1
|
Chen Y, He H, Liu M, Xu H, Zhang H, Zhu X, Yang D. Facile Synthesis of Polypyrrole/MnO 2/Carbon Cloth Composites for Supercapacitor Electrodes. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:641. [PMID: 40358258 PMCID: PMC12073381 DOI: 10.3390/nano15090641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025]
Abstract
In the development of flexible smart electronics, fabricating electrodes with optimized architectures to achieve superior electrochemical performance remains a significant challenge. This study presents a two-step synthesis and characterization of a polypyrrole (PPy)-MnO2/carbon cloth (CC) nanocomposite. The MnO2/CC substrate was first prepared via the hydrothermal method, followed by uniform PPy coating through vapor-phase polymerization in the presence of an oxidizing agent. Electrochemical measurements revealed substantial enhancement in performance, with the specific capacitance increasing from 123.1 mF/cm2 for the MnO2/CC composite to 324.5 mF/cm2 for the PPy/MnO2/CC composite at a current density of 2.5 mA/cm2. This remarkable improvement can be attributed to the synergistic effects between the conductive PPy polymer and MnO2/CC substrate and the formation of additional ion transport channels facilitated by the PPy coating. This work provides valuable insights for designing high-performance electrode materials and advances the development of composite-based energy storage devices.
Collapse
Affiliation(s)
- Yan Chen
- College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China; (H.H.); (M.L.); (H.X.); (H.Z.)
| | - Hanyue He
- College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China; (H.H.); (M.L.); (H.X.); (H.Z.)
| | - Min Liu
- College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China; (H.H.); (M.L.); (H.X.); (H.Z.)
| | - He Xu
- College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China; (H.H.); (M.L.); (H.X.); (H.Z.)
| | - Haibo Zhang
- College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China; (H.H.); (M.L.); (H.X.); (H.Z.)
- Intelligent Manufacturing Industry Technology Research Institute, Sichuan University of Arts and Science, Dazhou 635000, China
| | - Xinghua Zhu
- Dazhou Industrial Technology Research Institute, Dazhou 635000, China;
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, China
| | - Dingyu Yang
- College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China; (H.H.); (M.L.); (H.X.); (H.Z.)
- Intelligent Manufacturing Industry Technology Research Institute, Sichuan University of Arts and Science, Dazhou 635000, China
| |
Collapse
|
2
|
Chin SX, Lau KS, Ginting RT, Tan ST, Khiew PS, Chia CH, Wongchoosuk C. Facile Preparation of Carbon Nanotubes/Cellulose Nanofibrils/Manganese Dioxide Nanowires Electrode for Improved Solid-Sate Supercapacitor Performances. Polymers (Basel) 2023; 15:3758. [PMID: 37765612 PMCID: PMC10537227 DOI: 10.3390/polym15183758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Wearable energy storage devices require high mechanical stability and high-capacitance flexible electrodes. In this study, we design a flexible supercapacitor electrode consisting of 1-dimensional carbon nanotubes (CNT), cellulose nanofibrils (CNF), and manganese dioxide nanowires (MnO2 NWs). The flexible and conductive CNT/CNF-MnO2 NWs suspension was first prepared via ultrasonic dispersion approach, followed by vacuum filtration and hot press to form the composite paper electrode. The morphological studies show entanglement between CNT and CNF, which supports the mechanical properties of the composite. The CNT/CNF-MnO2 NWs electrode exhibits lower resistance when subjected to various bending angles (-120-+120°) compared to the CNT/CNF electrode. In addition, the solid-state supercapacitor also shows a high energy density of 38 μWh cm-2 and capacitance retention of 83.2% after 5000 cycles.
Collapse
Affiliation(s)
- Siew Xian Chin
- Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand;
- ASASIpintar Program, Pusat GENIUS@Pintar Negara, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Kam Sheng Lau
- Materials Science Program, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Riski Titian Ginting
- Department of Electrical Engineering, Universitas Prima Indonesia, Medan 20118, North Sumatra, Indonesia
- Nanomaterials for Renewable Energy (NRE) Laboratory, Medan 20133, North Sumatra, Indonesia
| | - Sin Tee Tan
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Poi Sim Khiew
- Center of Nanotechnology and Advanced Materials, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Selangor, Malaysia;
| | - Chin Hua Chia
- Materials Science Program, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Chatchawal Wongchoosuk
- Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand;
| |
Collapse
|
3
|
Weng Y, Wang K, Li S, Wang Y, Lei L, Zhuang L, Xu Z. High-Valence-Manganese Driven Strong Anchoring of Iridium Species for Robust Acidic Water Oxidation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205920. [PMID: 36683162 PMCID: PMC10015899 DOI: 10.1002/advs.202205920] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Designing an efficient and durable electrocatalyst for the sluggish anodic oxygen evolution reaction (OER) has been the primary goal of using proton exchange membrane electrolyzer owing to the highly acidic and oxidative environment at the anode. In this work, it is reported that high-valence manganese drives the strong anchoring of the Ir species on the manganese dioxide (MnO2 ) matrix via the formation of an Mn-O-Ir coordination structure through a hydrothermal-redox reaction. The iridium (Ir)-atom-array array is firmly anchored on the Mn-O-Ir coordination structure, endowing the catalyst with excellent OER activity and stability in an acidic environment. Ir-MnO2 (160)-CC shows an ultralow overpotential of 181 mV at j = 10 mA cm-2 and maintains long-term stability of 180 h in acidic media with negligible decay, superior to most reported electrocatalysts. In contrast, when reacting with low-valence MnO2 , Ir species tend to aggregate into IrOx nanoparticles, leading to poor OER stability. Density functional theory (DFT) calculations further reveal that the formation of the Mn-O-Ir coordination structure can optimize the adsorption strength of *OOH intermediates, thus boosting the acidic OER activity and stability.
Collapse
Affiliation(s)
- Yuxiao Weng
- State Key Laboratory of Chemical EngineeringSchool of Chemical EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Keyu Wang
- State Key Laboratory of Chemical EngineeringSchool of Chemical EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Shiyi Li
- State Key Laboratory of Chemical EngineeringSchool of Chemical EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Yixing Wang
- State Key Laboratory of Chemical EngineeringSchool of Chemical EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Linfeng Lei
- State Key Laboratory of Chemical EngineeringSchool of Chemical EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Linzhou Zhuang
- State Key Laboratory of Chemical EngineeringSchool of Chemical EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Zhi Xu
- State Key Laboratory of Chemical EngineeringSchool of Chemical EngineeringEast China University of Science and TechnologyShanghai200237China
| |
Collapse
|
4
|
Fan K, Chen Q, Zhao J, Liu Y. Preparation of MnO 2-Carbon Materials and Their Applications in Photocatalytic Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:541. [PMID: 36770501 PMCID: PMC9921467 DOI: 10.3390/nano13030541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Water pollution is one of the most important problems in the field of environmental protection in the whole world, and organic pollution is a critical one for wastewater pollution problems. How to solve the problem effectively has triggered a common concern in the area of environmental protection nowadays. Around this problem, scientists have carried out a lot of research; due to the advantages of high efficiency, a lack of secondary pollution, and low cost, photocatalytic technology has attracted more and more attention. In the past, MnO2 was seldom used in the field of water pollution treatment due to its easy agglomeration and low catalytic activity at low temperatures. With the development of carbon materials, it was found that the composite of carbon materials and MnO2 could overcome the above defects, and the composite had good photocatalytic performance, and the research on the photocatalytic performance of MnO2-carbon materials has gradually become a research hotspot in recent years. This review covers recent progress on MnO2-carbon materials for photocatalytic water treatment. We focus on the preparation methods of MnO2 and different kinds of carbon material composites and the application of composite materials in the removal of phenolic compounds, antibiotics, organic dyes, and heavy metal ions in water. Finally, we present our perspective on the challenges and future research directions of MnO2-carbon materials in the field of environmental applications.
Collapse
Affiliation(s)
- Kun Fan
- Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Qing Chen
- Chinese Research Academy of Environment Sciences, Beijing 100012, China
- Ecological and Environmental Protection Company, China South-to-North Water Diversion Corporation Limited, Beijing 100036, China
| | - Jian Zhao
- Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Yue Liu
- Chinese Research Academy of Environment Sciences, Beijing 100012, China
| |
Collapse
|
5
|
Facile fabrication of mechanically robust flexible asymmetric supercapacitors based on mesh electrode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Agarwal A, Sankapal BR. Lamellar structured Ni 3P 2O 8: first-ever use to design 1.8 V operated flexible all-solid-state symmetric supercapacitor. Dalton Trans 2022; 51:13878-13891. [PMID: 36040295 DOI: 10.1039/d2dt02505a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Increasing demand for microelectronic devices necessitates the development of highly flexible energy storage technologies with a wide operating voltage. Thus, flexible electrodes and their devices with the requisite mechanical and electrochemical characteristics have prime importance. In this regard, the present article demonstrates the feasibility of designing a flexible all-solid-state supercapacitor using a chemically grown Ni3P2O8 lamellar microstructured electrode embedded with carboxy methyl cellulose-Na2SO4 (CMC-Na2SO4) gel electrolyte. The formed symmetric device impressively exhibited a maximum working voltage window of 1.8 V with a high specific energy of 44.7 W h kg-1 and specific power of 3.3 kW kg-1 along with prolonged cycle life. Also, the device's high deformation tolerance (95%) when bent at 170° with a flashing light-emitting diode (LED) working demonstration showcases its viability for advanced flexible energy storage applications.
Collapse
Affiliation(s)
- Akanksha Agarwal
- Department of Physics, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur-440010, Maharashtra, India.
| | - Babasaheb R Sankapal
- Department of Physics, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur-440010, Maharashtra, India.
| |
Collapse
|
7
|
Rahman AU, Zarshad N, Jianghua W, Shah M, Ullah S, Li G, Tariq M, Ali A. Sodium Pre-Intercalation-Based Na 3-δ-MnO 2@CC for High-Performance Aqueous Asymmetric Supercapacitor: Joint Experimental and DFT Study. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2856. [PMID: 36014721 PMCID: PMC9414395 DOI: 10.3390/nano12162856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Electrochemical energy storage devices are ubiquitous for personal electronics, electric vehicles, smart grids, and future clean energy demand. SCs are EES devices with excellent power density and superior cycling ability. Herein, we focused on the fabrication and DFT calculations of Na3-δ-MnO2 nanocomposite, which has layered MnO2 redox-active sites, supported on carbon cloth. MnO2 has two-dimensional diffusion channels and is not labile to structural changes during intercalation; therefore, it is considered the best substrate for intercalation. Cation pre-intercalation has proven to be an effective way of increasing inter-layered spacing, optimizing the crystal structure, and improving the relevant electrochemical behavior of asymmetric aqueous supercapacitors. We successfully established Na+ pre-intercalated δ-MnO2 nanosheets on carbon cloth via one-pot hydrothermal synthesis. As a cathode, our prepared material exhibited an extended potential window of 0-1.4 V with a remarkable specific capacitance of 546 F g-1(300 F g-1 at 50 A g-1). Moreover, when this cathode was accompanied by an N-AC anode in an asymmetric aqueous supercapacitor, it illustrated exceptional performance (64 Wh kg-1 at a power density of 1225 W kg-1) and incomparable potential window of 2.4 V and 83% capacitance retention over 10,000 cycles with a great Columbic efficiency.
Collapse
Affiliation(s)
- Anis Ur Rahman
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Nighat Zarshad
- Department of Polymer Science, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wu Jianghua
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Muslim Shah
- Department of Chemistry, Faculty of Chemical and Life Sciences, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Sana Ullah
- Department of Chemistry, Faculty of Chemical and Life Sciences, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Guigen Li
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Muhammad Tariq
- Department of PCB, Bayazid Rokhan Institute of Higher Studies, Kabul 1002, Afghanistan
| | - Asad Ali
- Department of Chemistry, Faculty of Chemical and Life Sciences, Abdul Wali Khan University, Mardan 23200, Pakistan
| |
Collapse
|
8
|
Liu X, Liang B, Hong X, Long J. Electrochemical Performance of MnO2/Graphene Flower-like Microspheres Prepared by Thermally-Exfoliated Graphite. Front Chem 2022; 10:870541. [PMID: 35464230 PMCID: PMC9024236 DOI: 10.3389/fchem.2022.870541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
To enhance the electrochemical performance of MnO2/graphene composite, herein, thermally-exfoliated graphite (TE-G) is adopted as a raw material, and a hydrothermal reaction is conducted to achieve the exfoliation of TE-G and the loading of MnO2 nanosheets. Through optimizing the TE-G/KMnO4 ratio in the redox reaction between carbon and KMnO4, flower-like MnO2/G microspheres (MnO2/G-10) are obtained with 83.2% MnO2 and 16.8% residual graphene. Meanwhile, corresponding MnO2/rGO composites are prepared by using rGO as raw materials. Serving as a working electrode in a three-electrode system, MnO2/G-10 composite displays a specific capacitance of 500 F g−1 at 1 A g−1, outstanding rate performance, and capacitance retention of 85.3% for 5,000 cycles. The performance is much better than that of optimized MnO2/rGO composite. We ascribe this to the high carbon fraction in TE-G resulting in a high fraction of MnO2 in composite, and the oxygen-containing groups in rGO reduce the resulting MnO2 fraction in the composite. The superior electrochemical performance of MnO2/G-10 is dependent on the hierarchical porous structure constructed by MnO2 nanosheet arrays and the residual graphene layer in the composite. In addition, a supercapacitor assembled by TE-G negative electrode and MnO2/G positive electrode also exhibits superior performance. In consideration of the low cost of raw materials, the MnO2/G composite exhibits great application potential in the field of supercapacitors.
Collapse
Affiliation(s)
- Xuyue Liu
- School of Material Science and Technology, Shenyang University of Chemical Technology, Shenyang, China
| | - Bing Liang
- School of Material Science and Technology, Shenyang University of Chemical Technology, Shenyang, China
- *Correspondence: Bing Liang,
| | - Xiaodong Hong
- School of Materials Science and Energy Engineering, Foshan University, Foshan, China
| | - Jiapeng Long
- School of Material Science and Technology, Shenyang University of Chemical Technology, Shenyang, China
| |
Collapse
|
9
|
Kumar A, Rathore HK, Sarkar D, Shukla A. Nanoarchitectured transition metal oxides and their composites for supercapacitors. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Ankit Kumar
- Solid State and Structural Chemistry Unit Indian Institute of Science Bengaluru India
| | - Hem Kanwar Rathore
- Department of Physics Malaviya National Institute of Technology Jaipur Rajasthan India
| | - Debasish Sarkar
- Department of Physics Malaviya National Institute of Technology Jaipur Rajasthan India
| | - Ashok Shukla
- Solid State and Structural Chemistry Unit Indian Institute of Science Bengaluru India
| |
Collapse
|
10
|
Ling X, Zhang G, Long Z, Lu X, He Z, Li J, Wang Y, Zhang D. Core–shell structure γ-MnO2-PANI carbon fiber paper-based flexible electrode material for high-performance supercapacitors. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
CoMnO 2-Decorated Polyimide-Based Carbon Fiber Electrodes for Wire-Type Asymmetric Supercapacitor Applications. Molecules 2020; 25:molecules25245863. [PMID: 33322446 PMCID: PMC7763561 DOI: 10.3390/molecules25245863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 11/17/2022] Open
Abstract
In this work, we report the carbon fiber-based wire-type asymmetric supercapacitors (ASCs). The highly conductive carbon fibers were prepared by the carbonized and graphitized process using the polyimide (PI) as a carbon fiber precursor. To assemble the ASC device, the CoMnO2-coated and Fe2O3-coated carbon fibers were used as the cathode and the anode materials, respectively. Herein, the nanostructured CoMnO2 were directly deposited onto carbon fibers by a chemical oxidation route without high temperature treatment in presence of ammonium persulfate (APS) as an oxidizing agent. FE-SEM analysis confirmed that the CoMnO2-coated carbon fiber electrode exhibited the porous hierarchical interconnected nanosheet structures, depending on the added amount of APS, and Fe2O3-coated carbon fiber electrode showed a uniform distribution of porous Fe2O3 nanorods over the surface of carbon fibers. The electrochemical properties of the CoMnO2-coated carbon fiber with the concentration of 6 mmol APS presented the enhanced electrochemical activity, probably due to its porous morphologies and good conductivity. Further, to reduce the interfacial contact resistance as well as improve the adhesion between transition metal nanostructures and carbon fibers, the carbon fibers were pre-coated with the Ni layer as a seed layer using an electrochemical deposition method. The fabricated ASC device delivered a specific capacitance of 221 F g-1 at 0.7 A g-1 and good rate capability of 34.8% at 4.9 A g-1. Moreover, the wire-type device displayed the superior energy density of 60.2 Wh kg-1 at a power density of 490 W kg-1 and excellent capacitance retention of 95% up to 3000 charge/discharge cycles.
Collapse
|
12
|
Zhong R, Xu M, Fu N, Liu R, Zhou A, Wang X, Yang Z. A flexible high-performance symmetric quasi-solid supercapacitor based on Ni-doped MnO2 nano-array @ carbon cloth. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136209] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
BoopathiRaja R, Parthibavarman M. Desert rose like heterostructure of NiCo2O4/NF@PPy composite has high stability and excellent electrochemical performance for asymmetric super capacitor application. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136270] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Supercritical ethanol deposition of Ni(OH)2 nanosheets on carbon cloth for flexible solid-state asymmetric supercapacitor electrode. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104774] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Zhao G, Xuan J, Gong Q, Wang L, Ren J, Sun M, Jia F, Yin G, Liu B. In Situ Growing Double-Layer TiO 2 Nanorod Arrays on New-Type FTO Electrodes for Low-Concentration NH 3 Detection at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8573-8582. [PMID: 31967462 DOI: 10.1021/acsami.9b20337] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel double-layer TiO2 nanorod array (NRA) gas sensor for room-temperature detection of NH3 was fabricated by employing etched fluorine-doped tin dioxide (FTO) glass as the in situ growing substrate and the new-type gas-sensing electrode via the facile droplet-coating and hydrothermal methods. Due to the synergistic effect of forces, special double-layer TiO2 NRAs with a cross-linked and bridgelike structure is formed, in which adequate point junctions can be generated to construct self-assembled electron pathways required for gas-sensing tests. Gas-sensing tests indicate that all samples obtained at different growth times have an excellent gas-sensing response to low-concentration NH3 at room temperature. Among them, the TiO2 NRAs obtained at 6 h (S2) exhibit the highest gas-sensing response to 100 ppm NH3 with a value of 102%. In addition, the growth mechanism, the gas reaction mechanism, and the effect of humidity on the gas-sensing performance are also discussed in the present paper.
Collapse
Affiliation(s)
- Guodong Zhao
- Laboratory of Functional Molecular and Materials, School of Physics and Optoelectronic Engineering , Shandong University of Technology , Zibo 255000 , China
| | - Jingyue Xuan
- Laboratory of Functional Molecular and Materials, School of Physics and Optoelectronic Engineering , Shandong University of Technology , Zibo 255000 , China
| | - Qianqian Gong
- Laboratory of Functional Molecular and Materials, School of Physics and Optoelectronic Engineering , Shandong University of Technology , Zibo 255000 , China
| | - Lili Wang
- Laboratory of Functional Molecular and Materials, School of Physics and Optoelectronic Engineering , Shandong University of Technology , Zibo 255000 , China
| | - Juanjuan Ren
- Laboratory of Functional Molecular and Materials, School of Physics and Optoelectronic Engineering , Shandong University of Technology , Zibo 255000 , China
| | - Meiling Sun
- Laboratory of Functional Molecular and Materials, School of Physics and Optoelectronic Engineering , Shandong University of Technology , Zibo 255000 , China
| | - Fuchao Jia
- Laboratory of Functional Molecular and Materials, School of Physics and Optoelectronic Engineering , Shandong University of Technology , Zibo 255000 , China
| | - Guangchao Yin
- Laboratory of Functional Molecular and Materials, School of Physics and Optoelectronic Engineering , Shandong University of Technology , Zibo 255000 , China
| | - Bo Liu
- Laboratory of Functional Molecular and Materials, School of Physics and Optoelectronic Engineering , Shandong University of Technology , Zibo 255000 , China
| |
Collapse
|
16
|
Han Y, Sun S, Cui W, Deng J. Multidimensional structure of CoNi 2S 4 materials: structural regulation promoted electrochemical performance in a supercapacitor. RSC Adv 2020; 10:7541-7550. [PMID: 35492182 PMCID: PMC9049838 DOI: 10.1039/c9ra10961g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 02/10/2020] [Indexed: 11/21/2022] Open
Abstract
Multidimensional architectures of CoNi2S4 electrode materials are rationally designed by engineering the surface structure toward that of high-performance supercapacitors. The fabrication of a special morphology is highly dependent on the synergistic effect between the guidance of Co-Ni precursor arrays and a subsequent sulfidation process. The unparalleled CoNi2S4 electrode materials (NS-3) deliver a significantly enhanced specific capacitance (3784.6 F g-1 at 3 A g-1), accompanied by an extraordinary rate capability (2932.3 F g-1 at 20 A g-1) and excellent cycling life. The outstanding supercapacitor performance stated above stems from the advantages of a multidimensional structure generated by crosslinking 2D microsheets/1D nanowires/2D ultrathin nanosheets; this structure supplies additional efficient active sites and a large contact area at the electrode-electrolyte interface, providing faster transport kinetics for electrons and ions. For practical applications, asymmetric devices based on an NS-3 positive electrode and active carbon negative electrode exhibit a high energy density of 38.5 W h kg-1 accompanied by a power density of 374.9 W kg-1 (22 W h kg-1 at 7615.4 W kg-1). The above results indicate that the design of multidimensional Co-Ni-S materials is an effective strategy to achieve a high-performance supercapacitor.
Collapse
Affiliation(s)
- Yue Han
- College of Science, Tianjin University of Technology Tianjin 300384 China
| | - Shishuai Sun
- College of Science, Tianjin University of Technology Tianjin 300384 China
| | - Wen Cui
- College of Physics and Materials Science, Tianjin Normal University Tianjin 300387 China
| | - Jiachun Deng
- College of Science, Tianjin University of Technology Tianjin 300384 China
| |
Collapse
|
17
|
Jaoude MA, Alhseinat E, Polychronopoulou K, Bharath G, Darawsheh IFF, Anwer S, Baker MA, Hinder SJ, Banat F. Morphology-dependent electrochemical performance of MnO2 nanostructures on graphene towards efficient capacitive deionization. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135202] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Meng S, Mo Z, Li Z, Guo R, Liu N. Binder-free electrodes based on Mn3O4/γ-MnOOH composites on carbon cloth for supercapacitor application. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.03.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Lu W, Xing Y, Ji B. Surface‐Modification‐Assisted Construction of Hierarchical Double‐Walled MnO
2
Hollow Nanofibers for High‐Performance Supercapacitor Electrode. ChemistrySelect 2019. [DOI: 10.1002/slct.201900061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei Lu
- Department of ChemistryNortheast Normal UniversityJilin Provincial Key Laboratory of Advanced Energy Materials Changchun 130024 P. R. China
| | - Yan Xing
- Department of ChemistryNortheast Normal UniversityJilin Provincial Key Laboratory of Advanced Energy Materials Changchun 130024 P. R. China
| | - Bai Ji
- Department of Hepatobiliary and Pancreatic Surgerythe First Hospital of Jilin University Changchun 130021 P. R. China
| |
Collapse
|
20
|
Chen Y, Liu F, Qiu F, Lu C, Kang J, Zhao D, Han S, Zhuang X. Cobalt-Doped Porous Carbon Nanosheets Derived from 2D Hypercrosslinked Polymer with CoN₄ for High Performance Electrochemical Capacitors. Polymers (Basel) 2018; 10:polym10121339. [PMID: 30961264 PMCID: PMC6401960 DOI: 10.3390/polym10121339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 11/03/2022] Open
Abstract
Cobalt-doped graphene-coupled hypercrosslinked polymers (Co-GHCP) have been successfully prepared on a large scale, using an efficient RAFT (Reversible Addition-Fragmentation Chain Transfer Polymerization) emulsion polymerization and nucleophilic substitution reaction with Co (II) porphyrin. The Co-GHCP could be transformed into cobalt-doped porous carbon nanosheets (Co-GPC) through direct pyrolysis treatment. Such a Co-GPC possesses a typical 2D morphology with a high specific surface area of 257.8 m² g-1. These intriguing properties of transition metal-doping, high conductivity, and porous structure endow the Co-GPC with great potential applications in energy storage and conversion. Utilized as an electrode material in a supercapacitor, the Co-GPC exhibited a high electrochemical capacitance of 455 F g-1 at a specific current of 0.5 A g-1. After 2000 charge/discharge cycles, at a current density of 1 A g-1, the specific capacitance increased by almost 6.45%, indicating the excellent capacitance and durability of Co-GPC. These results demonstrated that incorporation of metal porphyrin into the framework of a hypercrosslinked polymer is a facile strategy to prepare transition metal-doped porous carbon for energy storage applications.
Collapse
Affiliation(s)
- Yuanhai Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, Shanghai 201418, China.
| | - Fengru Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, Shanghai 201418, China.
| | - Feng Qiu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, Shanghai 201418, China.
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Chenbao Lu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Jialing Kang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, Shanghai 201418, China.
| | - Doudou Zhao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, Shanghai 201418, China.
| | - Sheng Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, Shanghai 201418, China.
| | - Xiaodong Zhuang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
21
|
Xie T, Gai Y, Shang Y, Ma C, Su L, Liu J, Gong L. Self‐Supporting CuCo
2
S
4
Microspheres for High‐Performance Flexible Asymmetric Solid‐State Supercapacitors. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800676] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Tian Xie
- Qingdao Agricultural University No. 700 Changcheng Road, Chengyang District Qingdao City Shandong Province China
| | - Yansong Gai
- Qingdao Agricultural University No. 700 Changcheng Road, Chengyang District Qingdao City Shandong Province China
| | - Yuanyuan Shang
- Qingdao Agricultural University No. 700 Changcheng Road, Chengyang District Qingdao City Shandong Province China
| | - Chuanli Ma
- Qingdao Agricultural University No. 700 Changcheng Road, Chengyang District Qingdao City Shandong Province China
| | - Linghao Su
- Qingdao Agricultural University No. 700 Changcheng Road, Chengyang District Qingdao City Shandong Province China
| | - Jing Liu
- Qingdao Agricultural University No. 700 Changcheng Road, Chengyang District Qingdao City Shandong Province China
| | - Liangyu Gong
- Qingdao Agricultural University No. 700 Changcheng Road, Chengyang District Qingdao City Shandong Province China
| |
Collapse
|
22
|
Xu Z, Sun S, Cui W, Yu D, Jiachun Deng. Ultrafine MnO 2 nanowires grown on RGO-coated carbon cloth as a binder-free and flexible supercapacitor electrode with high performance. RSC Adv 2018; 8:38631-38640. [PMID: 35559105 PMCID: PMC9090648 DOI: 10.1039/c8ra05890c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/07/2018] [Indexed: 11/21/2022] Open
Abstract
Reduced graphene oxide coated carbon cloth has been used as a substrate for the growth of ultrafine MnO2 nanowires (CC/RGO/MnO2), forming binder-free and flexible supercapacitor electrode materials. The experimental results indicate that a maximum area-specific capacitance of 506.8 mF cm-2 was gained from the CC/RGO/MnO2 electrode at the current density of 0.128 mA cm-2. Furthermore, the electrode exhibits excellent cycling stability (98.6% specific capacitance was still retained after 10 000 galvanostatic charge-discharge (GCD) tests when the current density was 1.28 mA cm-2). What's more, the area-specific capacitance of the CC/RGO/MnO2 electrode was hardly changed, when the electrode was operated under bending mechanical conditions. In addition, the charge storage performance and mechanism of the MnO2 nanostructures was discussed.
Collapse
Affiliation(s)
- Zhihui Xu
- College of Science, Tianjin University of Technology Tianjin 300384 China
| | - Shishuai Sun
- College of Science, Tianjin University of Technology Tianjin 300384 China
| | - Wen Cui
- College of Physics and Materials Science, Tianjin Normal University Tianjin 300387 China
| | - Dan Yu
- College of Science, Tianjin University of Technology Tianjin 300384 China
| | - Jiachun Deng
- College of Science, Tianjin University of Technology Tianjin 300384 China
| |
Collapse
|