. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 142-143:1-54. [PMID: 39237252 DOI: 10.1016/j.pnmrs.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 09/07/2024]
Abstract
This review focuses on the application of nuclear magnetic resonance (NMR) spectroscopy in the study of lithium and sodium battery electrolytes. Lithium-ion batteries are widely used in electronic devices, electric vehicles, and renewable energy systems due to their high energy density, long cycle life, and low self-discharge rate. The sodium analog is still in the research phase, but has significant potential for future development. In both cases, the electrolyte plays a critical role in the performance and safety of these batteries. NMR spectroscopy provides a non-invasive and non-destructive method for investigating the structure, dynamics, and interactions of the electrolyte components, including the salts, solvents, and additives, at the molecular level. This work attempts to give a nearly comprehensive overview of the ways that NMR spectroscopy, both liquid and solid state, has been used in past and present studies of various electrolyte systems, including liquid, gel, and solid-state electrolytes, and highlights the insights gained from these studies into the fundamental mechanisms of ion transport, electrolyte stability, and electrode-electrolyte interfaces, including interphase formation and surface microstructure growth. Overviews of the NMR methods used and of the materials covered are presented in the first two chapters. The rest of the review is divided into chapters based on the types of electrolyte materials studied, and discusses representative examples of the types of insights that NMR can provide.
Collapse
Affiliation(s)
- Nicole Leifer
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002 Israel
| | - Doron Aurbach
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002 Israel
| | - Steve G Greenbaum
- Department of Physics, Hunter College, City University of New York, New York, NY, USA.
| |
Collapse
|
4
|
Wang C, Zhang X, Sun X, Zhang Y, Wang Q, Sun J. Aliphatic Hyperbranched Polycarbonates Solid Polymer Electrolytes with High Li-Ion Transference Number for Lithium Metal Batteries. Macromol Rapid Commun 2024; 45:e2300645. [PMID: 38227948 DOI: 10.1002/marc.202300645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/25/2023] [Indexed: 01/18/2024]
Abstract
In this work, hyperbranched polycarbonate-poly(ethylene oxide) (PEO)-based solid polymer electrolytes (HBPC-SEs) are successfully synthesized via a straightforward organo-catalyzed "A1"+"B2"-ring-opening polymerization approach. The temperature-dependent ionic conductivity of HBPC-SEs, composed of different polycarbonate linkages and various LiTFSI concentrations, is investigated. The results demonstrate that HBPC-SE with an ether-carbonate alternating structure exhibits superior ionic conductivity, attributed to the solubility of Li salts in the polymer matrix and the mobility of the polymer segments. The HBPC1-SE with 30 wt% LiTFSI presents the highest ionic conductivities of 2.15 × 10-5, 1.78 × 10-4, and 6.07 × 10-4 Scm-1 at 30, 60, and 80 °C, respectively. Compared to traditional PEO-based electrolytes, the incorporation of polycarbonate segments significantly enhances the electrochemical stability window (5 V) and Li+ transference number (0.53) of HBPC-SEs. Furthermore, the LiFePO4/HBPC1-SE-3/Li cell exhibits exceptional rate capability and long-cycling performance, maintaining a discharge capacity of 130 mAh g-1 at 0.5C with a capacity retention of 95% after 300 cycles.
Collapse
Affiliation(s)
- Chengliang Wang
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Address: Zhengzhou Rd. 53, Qingdao, CN-266042, China
| | - Xu Zhang
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Address: Zhengzhou Rd. 53, Qingdao, CN-266042, China
| | - Xiaofei Sun
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Address: Zhengzhou Rd. 53, Qingdao, CN-266042, China
| | - Yan Zhang
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Address: Zhengzhou Rd. 53, Qingdao, CN-266042, China
| | - Qingfu Wang
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Address: Zhengzhou Rd. 53, Qingdao, CN-266042, China
| | - Jingjiang Sun
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Address: Zhengzhou Rd. 53, Qingdao, CN-266042, China
| |
Collapse
|
5
|
Su G, Zhang X, Xiao M, Wang S, Huang S, Han D, Meng Y. Polymeric Electrolytes for Solid-state Lithium Ion Batteries: Structure Design, Electrochemical Properties and Cell Performances. CHEMSUSCHEM 2024; 17:e202300293. [PMID: 37771268 DOI: 10.1002/cssc.202300293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023]
Abstract
Solid-state electrolytes are key to achieving high energy density, safety, and stability for lithium-ion batteries. In this Review, core indicators of solid polymer electrolytes are discussed in detail including ionic conductivity, interface compatibility, mechanical integrity, and cycling stability. Besides, we also summarize how above properties can be improved by design strategies of functional monomers, groups, and assembly of batteries. Structures and properties of polymers are investigated here to provide a basis for all-solid-state electrolyte design strategies of multi-component polymers. In addition, adjustment strategies of quasi-solid-state polymer electrolytes such as adding functional additives and carrying out structural design are also investigated, aiming at solving problems caused by simply adding liquids or small molecular plasticizer. We hope that fresh and established researchers can achieve a general perspective of solid polymer electrolytes via this Review and spur more extensive interests for exploration of high-performance lithium-ion batteries.
Collapse
Affiliation(s)
- Gang Su
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xin Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Min Xiao
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Shuanjin Wang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Sheng Huang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Dongmei Han
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yuezhong Meng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, 450000, P. R. China
- Research Center of Green Catalysts, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
6
|
Maladeniya CP, Tennyson AG, Smith RC. Single‐stage chemical recycling of plastic waste to yield durable composites via a tandem transesterification‐thiocracking process. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
| | - Andrew G. Tennyson
- Department of Chemistry Clemson University Clemson South Carolina USA
- Department of Materials Science and Engineering Clemson University Clemson South Carolina USA
| | - Rhett C. Smith
- Department of Chemistry Clemson University Clemson South Carolina USA
| |
Collapse
|
7
|
The Fabrication of Solid Polymer Electrolyte from CS/PEO/NaClO 4/Fly Ash Composite. Polymers (Basel) 2022; 14:polym14224792. [PMID: 36432918 PMCID: PMC9693229 DOI: 10.3390/polym14224792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Solid polymer electrolytes (SPEs) have been successfully fabricated from CS/PEO/NaClO4/Fly ash composite. Chitosan (CS), an organic polymer, was blended with polyethylene oxide (PEO) to enhance its electrochemical properties. However, SPEs based on CS/PEO composites have low conductivity. Fly ash (FA) has been studied to be used as a filler to increase the ionic conductivity of SPEs. In this study, polymer composites based on CS and PEO were developed with the addition of FA as a filler using the solution casting method. The interactions between CS, PEO, NaClO4, and fly ash were observed using FTIR. The SPE characterization using XRD and DSC showed a decrease in crystallinity after the addition of NaClO4 and FA. The SPE composite morphology and elemental distribution were investigated using SEM. SPE conductivity analysis using EIS showed the optimum results for SPE fabricated with a ratio of CS:PEO:NaClO4 = 3:2:7.5, which was 1.02 × 10-4 S cm-1 at 30 °C and increased to 2.13 × 10-3 S cm-1 at 60 °C. The addition of FA (5 wt.%) increased the conductivity to 3.20 × 10-4 S cm-1 at 30 °C and increased to 4.34 × 10-3 S cm-1 at 60 °C.
Collapse
|
8
|
Raj A, Panchireddy S, Grignard B, Detrembleur C, Gohy JF. Bio-Based Solid Electrolytes Bearing Cyclic Carbonates for Solid-State Lithium Metal Batteries. CHEMSUSCHEM 2022; 15:e202200913. [PMID: 35839135 DOI: 10.1002/cssc.202200913] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Green resources for lithium-based batteries excite many researchers due to their eco-friendly nature. In this work, a sustainable bio-based solid-state electrolyte was developed based on carbonated soybean oil (CSBO), obtained by organocatalyzed coupling of CO2 to epoxidized soybean oil. CSBO coupled with lithium bis(trifluoromethanesulfonyl)imide salt on a bio-based cellulose separator resulted in free-standing membranes. Those membranes on electrochemical measurements exhibited ionic conductivity of around 10-3 S cm-1 at 100 °C and around 10-6 S cm-1 at room temperature with wide electrochemical stability window (up to 4.6 V vs. Li/Li+ ) and transference number up to 0.39 at RT. Further investigations on the galvanostatic charge-discharge of LiFePO4 cathodes with CSBO-based electrolyte membranes and lithium metal anodes delivered the gravimetric capacity of 112 and 157 mAh g-1 at RT and 60 °C, respectively, providing a promising direction to further develop bio-based solid electrolytes for sustainable solid-state lithium batteries.
Collapse
Affiliation(s)
- Ashish Raj
- Institute of Condensed Matter and Nanoscience (IMCN), Université catholique de Louvain, Place L. Pasteur 1, 1348, Louvain-la-Neuve, Belgium
| | - Satyannarayana Panchireddy
- Institute of Condensed Matter and Nanoscience (IMCN), Université catholique de Louvain, Place L. Pasteur 1, 1348, Louvain-la-Neuve, Belgium
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Allée du 6 août, Building B6A, 4000, Liège, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Allée du 6 août, Building B6A, 4000, Liège, Belgium
| | - Jean-François Gohy
- Institute of Condensed Matter and Nanoscience (IMCN), Université catholique de Louvain, Place L. Pasteur 1, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
9
|
Gregory GL, Gao H, Liu B, Gao X, Rees GJ, Pasta M, Bruce PG, Williams CK. Buffering Volume Change in Solid-State Battery Composite Cathodes with CO 2-Derived Block Polycarbonate Ethers. J Am Chem Soc 2022; 144:17477-17486. [PMID: 36122375 PMCID: PMC9523710 DOI: 10.1021/jacs.2c06138] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polymers designed with a specific combination of electrochemical, mechanical, and chemical properties could help overcome challenges limiting practical all-solid-state batteries for high-performance next-generation energy storage devices. In composite cathodes, comprising active cathode material, inorganic solid electrolyte, and carbon, battery longevity is limited by active particle volume changes occurring on charge/discharge. To overcome this, impractical high pressures are applied to maintain interfacial contact. Herein, block polymers designed to address these issues combine ionic conductivity, electrochemical stability, and suitable elastomeric mechanical properties, including adhesion. The block polymers have "hard-soft-hard", ABA, block structures, where the soft "B" block is poly(ethylene oxide) (PEO), known to promote ionic conductivity, and the hard "A" block is a CO2-derived polycarbonate, poly(4-vinyl cyclohexene oxide carbonate), which provides mechanical rigidity and enhances oxidative stability. ABA block polymers featuring controllable PEO and polycarbonate lengths are straightforwardly prepared using hydroxyl telechelic PEO as a macroinitiator for CO2/epoxide ring-opening copolymerization and a well-controlled Mg(II)Co(II) catalyst. The influence of block polymer composition upon electrochemical and mechanical properties is investigated, with phosphonic acid functionalities being installed in the polycarbonate domains for adhesive properties. Three lead polymer materials are identified; these materials show an ambient ionic conductivity of 10 -4 S cm-1, lithium-ion transport (tLi+ 0.3-0.62), oxidative stability (>4 V vs Li+/Li), and elastomeric or plastomer properties (G' 0.1-67 MPa). The best block polymers are used in composite cathodes with LiNi0.8Mn0.1Co0.1O2 active material and Li6PS5Cl solid electrolyte-the resulting solid-state batteries demonstrate greater capacity retention than equivalent cells featuring no polymer or commercial polyelectrolytes.
Collapse
Affiliation(s)
- Georgina L Gregory
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Hui Gao
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K
| | - Boyang Liu
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K
| | - Xiangwen Gao
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K
| | - Gregory J Rees
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K
| | - Mauro Pasta
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K
| | - Peter G Bruce
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K
| | - Charlotte K Williams
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
10
|
Applications of Spectroscopic Techniques for Characterization of Polymer Nanocomposite: A Review. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Zhang X, Wang C, Zhao W, Han M, Sun J, Wang Q. Passerini polymerization as a novel route for high ionic conductivity solid polymer electrolyte. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
12
|
Meabe L, Zagórski J, Mecerreyes D, Aguesse F, Llordes A. New insights on the origin of chemical instabilities between poly(carbonate)-based polymer and Li-containing inorganic materials. Chemphyschem 2022; 23:e202200296. [PMID: 35763538 DOI: 10.1002/cphc.202200296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/21/2022] [Indexed: 11/05/2022]
Abstract
Composites electrolytes, owing to their potential to combine both polymeric and ceramic properties, are promising candidates for Solid-State-Batteries (SSBs). Here, we assessed the effect of ceramic fillers (Li1+xAlxTi2-xP3O12, Li6.55Ga0.15La3Zr2O12, Al2O3) in a poly(ethylene oxide carbonate)-LiTFSI. First, the role of filler chemistry on thermal and electrochemical properties is evaluated: the polymer crystallinity is reduced, resulting in a gain of ionic conductivity at low temperatures; and the ionic conductivity at low temperature (<30 °C) is boosted for LLZO filler particles. This behaviour is commonly attributed to new conduction pathways generated within the fillers; however, here we demonstrate that a polymer degradation induced by the filler chemistry modifies the polymer chemistry in poly(ethylene glycol), initiated by LiOH that can be found on the LLZO surface. The electrolyte containing LATP or Al2O3 does not under any degradation. Hence, special attention must be paid to surface impurities, as instability/degradation may occur.
Collapse
Affiliation(s)
- Leire Meabe
- CIC energiGUNE, Electrochemical Energy Storage, Parque Tecnológico de Álava, Albert Einstein, 48, 01510, Vitoria-Gasteiz, SPAIN
| | | | | | | | | |
Collapse
|
13
|
Ion and Molecular Transport in Solid Electrolytes Studied by NMR. Int J Mol Sci 2022; 23:ijms23095011. [PMID: 35563404 PMCID: PMC9103273 DOI: 10.3390/ijms23095011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
NMR is the method of choice for molecular and ionic structures and dynamics investigations. The present review is devoted to solvation and mobilities in solid electrolytes, such as ion-exchange membranes and composite materials, based on cesium acid sulfates and phosphates. The applications of high-resolution NMR, solid-state NMR, NMR relaxation, and pulsed field gradient 1H, 7Li, 13C, 19F, 23Na, 31P, and 133Cs NMR techniques are discussed. The main attention is paid to the transport channel morphology, ionic hydration, charge group and mobile ion interaction, and translation ions and solvent mobilities in different spatial scales. Self-diffusion coefficients of protons and Li+, Na+, and Cs+ cations are compared with the ionic conductivity data. The microscopic ionic transfer mechanism is discussed.
Collapse
|
14
|
Volkov VI, Yarmolenko OV, Chernyak AV, Slesarenko NA, Avilova IA, Baymuratova GR, Yudina AV. Polymer Electrolytes for Lithium-Ion Batteries Studied by NMR Techniques. MEMBRANES 2022; 12:membranes12040416. [PMID: 35448386 PMCID: PMC9028971 DOI: 10.3390/membranes12040416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022]
Abstract
This review is devoted to different types of novel polymer electrolytes for lithium power sources developed during the last decade. In the first part, the compositions and conductivity of various polymer electrolytes are considered. The second part contains NMR applications to the ion transport mechanism. Polymer electrolytes prevail over liquid electrolytes because of their exploitation safety and wider working temperature ranges. The gel electrolytes are mainly attractive. The systems based on polyethylene oxide, poly(vinylidene fluoride-co-hexafluoropropylene), poly(ethylene glycol) diacrylate, etc., modified by nanoparticle (TiO2, SiO2, etc.) additives and ionic liquids are considered in detail. NMR techniques such as high-resolution NMR, solid-state NMR, magic angle spinning (MAS) NMR, NMR relaxation, and pulsed-field gradient NMR applications are discussed. 1H, 7Li, and 19F NMR methods applied to polymer electrolytes are considered. Primary attention is given to the revelation of the ion transport mechanism. A nanochannel structure, compositions of ion complexes, and mobilities of cations and anions studied by NMR, quantum-chemical, and ionic conductivity methods are discussed.
Collapse
Affiliation(s)
- Vitaly I. Volkov
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia; (O.V.Y.); (A.V.C.); (N.A.S.); (I.A.A.); (G.R.B.); (A.V.Y.)
- Scientific Center in Chernogolovka RAS, 142432 Chernogolovka, Russia
- Correspondence: or
| | - Olga V. Yarmolenko
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia; (O.V.Y.); (A.V.C.); (N.A.S.); (I.A.A.); (G.R.B.); (A.V.Y.)
| | - Alexander V. Chernyak
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia; (O.V.Y.); (A.V.C.); (N.A.S.); (I.A.A.); (G.R.B.); (A.V.Y.)
- Scientific Center in Chernogolovka RAS, 142432 Chernogolovka, Russia
| | - Nikita A. Slesarenko
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia; (O.V.Y.); (A.V.C.); (N.A.S.); (I.A.A.); (G.R.B.); (A.V.Y.)
| | - Irina A. Avilova
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia; (O.V.Y.); (A.V.C.); (N.A.S.); (I.A.A.); (G.R.B.); (A.V.Y.)
| | - Guzaliya R. Baymuratova
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia; (O.V.Y.); (A.V.C.); (N.A.S.); (I.A.A.); (G.R.B.); (A.V.Y.)
| | - Alena V. Yudina
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia; (O.V.Y.); (A.V.C.); (N.A.S.); (I.A.A.); (G.R.B.); (A.V.Y.)
| |
Collapse
|
15
|
Wang J, Zhang C, Zhang Y, Xue Z. Advances in
host selection
and
interface regulation
of polymer electrolytes. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jirong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan China
| | - Chi Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan China
| | - Yong Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan China
| | - Zhigang Xue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
16
|
Ni’mah YL, Muhaiminah ZH, Suprapto S. Increase of Solid Polymer Electrolyte Ionic Conductivity Using Nano-SiO 2 Synthesized from Sugarcane Bagasse as Filler. Polymers (Basel) 2021; 13:polym13234240. [PMID: 34883743 PMCID: PMC8659504 DOI: 10.3390/polym13234240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
The synthesize of solid polymer electrolyte (SPE) based on polyethylene oxide (PEO), NaClO4 and nano-SiO2 was carried out by solution cast technique. Nano-SiO2 was synthesized from sugarcane bagasse using sol-gel method. FTIR analysis was carried out to investigate the bonding between nano-SiO2 and PEO/NaClO4. The morphology of the SPE was characterized using SEM. XRD and DSC analysis showed that SPE crystallinity decreased as nano-SiO2 concentration was increased. Mechanical analyses were conducted to characterize the SPE tensile strength and elongation at break. EIS analysis was conducted to measure SPE ionic conductivity. The PEO/NaClO4 SPE with the addition of 5% nano-SiO2 from sugarcane bagasse at 60 °C produced SPE with the highest ionic conductivity, 1.18 × 10-6 S/cm. It was concluded that the addition of nano-SiO2 increased ionic conductivity and interface stability at the solid polymer electrolyte-PEO/NaClO4.
Collapse
|
17
|
Nishimura N, Hashinokuchi J, Tominaga Y. Thermal, Mechanical, and Ion‐Conductive Properties of Crosslinked Poly[(ethylene carbonate)‐
co
‐(ethylene oxide)]‐Lithium Bis(fluorosulfonyl)Imide Electrolytes. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Naomi Nishimura
- Graduate School of Bio‐Applications and Systems Engineering Tokyo University of Agriculture and Technology Koganei Tokyo 184–8588 Japan
| | - Junpei Hashinokuchi
- Graduate School of Bio‐Applications and Systems Engineering Tokyo University of Agriculture and Technology Koganei Tokyo 184–8588 Japan
| | - Yoichi Tominaga
- Graduate School of Bio‐Applications and Systems Engineering Tokyo University of Agriculture and Technology Koganei Tokyo 184–8588 Japan
| |
Collapse
|
18
|
Li S, Lorandi F, Wang H, Liu T, Whitacre JF, Matyjaszewski K. Functional polymers for lithium metal batteries. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Polyether Single and Double Crystalline Blends and the Effect of Lithium Salt on Their Crystallinity and Ionic Conductivity. Polymers (Basel) 2021; 13:polym13132097. [PMID: 34202328 PMCID: PMC8271483 DOI: 10.3390/polym13132097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, blends of Poly(ethylene oxide), PEO, and poly(1,6-hexanediol), PHD, were prepared in a wide composition range. They were examined by Differential Scanning Calorimetry (DSC), Polarized Light Optical Microscopy (PLOM) and Wide Angle X-ray Scattering (WAXS). Based on the results obtained, the blends were partially miscible in the melt and their crystallization was a function of miscibility and composition. Crystallization triggered phase separation. In blends with higher PEO contents both phases were able to crystallize due to the limited miscibility in this composition range. On the other hand, the blends with higher PHD contents display higher miscibility and therefore, only the PHD phase could crystallize in them. A nucleation effect of the PHD phase on the PEO phase was detected, probably caused by a transference of impurities mechanism. Since PEO is widely used as electrolyte in lithium batteries, the PEO/PHD blends were studied with lithium bis(trifluoromethanesulfonyl) imide (LiTFSI), and the effect of Li-salt concentration was studied. We found that the lithium salt preferentially dissolves in the PEO phase without significantly affecting the PHD component. While the Li-salt reduced the spherulite growth rate of the PEO phase within the blends, the overall crystallization rate was enhanced because of the strong nucleating effect of the PHD component. The ionic conductivity was also determined for the blends with Li-salt. At high temperatures (>70 °C), the conductivity is in the order of ~10−3 S cm−1, and as the temperature decreases, the crystallization of PHD was detected. This improved the self-standing character of the blend films at high temperatures as compared to the one of neat PEO.
Collapse
|
20
|
Meng N, Lian F, Cui G. Macromolecular Design of Lithium Conductive Polymer as Electrolyte for Solid-State Lithium Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005762. [PMID: 33346405 DOI: 10.1002/smll.202005762] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/02/2020] [Indexed: 05/22/2023]
Abstract
In the development of solid-state lithium batteries, solid polymer electrolyte (SPE) has drawn extensive concerns for its thermal and chemical stability, low density, and good processability. Especially SPE efficiently suppresses the formation of lithium dendrite and promotes battery safety. However, most of SPE is derived from the matrix with simple functional group, which suffers from low ionic conductivity, reduced mechanical properties after conductivity modification, bad electrochemical stability, and low lithium-ion transference number. Appling macromolecular design with multiple functional groups to polymer matrix is accepted as a strategy to solve the problems of SPE fundamentally. In this review, macromolecular design based on lithium conducting groups is summarized including copolymerization, network construction, and grafting. Meanwhile, the construction of single-ion conductor polymer is also focused herein. Moreover, synergistic effects between the designed matrix, lithium salt, and fillers are reviewed with the objective to further improve the performance of SPE. At last, future studies on macromolecular design are proposed in the development of SPE for solid-state batteries with high energy density and durability.
Collapse
Affiliation(s)
- Nan Meng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Fang Lian
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Guanglei Cui
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| |
Collapse
|
21
|
Olmedo-Martínez JL, Meabe L, Riva R, Guzmán-González G, Porcarelli L, Forsyth M, Mugica A, Calafel I, Müller AJ, Lecomte P, Jérôme C, Mecerreyes D. Flame retardant polyphosphoester copolymers as solid polymer electrolyte for lithium batteries. Polym Chem 2021. [DOI: 10.1039/d1py00344e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Solid-state lithium batteries are considered one of the most promising battery systems due to their high volumetric energy density, in this work a flame retarded polymer electrolyte is proposed.
Collapse
|
22
|
Lourenço TC, Ebadi M, Brandell D, Da Silva JLF, Costa LT. Interfacial Structures in Ionic Liquid-Based Ternary Electrolytes for Lithium-Metal Batteries: A Molecular Dynamics Study. J Phys Chem B 2020; 124:9648-9657. [PMID: 32965114 DOI: 10.1021/acs.jpcb.0c06500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lithium-metal batteries are promising candidates to fulfill the future performance requirements for energy storage applications. However, the tendency to form metallic dendrites and the undesirable side reactions between the electrolyte and the Li electrode lead to poor performance and safety issues in these batteries. Therefore, understanding the interfacial properties and the Li-metal surface/electrolyte interactions is crucial to resolve the remaining obstacles and make these devices feasible. Here, we report a computational study on the interface effects in ternary polymer electrolytes composed by poly(ethylene oxide) (PEO), lithium salts, and different ionic liquids (ILs) confined between two Li-metal slabs. Atomistic simulations are used to characterize the local environment of the Li+ ions and the transport properties in the bulk and at the interface regions. Aggregation of ions at the metal surface is seen in all investigated systems; the structure and composition are directly correlated to the IL components. The strong interactions between the electrolyte species and the Li-metal atoms result in the structuring of the electrolyte at the interface region, in which comparatively small and flat ions result in a well-defined region with extensive Li+ populations and high self-diffusion coefficients. In contrast, large ions such as [P222mom]+ increase the PEO density in the bulk due to large steric effects at the interface. Therefore, the choice of specific ILs in ternary polymer electrolytes can tune the structure-dynamic properties at the Li-metal surface/electrolyte interface, controlling the SEI formation at the electrode surface, and thereby improve battery performance.
Collapse
Affiliation(s)
- Tuanan C Lourenço
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 369, 13560-970 São Carlos, São Paulo, Brazil
| | - Mahsa Ebadi
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 538, 75121 Uppsala, Sweden
| | - Daniel Brandell
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 538, 75121 Uppsala, Sweden
| | - Juarez L F Da Silva
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 369, 13560-970 São Carlos, São Paulo, Brazil
| | - Luciano T Costa
- Institute of Chemistry, Federal Fluminense University-Outeiro de São João Batista, s/n CEP:24020-141 Niterói, RJ, Brazil
| |
Collapse
|
23
|
Voropaeva DY, Novikova SA, Yaroslavtsev AB. Polymer electrolytes for metal-ion batteries. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4956] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The results of studies on polymer electrolytes for metal-ion batteries are analyzed and generalized. Progress in this field of research is driven by the need for solid-state batteries characterized by safety and stable operation. At present, a number of polymer electrolytes with a conductivity of at least 10−4 S cm−1 at 25 °C were synthesized. Main types of polymer electrolytes are described, viz., polymer/salt electrolytes, composite polymer electrolytes containing inorganic particles and anion acceptors, and polymer electrolytes based on cation-exchange membranes. Ion transport mechanisms and various methods for increasing the ionic conductivity in these systems are discussed. Prospects of application of polymer electrolytes in lithium- and sodium-ion batteries are outlined.
The bibliography includes 349 references.
Collapse
|
24
|
Zhang H, Armand M. History of Solid Polymer Electrolyte‐Based Solid‐State Lithium Metal Batteries: A Personal Account. Isr J Chem 2020. [DOI: 10.1002/ijch.202000066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Heng Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Luoyu Road 1037 430074 Wuhan China
| | - Michel Armand
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE) Basque Research and Technology Alliance (BRTA) Álava Technology Park Albert Einstein 48 01510 Vitoria-Gasteiz Spain
| |
Collapse
|
25
|
Temeche E, Zhang X, Laine RM. Solid Electrolytes for Li-S Batteries: Solid Solutions of Poly(ethylene oxide) with Li xPON- and Li xSiPON-Based Polymers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30353-30364. [PMID: 32519843 DOI: 10.1021/acsami.0c06196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report here efforts to synthesize free-standing, dry polymer electrolytes that exhibit superior ionic conductivities at ambient for Li-S batteries. Co-dissolution of poly(ethylene oxide) (PEO) (Mn 900k) with LixPON and LixSiPON polymer systems at a ratio of approximately 3:2 followed by casting provides transparent, solid-solution films 25-50 μm thick, lowering PEO crystallinity, and providing measured impedance values of 0.1-2.8 × 10-3 S/cm at ambient. These values are much higher than simple PEO/Li+ salt systems. These solid-solution polymer electrolytes (PEs) are (1) thermally stable to 100 °C; (2) offer activation energies of 0.2-0.5 eV; (3) suppress dendrite formation; and (4) enable the use of lithium anodes at current densities as high as 3.5 mAh/cm2. Galvanostatic cycling of SPAN/PEs/Li cell (SPAN = sulfurized, carbonized polyacrylonitrile) shows discharge capacities of 1000 mAh/gsulfur at 0.25C and 800 mAh/gsulfur at 1C with high coulumbic efficiency over 100 cycles.
Collapse
Affiliation(s)
- Eleni Temeche
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| | - Xinyu Zhang
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| | - Richard M Laine
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| |
Collapse
|
26
|
Kamps JH, Groote R, Baus M, Vermeulen H, Hoeks T, van der Heijden R, Sijbesma RP, Heuts JP. Activated carbonates: Enabling the synthesis of differentiated polymers via solution carbonation. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Zuo C, Chen G, Zhang Y, Gan H, Li S, Yu L, Zhou X, Xie X, Xue Z. Poly(ε-caprolactone)-block-poly(ethylene glycol)-block-poly(ε-caprolactone)-based hybrid polymer electrolyte for lithium metal batteries. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118132] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Wei Z, Ren Y, Wang M, He J, Huo W, Tang H. Improving the Conductivity of Solid Polymer Electrolyte by Grain Reforming. NANOSCALE RESEARCH LETTERS 2020; 15:122. [PMID: 32458218 PMCID: PMC7251041 DOI: 10.1186/s11671-020-03355-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/17/2020] [Indexed: 06/01/2023]
Abstract
Polyethylene oxide (PEO)-based solid polymer electrolyte (SPE) is considered to have great application prospects in all-solid-state li-ion batteries. However, the application of PEO-based SPEs is hindered by the relatively low ionic conductivity, which strongly depends on its crystallinity and density of grain boundaries. In this work, a simple and effective press-rolling method is applied to reduce the crystallinity of PEO-based SPEs for the first time. With the rolled PEO-based SPE, the LiFePO4/SPE/Li all-solid li-ion battery delivers a superior rechargeable specific capacity of 162.6 mAh g-1 with a discharge-charge voltage gap of 60 mV at a current density of 0.2 C with a much lower capacity decay rate. The improvement of electrochemical properties can be attributed to the press-rolling method, leading to a doubling conductivity and reduced activation energy compared with that of electrolyte prepared by traditional cast method. The present work provides an effective and easy-to-use grain reforming method for SPE, worthy of future application.
Collapse
Affiliation(s)
- Zhaohuan Wei
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 611731, China.
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yaqi Ren
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Minkang Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jijun He
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Weirong Huo
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Hui Tang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
29
|
Liu F, Bin F, Xue J, Wang L, Yang Y, Huo H, Zhou J, Li L. Polymer Electrolyte Membrane with High Ionic Conductivity and Enhanced Interfacial Stability for Lithium Metal Battery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22710-22720. [PMID: 32348105 DOI: 10.1021/acsami.9b21370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Solid polymer electrolyte is one of the best choices to improve the safety of lithium metal batteries (LMBs). However, its widespread application is hindered because of the low ionic conductivity at room temperature and large interfacial resistance. Here, a cross-linked polymer is synthesized with an unsaturated polyester and used as a polymer electrolyte membrane (PEM). The PEM has a high ionic conductivity (1.99 × 10-3 S cm-1 at 30 °C) and a low glass transition temperature (-54.2 °C), contributing to decreasing interfacial resistance, promoting more uniform Li deposition, and suppressing Li dendrite penetration. The PEM also has a wide electrochemical stable window (∼4.6 V) and superior thermal stability (>150 °C), showing high potential in LMBs. The LiFePO4-Li coin cells and pouch pack batteries with PEM present very stable cycle performance and high safety, indicating that the PEM can be a promising candidate for future solid-state LMBs.
Collapse
Affiliation(s)
- Fengquan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Fengjuan Bin
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jinxin Xue
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lu Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yujie Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hong Huo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jianjun Zhou
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lin Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
30
|
Olmedo-Martínez JL, Porcarelli L, Alegría Á, Mecerreyes D, Müller AJ. High Lithium Conductivity of Miscible Poly(ethylene oxide)/Methacrylic Sulfonamide Anionic Polyelectrolyte Polymer Blends. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jorge L. Olmedo-Martínez
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
| | - Luca Porcarelli
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
- ARC Centre of Excellence for Electromaterials Science and Institute for Frontier Materials, Deakin University, Melbourne 3125, Australia
| | - Ángel Alegría
- Materials Physics Center, CSIC-UPV/EHU, Paseo Manuel Lardizábal 5, San Sebastian 20018, Spain
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), Apartado 1072, San Sebastián 20080, Spain
| | - David Mecerreyes
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Alejandro J. Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
31
|
Wang X, Kerr R, Chen F, Goujon N, Pringle JM, Mecerreyes D, Forsyth M, Howlett PC. Toward High-Energy-Density Lithium Metal Batteries: Opportunities and Challenges for Solid Organic Electrolytes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905219. [PMID: 31961989 DOI: 10.1002/adma.201905219] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/29/2019] [Indexed: 06/10/2023]
Abstract
With increasing demands for safe, high capacity energy storage to support personal electronics, newer devices such as unmanned aerial vehicles, as well as the commercialization of electric vehicles, current energy storage technologies are facing increased challenges. Although alternative batteries have been intensively investigated, lithium (Li) batteries are still recognized as the preferred energy storage solution for the consumer electronics markets and next generation automobiles. However, the commercialized Li batteries still have disadvantages, such as low capacities, potential safety issues, and unfavorable cycling life. Therefore, the design and development of electromaterials toward high-energy-density, long-life-span Li batteries with improved safety is a focus for researchers in the field of energy materials. Herein, recent advances in the development of novel organic electrolytes are summarized toward solid-state Li batteries with higher energy density and improved safety. On the basis of new insights into ionic conduction and design principles of organic-based solid-state electrolytes, specific strategies toward developing these electrolytes for Li metal anodes, high-energy-density cathode materials (e.g., high voltage materials), as well as the optimization of cathode formulations are outlined. Finally, prospects for next generation solid-state electrolytes are also proposed.
Collapse
Affiliation(s)
- Xiaoen Wang
- Institute for Frontier Materials (IFM), Deakin University, Geelong, VIC, 3217, Australia
| | - Robert Kerr
- Institute for Frontier Materials (IFM), Deakin University, Geelong, VIC, 3217, Australia
| | - Fangfang Chen
- Institute for Frontier Materials (IFM), Deakin University, Geelong, VIC, 3217, Australia
- ARC Centre of Excellence for Electromaterials Science (ACES), Deakin University, Burwood, VIC, 3125, Australia
| | - Nicolas Goujon
- Institute for Frontier Materials (IFM), Deakin University, Geelong, VIC, 3217, Australia
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018, Donostia-San Sebastian, Spain
| | - Jennifer M Pringle
- Institute for Frontier Materials (IFM), Deakin University, Geelong, VIC, 3217, Australia
- ARC Centre of Excellence for Electromaterials Science (ACES), Deakin University, Burwood, VIC, 3125, Australia
| | - David Mecerreyes
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018, Donostia-San Sebastian, Spain
| | - Maria Forsyth
- Institute for Frontier Materials (IFM), Deakin University, Geelong, VIC, 3217, Australia
- ARC Centre of Excellence for Electromaterials Science (ACES), Deakin University, Burwood, VIC, 3125, Australia
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018, Donostia-San Sebastian, Spain
| | - Patrick C Howlett
- Institute for Frontier Materials (IFM), Deakin University, Geelong, VIC, 3217, Australia
- ARC Centre of Excellence for Electromaterials Science (ACES), Deakin University, Burwood, VIC, 3125, Australia
| |
Collapse
|
32
|
Liu F, Li T, Yang Y, Yan J, Li N, Xue J, Huo H, Zhou J, Li L. Investigation on the Copolymer Electrolyte of Poly(1,3‐dioxolane‐
co
‐formaldehyde). Macromol Rapid Commun 2020; 41:e2000047. [DOI: 10.1002/marc.202000047] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Fengquan Liu
- Beijing Key Laboratory of Energy Conversion and Storage MaterialsCollege of ChemistryBeijing Normal University Beijing 100875 China
| | - Ting Li
- Beijing Key Laboratory of Energy Conversion and Storage MaterialsCollege of ChemistryBeijing Normal University Beijing 100875 China
| | - Yujie Yang
- Beijing Key Laboratory of Energy Conversion and Storage MaterialsCollege of ChemistryBeijing Normal University Beijing 100875 China
| | - Jun Yan
- Beijing Key Laboratory of Energy Conversion and Storage MaterialsCollege of ChemistryBeijing Normal University Beijing 100875 China
| | - Ning Li
- Beijing Key Laboratory of Energy Conversion and Storage MaterialsCollege of ChemistryBeijing Normal University Beijing 100875 China
| | - Jinxin Xue
- Beijing Key Laboratory of Energy Conversion and Storage MaterialsCollege of ChemistryBeijing Normal University Beijing 100875 China
| | - Hong Huo
- Beijing Key Laboratory of Energy Conversion and Storage MaterialsCollege of ChemistryBeijing Normal University Beijing 100875 China
| | - Jianjun Zhou
- Beijing Key Laboratory of Energy Conversion and Storage MaterialsCollege of ChemistryBeijing Normal University Beijing 100875 China
| | - Lin Li
- Beijing Key Laboratory of Energy Conversion and Storage MaterialsCollege of ChemistryBeijing Normal University Beijing 100875 China
| |
Collapse
|
33
|
Yohans M, Singh M, Singh RC, Shukla PK, Singh V, Singh PK. Poly(vinylidine fluoride-co-hexafluoropropylene)-doped zinc acetate polymer electrolyte for supercapacitor application. HIGH PERFORM POLYM 2020. [DOI: 10.1177/0954008319890005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Poly(vinylidene fluoride- co-hexafluoropropylene) (PVdF-HFP) doped with zinc acetate polymer electrolytes have been prepared for electrochemical devices. Electrical conductivity ( σ) obtained from impedance analysis shows a maximum (σ = 4.83 × 10–4 S cm−1) for 25 wt% of salt concentration, while Fourier transform infrared spectroscopy confirms the formation of composite electrolyte and information on the interaction of polymer matrix with the salt. Polarized optical microscopy shows the reduction in the crystallinity of polymer host due to salt doping which is also evidenced in the X-ray diffraction analysis of the samples. A sandwiched structure laboratory-scale supercapacitor has been fabricated using the highest conductivity polymer electrolyte film and activated graphene oxide electrode shows promising results.
Collapse
Affiliation(s)
- Miliyon Yohans
- National Metrology Institute of Ethiopia (NMIE), Addis Ababa, Ethiopia
| | - Munendra Singh
- Material Research Laboratory, Department of Physics, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Ram Chandra Singh
- Material Research Laboratory, Department of Physics, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - PK Shukla
- I.T.S Engineering College, Greater Noida, Uttar Pradesh, India
| | - Vijay Singh
- Department of Chemical Engineering, Konkuk University, Seoul, South Korea
| | - Pramod K Singh
- Material Research Laboratory, Department of Physics, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
34
|
MOF-derived ionic conductor enhancing polymer electrolytes with superior electrochemical performances for all solid lithium metal batteries. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117800] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
35
|
Boujioui F, Damerow H, Zhuge F, Gohy J. Solid Polymer Electrolytes Based on Copolymers of Cyclic Carbonate Acrylate and
n
‐Butylacrylate. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.201900556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Fadoi Boujioui
- Institute of Condensed Matter and Nanosciences (IMCN)Université catholique de Louvain Place L. Pasteur 1 1348 Louvain‐la‐Neuve Belgium
| | - Helen Damerow
- Institute of Condensed Matter and Nanosciences (IMCN)Université catholique de Louvain Place L. Pasteur 1 1348 Louvain‐la‐Neuve Belgium
| | - Flanco Zhuge
- Institute of Condensed Matter and Nanosciences (IMCN)Université catholique de Louvain Place L. Pasteur 1 1348 Louvain‐la‐Neuve Belgium
| | - Jean‐François Gohy
- Institute of Condensed Matter and Nanosciences (IMCN)Université catholique de Louvain Place L. Pasteur 1 1348 Louvain‐la‐Neuve Belgium
| |
Collapse
|
36
|
Mecerreyes D, Porcarelli L, Casado N. Innovative Polymers for Next‐Generation Batteries. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.201900490] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- David Mecerreyes
- POLYMATUniversity of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia‐San Sebastián Spain
- IKERBASQUEBasque Foundation for Science 48011 Bilbao Spain
| | - Luca Porcarelli
- POLYMATUniversity of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia‐San Sebastián Spain
| | - Nerea Casado
- POLYMATUniversity of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia‐San Sebastián Spain
| |
Collapse
|
37
|
Arandia I, Meabe L, Aranburu N, Sardon H, Mecerreyes D, Müller AJ. Influence of Chemical Structures on Isodimorphic Behavior of Three Different Copolycarbonate Random Copolymer Series. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Idoia Arandia
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Leire Meabe
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Nora Aranburu
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Haritz Sardon
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - David Mecerreyes
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- POLYMAT and University of the Basque Country UPV/EHU, Donostia-San Sebastián, Spain
| | - Alejandro J. Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
38
|
Li S, Zuo C, Zhang Y, Wang J, Gan H, Li S, Yu L, Zhou B, Xue Z. Covalently cross-linked polymer stabilized electrolytes with self-healing performance via boronic ester bonds. Polym Chem 2020. [DOI: 10.1039/d0py00728e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This article reported a facile fabrication of self-healing solid polymer electrolytes via boronic ester bonds.
Collapse
Affiliation(s)
- Sibo Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Cai Zuo
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Yong Zhang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Jirong Wang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Huihui Gan
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Shaoqiao Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Liping Yu
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Binghua Zhou
- Institute of Advanced Materials (IAM)
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Zhigang Xue
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| |
Collapse
|
39
|
Tominaga Y, Nakano K, Morioka T. Random copolymers of ethylene carbonate and ethylene oxide for Li-Ion conductive solid electrolytes. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Meabe L, Huynh TV, Mantione D, Porcarelli L, Li C, O'Dell LA, Sardon H, Armand M, Forsyth M, Mecerreyes D. UV-cross-linked poly(ethylene oxide carbonate) as free standing solid polymer electrolyte for lithium batteries. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.02.058] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Olmedo-Martínez JL, Meabe L, Basterretxea A, Mecerreyes D, Müller AJ. Effect of Chemical Structure and Salt Concentration on the Crystallization and Ionic Conductivity of Aliphatic Polyethers. Polymers (Basel) 2019; 11:polym11030452. [PMID: 30960436 PMCID: PMC6473696 DOI: 10.3390/polym11030452] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 11/26/2022] Open
Abstract
Poly(ethylene oxide) (PEO) is the most widely used polymer in the field of solid polymer electrolytes for batteries. It is well known that the crystallinity of polymer electrolytes strongly affects the ionic conductivity and its electrochemical performance. Nowadays, alternatives to PEO are actively researched in the battery community, showing higher ionic conductivity, electrochemical window, or working temperature range. In this work, we investigated polymer electrolytes based on aliphatic polyethers with a number of methylene units ranging from 2 to 12. Thus, the effect of the lithium bis(trifluoromethanesulfone) imide (LiTFSI) concentration on the crystallization behavior of the new aliphatic polyethers and their ionic conductivity was investigated. In all the cases, the degree of crystallinity and the overall crystallization rate of the polymers decreased drastically with 30 wt % LiTFSI addition. The salt acted as a low molecular diluent to the polyethers according to the expectation of the Flory–Huggins theory for polymer–diluent mixtures. By fitting our results to this theory, the value of the interaction energy density (B) between the polyether and the LiTFSI was calculated, and we show that the value of B must be small to obtain high ionic conductivity electrolytes.
Collapse
Affiliation(s)
- Jorge L Olmedo-Martínez
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
| | - Leire Meabe
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
| | - Andere Basterretxea
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
| | - David Mecerreyes
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.
| | - Alejandro J Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.
| |
Collapse
|
42
|
|
43
|
Effects of nanoparticle addition to poly(ε-caprolactone) electrolytes: Crystallinity, conductivity and ambient temperature battery cycling. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.117] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Choi BN, Yang JH, Kim YS, Chung CH. Effect of morphological change of copper-oxide fillers on the performance of solid polymer electrolytes for lithium-metal polymer batteries. RSC Adv 2019; 9:21760-21770. [PMID: 35518876 PMCID: PMC9066739 DOI: 10.1039/c9ra03555a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 07/07/2019] [Indexed: 11/21/2022] Open
Abstract
Solid polymer electrolytes (SPEs) for Li-metal polymer batteries are prepared, in which poly(ethylene oxide) (PEO), lithium bis(trifluoromethylsulfonyl)imide (LiTFSI), and copper-oxide fillers are formulated. Their structural and electrochemical properties are analyzed when the morphology of the copper-oxide fillers has been modulated to spherical or dendritic structure. The ionic conductivity obtained by electrochemical impedance spectroscopy (EIS) has been increased to 1.007 × 10−4 S cm−1 at 30 °C and 1.368 × 10−3 S cm−1 at 60 °C, as the 5 wt% dendritic fillers have been added to the SPEs. This ionic conductivity value is 1.3 times higher than that of 5 wt% spherical filler-contained SPEs. The analyses of differential scanning calorimetry (DSC) and X-ray diffraction (XRD) indicate that the increase of ionic conductivity is due to the remarkable decrease of crystallinity upon the addition of copper-oxide filler into PEO matrix of SPEs. The fabricated SPEs with the dendritic copper-oxide fillers present a total ionic transference number of 0.99 and a lithium-ion transference number of 0.38. More importantly, it presents a stable potential window of 2.0–4.8 V at 25 °C and high thermal stability up to 300 °C. The specific discharge capacity of the prepared cell with the dendritic filler-contained SPEs is measured to be 51 mA h g−1 and 125 mA h g−1 under 0.1 current-rate (C-rate) at 25 °C and 60 °C, respectively. In this study, the ionic conductivity and the electrochemical performance of the PEO-based polymer electrolyte have been evaluated when morphologically different copper-oxide fillers have been incorporated into the PEO matrix. We have also confirmed the safety and the flexibility of the prepared solid polymer electrolytes when they are used in flexible lithium-metal polymer batteries (LMPBs). Solid polymer electrolytes (SPEs) for Li-metal polymer batteries are prepared, in which poly(ethylene oxide) (PEO), lithium bis(trifluoromethylsulfonyl)imide (LiTFSI), and copper-oxide fillers are formulated.![]()
Collapse
Affiliation(s)
- Bit Na Choi
- School of Chemical Engineering
- Sungkyunkwan University
- Suwon 16419
- Republic of Korea
| | - Jin Hoon Yang
- School of Chemical Engineering
- Sungkyunkwan University
- Suwon 16419
- Republic of Korea
| | - Yong Seok Kim
- School of Chemical Engineering
- Sungkyunkwan University
- Suwon 16419
- Republic of Korea
| | - Chan-Hwa Chung
- School of Chemical Engineering
- Sungkyunkwan University
- Suwon 16419
- Republic of Korea
| |
Collapse
|
45
|
Ionic liquid crystal with fast ion-conductive tunnels for potential application in solvent-free Li-ion batteries. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.079] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Review of Recent Nuclear Magnetic Resonance Studies of Ion Transport in Polymer Electrolytes. MEMBRANES 2018; 8:membranes8040120. [PMID: 30513636 PMCID: PMC6316001 DOI: 10.3390/membranes8040120] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 11/16/2022]
Abstract
Current and future demands for increasing the energy density of batteries without sacrificing safety has led to intensive worldwide research on all solid state Li-based batteries. Given the physical limitations on inorganic ceramic or glassy solid electrolytes, development of polymer electrolytes continues to be a high priority. This brief review covers several recent alternative approaches to polymer electrolytes based solely on poly(ethylene oxide) (PEO) and the use of nuclear magnetic resonance (NMR) to elucidate structure and ion transport properties in these materials.
Collapse
|
47
|
Aziz AA, Yoshimoto N, Yamabuki K, Tominaga Y. Ion-conductive, Thermal and Electrochemical Properties of Poly(ethylene carbonate)-Mg Electrolytes with Glyme Solution. CHEM LETT 2018. [DOI: 10.1246/cl.180544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Azlini Ab Aziz
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Nobuko Yoshimoto
- Graduate School of Science and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Kazuhiro Yamabuki
- Graduate School of Science and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Yoichi Tominaga
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|