1
|
Balram D, Lian KY, Sebastian N, Alharthi SS, Al-Saidi HM, Yadav VK, Kumar D, Kumar V. A novel ternary nanocomposite based electrochemical sensor coupled with regularized neural network for nanomolar detection of sunset yellow FCF. JOURNAL OF ALLOYS AND COMPOUNDS 2023; 968:171934. [DOI: 10.1016/j.jallcom.2023.171934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
2
|
Rajkumar C, Kim H. An amperometric electrochemical sensor based on hierarchical dual- microporous structure polypyrrole nanoparticles for determination of pyrogallol in the aquatic environmental samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
J MIS, S S, Senthil Kumar P, K VG. New analytical strategies amplified with carbon-based nanomaterial for sensing food pollutants. CHEMOSPHERE 2022; 295:133847. [PMID: 35122811 DOI: 10.1016/j.chemosphere.2022.133847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
The most significant topic currently under the moonlight is Nanobiotechnology and engineered nanomaterials. The novel characteristics displayed by engineered Nanomaterials, especially carbon-based nanomaterials, have spurred interest in its potential application in the food industry. It has provided opportunities for finding solutions to the long-standing challenges in the food industry to assess food safety, maintain food quality, extend the shelf life of produce, and efficiently deliver nutrients. Nanomaterials can be incorporated in food sensors facilitating efficient monitoring of crop maturity and detecting biological and chemical contaminants. When integrated into food packages, nanomaterials could aid in assessing the freshness and improving the quality of packaged foods. In addition, more efficient delivery of nutrients could be possible in foods fortified using nano compounds. The initial section of this review gives an overview of the broad application of nanotechnology in the food industry and carbon-based nanomaterials. The latter part focuses on nanotechnology in biosensors for food safety and quality monitoring.
Collapse
Affiliation(s)
- Mary Isabella Sonali J
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, 600 086, India
| | - Subhashree S
- Department of Food Processing and Quality Control, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, 600 086, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Chennai, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Chennai, India.
| | - Veena Gayathri K
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, 600 086, India.
| |
Collapse
|
4
|
Manoj S, Sadhanala HK, Perelshtein I, Gedanken A. Rhenium Sulfide Incorporated in Molybdenum Sulfide Nanosheets for High-Performance Symmetric Supercapacitors with Enhanced Capacitance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18570-18577. [PMID: 35414171 DOI: 10.1021/acsami.2c02457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Supercapacitors are considered potential energy storage devices and have drawn significant attention due to their superior intrinsic advantages. Herein, we report the synthesis of ReS2 embedded in MoS2 nanosheets (RMS-31) by a hydrothermal technique. The prepared RMS-31 electrode material demonstrated superior pseudocapacitive behavior in 1 M KOH electrolyte solution, which is confirmed by the heterostructure of RMS-31 nanosheet architectures. RMS-31 has a specific capacitance of 244 F g-1 at a current density of 1 A g-1 and a greater areal capacitance of 540 mF cm-2 at a current density of 5 mA cm-2. The symmetric supercapacitor device with the RMS-31 electrode delivers an energy density of 28 W h cm-2 with a power density of 1 W cm-2 and reveals long-term stability at a constant current density of 5 mA cm-2 for 10,000 cycles while accomplishing a retention of 66.5%. The high performance of this symmetric device is attributed to the synergistic effect of ReS2 and MoS2 and the presence of the metallic 1T-MoS2 phase in the RMS-31 electrode. To the best of our knowledge, this is the first report of increasing the interlayer spacing of 2H-MoS2 by incorporating ReS2 for symmetric supercapacitor applications.
Collapse
Affiliation(s)
- Shanmugasundaram Manoj
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan-University, Ramat-Gan52900, Israel
- Department of Chemistry, Bar-Ilan-University, Ramat-Gan52900, Israel
| | - Hari Krishna Sadhanala
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan-University, Ramat-Gan52900, Israel
- Department of Chemistry, Bar-Ilan-University, Ramat-Gan52900, Israel
| | - Ilana Perelshtein
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan-University, Ramat-Gan52900, Israel
- Department of Chemistry, Bar-Ilan-University, Ramat-Gan52900, Israel
| | - Aharon Gedanken
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan-University, Ramat-Gan52900, Israel
- Department of Chemistry, Bar-Ilan-University, Ramat-Gan52900, Israel
| |
Collapse
|
5
|
Application of Electrochemical Sensors in the Determination of Synthetic Dyes in Foods or Beverages and Their Toxicological Effects on Human Health: a Review. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Nehru R, Hsu YF, Wang SF, Chen CW, Dong CD. Selective Electrochemical Sensing Platform Based on the Synergy between Carbon Black and Single-Crystalline Bismuth Sulfide for Rapid Analysis of Antipyretic Drugs. ACS APPLIED BIO MATERIALS 2021; 4:7497-7508. [PMID: 35006704 DOI: 10.1021/acsabm.1c00742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nanomaterials are of significant interest in acetaminophen (APAP) detection in pharmaceutical samples. Herein, a carbon black/single-crystalline rodlike bismuth sulfide (CB/Bi2S3) composite prepared by an ultrasonic method is reported and utilized for the rapid analysis of APAP. The highly oriented edge reactive sites of the CB/Bi2S3 composite promoted synergy and good electrochemical sensing performance with a fast electron transfer rate and low overpotential (0.35 V). Therefore, a CB/Bi2S3 composite-modified glassy carbon electrode (GCE) was applied to the selective determination of APAP by the voltammetric technique. The CB/Bi2S3 composite-modified electrode showed the lowest limit of detection of APAP (1.9 nM) with excellent sensitivity. The proposed CB/Bi2S3/GCE platform exhibited high selectivity, excellent stability (87.15%), and reproducibility. Also, the CB/Bi2S3/GCE sensor was then successfully used to analyze an APAP pharmaceutical sample and exhibited satisfactory outcomes. Therefore, the CB/Bi2S3-modified GCE sensor platform would be a low-cost and robust GCE electrode material for APAP detection.
Collapse
Affiliation(s)
- Raja Nehru
- Sustainable Environmental Research Center, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan, R.O.C.,Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan, R.O.C.,Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan, R.O.C
| | - Yung-Fu Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan, R.O.C
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan, R.O.C
| | - Chiu-Wen Chen
- Sustainable Environmental Research Center, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan, R.O.C.,Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan, R.O.C
| | - Cheng-Di Dong
- Sustainable Environmental Research Center, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan, R.O.C.,Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan, R.O.C
| |
Collapse
|
7
|
Rational design of ultrahigh sensitive sunset yellow sensor based on 3D hierarchical porous graphitic carbon with sub-nanopores. Food Chem 2021; 365:130631. [PMID: 34325348 DOI: 10.1016/j.foodchem.2021.130631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/23/2022]
Abstract
The content of sunset yellow (SY) in food must be strictly controlled, because its excessive intake may cause many adverse health effects. Herein, we proposed an ultrasensitive SY sensor by using hierarchical porous graphitic (HPG) carbon derived from polyaniline hydrogel. After a first step of polymerization, the HPG carbon was prepared through carbonization and further chemical activation. In particular, the activation process endowed the HPG carbon with a high content of optimized porous architecture (sub-nanoporous surface area accounts for more than 90% of microporous surface area), and thus providing a structural basis for high efficiency of SY pre-concentration on HPG carbon surface. Therefore, the proposed sensor showed record-high sensitivity (5285.7 A M-1 cm-2) and ultra-low detection limit (0.15 nM), which represents a performance improvement in SY sensing. Furthermore, the sensor displays excellent selectivity, reproducibility and stability, exhibiting a great perspective in ultrasensitive monitoring of SY in commercial products.
Collapse
|
8
|
Disposable Electrochemical Sensor for Food Colorants Detection by Reduced Graphene Oxide and Methionine Film Modified Screen Printed Carbon Electrode. Molecules 2021; 26:molecules26082312. [PMID: 33923482 PMCID: PMC8072545 DOI: 10.3390/molecules26082312] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
A facile synthesis of reduced graphene oxide (rGO) and methionine film modified screen printed carbon electrode (rGO-methionine/SPCE) was proposed as a disposable sensor for determination of food colorants including amaranth, tartrazine, sunset yellow, and carminic acid. The fabrication process can be achieved in only 2 steps including drop-casting of rGO and electropolymerization of poly(L-methionine) film on SPCE. Surface morphology of modified electrode was studied by scanning electron microscopy (SEM). This work showed a successfully developed novel disposable sensor for detection of all 4 dyes as food colorants. The electrochemical behavior of all 4 food colorants were investigated on modified electrodes. The rGO-methionine/SPCE significantly enhanced catalytic activity of all 4 dyes. The pH value and accumulation time were optimized to obtain optimal condition of each colorant. Differential pulse voltammetry (DPV) was used for determination, and two linear detection ranges were observed for each dye. Linear detection ranges were found from 1 to 10 and 10 to 100 µM for amaranth, 1 to 10 and 10 to 85 µM for tartrazine, 1 to 10 and 10 to 50 µM for sunset yellow, and 1 to 20 and 20 to 60 µM for carminic acid. The limit of detection (LOD) was calculated at 57, 41, 48, and 36 nM for amaranth, tartrazine, sunset yellow, and carminic acid, respectively. In addition, the modified sensor also demonstrated high tolerance to interference substances, good repeatability, and high performance for real sample analysis.
Collapse
|
9
|
Joseph XB, Ezhilarasi JC, Wang SF, Elanthamilan E, Sriram B, Merlin JP. Fabrication of Co 3O 4 nanoparticle-decorated porous activated carbon electrode for the electrochemical detection of 4-nitrophenol. NEW J CHEM 2021. [DOI: 10.1039/d1nj02642a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Preparation of Co3O4@BVFC for the electrochemical detection of 4-NP.
Collapse
Affiliation(s)
- Xavier Benadict Joseph
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - J. Christy Ezhilarasi
- Department of Chemistry, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli-620017, Tamil Nadu, India
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - E. Elanthamilan
- Department of Chemistry, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli-620017, Tamil Nadu, India
| | - Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - J. Princy Merlin
- Department of Chemistry, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli-620017, Tamil Nadu, India
| |
Collapse
|
10
|
Zhumasheva N, Kudreeva L, Kalyyeva A, Badavamova G. Electrodeposition process of perrhenate ions from KNO3 and Na2SO4 background electrolytes in the presence of citric acid. CHEMICAL BULLETIN OF KAZAKH NATIONAL UNIVERSITY 2020. [DOI: 10.15328/cb1087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Processes involved in the electrodeposition of perrhenate ions were studied from two different potassium nitrate and sodium sulfate background electrolytes in the presence of citric acid on graphite electrode by cyclic voltammetry method. Anodic and cathodic potentials of deposited film were determined. After electrolysis process, morphology and content of obtained deposited layers were investigated by SEM and X-Ray methods. The coated film from sodium sulfate background electrolyte was not uniform and Re content was 60.83-65.5%, in case of potassium nitrate electrolyte, the deposited film was more densely located, and Re content was 80.94-82.52%. In the presence of nickel sulfate and citric acid, an alloy was formed with content of Re 80.94-82.52%, 14.10-11.83% of Ni, 4.96-5.66% of impurities, which were confirmed by X-Ray method. The current density decreased with addition of citric acid into sodium sulfate background electrolyte and in cathodic area, the reduction potential of perrhenate ions remained the same, but oxidation potentials changed from 0.25 to 0.35 V and from 0.5 to 0.6 V. The influence of citric acid on potentials of the processes of reduction and oxidation of perrhenate ions from potassium nitrate gave following results: reduction peaks shifted from -0.35 to -0.55 V, and multi peaks of oxidation appeared which were not noticeable without citric acid. It was shown that citric acid has inhibitory effect on reduction and oxidation of perrhenate ions. It is shown that the electrochemical reduction of perrhenate ions leads to the formation of rhenium dioxide in different forms.
Collapse
|
11
|
Veerakumar P, Sangili A, Manavalan S, Thanasekaran P, Lin KC. Research Progress on Porous Carbon Supported Metal/Metal Oxide Nanomaterials for Supercapacitor Electrode Applications. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06010] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Pitchaimani Veerakumar
- Department of Chemistry, National Taiwan University, Institute of Atomic and Molecular Sciences Academia Sinica, Taipei 10617, Taiwan
| | - Arumugam Sangili
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Chung-Hsiao East Road, Section 3, Taipei 10608, Taiwan
| | - Shaktivel Manavalan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Chung-Hsiao East Road, Section 3, Taipei 10608, Taiwan
| | - Pounraj Thanasekaran
- Department of Chemistry, Fu Jen Catholic University, Zhongzheng Road, Xinzhuang District, New Taipei City 24205, Taiwan
| | - King-Chuen Lin
- Department of Chemistry, National Taiwan University, Institute of Atomic and Molecular Sciences Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
12
|
Veerakumar P, Maiyalagan T, Raj BGS, Guruprasad K, Jiang Z, Lin KC. Paper flower-derived porous carbons with high-capacitance by chemical and physical activation for sustainable applications. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
13
|
Sangili A, Veerakumar P, Chen SM, Rajkumar C, Lin KC. Voltammetric determination of vitamin B2 by using a highly porous carbon electrode modified with palladium-copper nanoparticles. Mikrochim Acta 2019; 186:299. [DOI: 10.1007/s00604-019-3396-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/29/2019] [Indexed: 01/07/2023]
|
14
|
Xu Z, Yang L, Jin Q, Hu Z. Improved capacitance of NiCo2O4/carbon composite resulted from carbon matrix with multilayered graphene. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Veerakumar P, Salamalai K, Thanasekaran P, Lin KC. Simple Preparation of Porous Carbon-Supported Ruthenium: Propitious Catalytic Activity in the Reduction of Ferrocyanate(III) and a Cationic Dye. ACS OMEGA 2018; 3:12609-12621. [PMID: 31457993 PMCID: PMC6644444 DOI: 10.1021/acsomega.8b01680] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/20/2018] [Indexed: 05/11/2023]
Abstract
The present study involves the synthesis, characterization, and catalytic application of ruthenium nanoparticles (Ru NPs) supported on plastic-derived carbons (PDCs) synthesized from plastic wastes (soft drink bottles) as an alternative carbon source. PDCs have been further activated with CO2 and characterized by various analytical techniques. The catalytic activity of Ru@PDC for the reduction of potassium hexacyanoferrate(III), (K3[Fe(CN)6]), and new fuchsin (NF) dye by NaBH4 was performed under mild conditions. The PDCs had spherical morphology with an average size of 0.5 μm, and the Ru NP (5 ± 0.2 nm) loading (4.01 wt %) into the PDC provided high catalytic performance for catalytic reduction of ferrocyanate(III) and NF dye. This catalyst can be recycled more than six times with only a minor loss of its catalytic activity. In addition, the stability and reusability of the Ru@PDC catalyst are also discussed.
Collapse
Affiliation(s)
- Pitchaimani Veerakumar
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular
Sciences and Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- E-mail: (P.V.)
| | - Kamaraj Salamalai
- Department
of Mechanical Engineering, PSN Institute
of Technology and Science, Tamil Nadu, Tirunelveli 627152, India
| | - Pounraj Thanasekaran
- Institute of Atomic and Molecular
Sciences and Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - King-Chuen Lin
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular
Sciences and Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- E-mail: . Phone: +866-2-33661162 (K.-C.L.)
| |
Collapse
|
16
|
Chen D, Li L, Xi Y, Li J, Lu M, Cao J, Han W. Self-assembly of biomass microfibers into 3D layer-stacking hierarchical porous carbon for high performance supercapacitors. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|