1
|
Chang J, Zhang Z, Qu C, Han Q, Xu L. Organic Molecules as a Bridge Connecting Photoelectrochemistry and Fluorescence for Dual-Signal Assay. Anal Chem 2025; 97:7842-7850. [PMID: 40177944 DOI: 10.1021/acs.analchem.4c06431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
We report a strategy based on pyridyl-anchored organic small-molecule fluorescent probes to develop a dual-signal sensing platform. The strategy accomplishes an intelligent integration of fluorescence analysis with photoelectrochemical (PEC) sensing, thereby enabling rapid and precise detection of hypochlorite. In this work, the natural dye chromone was selected as the fluorophore for generating fluorescent signals. Meanwhile, by using phenothiazine (PTZ) as the specific recognition group and pyridine as the anchoring moiety, we designed and synthesized a novel organic small-molecule fluorescent probe. The obtained probe was used as a photosensitive material anchored to the TiO2 surface via N → Ti bonds, to form an FTO/TiO2/FPTZ-1 heterostructure-based dual-signal sensing platform for the detection of hypochlorite. This sensing platform has the characteristics of high specificity, sensitivity, and ease of preparation, enabling rapid qualitative fluorescence readout and quantitative photoelectrochemical readout of hypochlorite, with a limit of detection of 0.288 μM for fluorescence and 1.37 nM for PEC.
Collapse
Affiliation(s)
- Jiaxing Chang
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhinan Zhang
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Chulin Qu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qingzhi Han
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Li Xu
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Moussa NAM, Lee S, Kang SH. MoS 2-Plasmonic Hybrid Platforms: Next-Generation Tools for Biological Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:111. [PMID: 39852726 PMCID: PMC11768002 DOI: 10.3390/nano15020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025]
Abstract
The combination of molybdenum disulfide (MoS2) with plasmonic nanomaterials has opened up new possibilities in biological applications by combining MoS2's biocompatibility and high surface area with the optical sensitivity of plasmonic metals. These MoS2-plasmonic hybrid systems hold great promise in areas such as biosensing, bioimaging, and phototherapy, where their complementary properties facilitate improved detection, real-time visualization, and targeted therapeutic interventions. MoS2's adjustable optical features, combined with the plasmon resonance of noble metals such as gold and silver, enhance signal amplification, enabling detailed imaging and selective photothermal or photodynamic therapies while minimizing effects on healthy tissue. This review explores various synthesis strategies for MoS2-plasmonic hybrids, including seed-mediated growth, in situ deposition, and heterojunction formation, which enable tailored configurations optimized for specific biological applications. The primary focus areas include highly sensitive biosensors for detecting cancer and infectious disease biomarkers, high-resolution imaging of cellular dynamics, and the development of phototherapy methods that allow for accurate tumor ablation through light-induced thermal and reactive oxygen species generation. Despite the promising advancements of MoS2-plasmonic hybrids, translating these platforms into clinical practice requires overcoming considerable challenges, such as synthesis reproducibility, toxicity, stability in physiological conditions, targeted delivery, and scalable manufacturing. Addressing these challenges is essential for realizing their potential as next-generation tools in diagnostics and targeted therapies.
Collapse
Affiliation(s)
- Nayra A. M. Moussa
- Basic and Clinical Medical Science Department, Faculty of Dentistry, Deraya University, New Minya 61768, Egypt;
| | - Seungah Lee
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Seong Ho Kang
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Hu XL, Li F, Xu SH, Liu WJ. Design of a binary metal micron grating and its application in near-infrared hot-electron photodetectors. OPTICS LETTERS 2023; 48:4033-4036. [PMID: 37527111 DOI: 10.1364/ol.497058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/06/2023] [Indexed: 08/03/2023]
Abstract
Metal plasmonic nano-gratings possess a high absorption ability and exhibit potential applications in sensing, hot-electron photodetection, metasurfaces, etc. However, the fabrication techniques of high-quality nano-gratings are challenging. In this article, a binary metal micron grating for near-infrared hot-electron photodetectors (HEPDs) is designed in which the surface plasmons are excited by high-diffraction-order modes. The high-diffraction-order micron grating can be fabricated by conventional lithography and has a significantly higher tolerance in the grating parameters than a nano-grating. The range of absorption greater than 70% is ∼3 times that of a nano-grating. Moreover, an interesting relationship between the resonant wavelength and the grating duty cycle is found. When the high-diffraction-order micron grating is applied in metal-insulator-metal HEPDs, a high zero-biased responsivity of 0.533 mA/W is achieved.
Collapse
|
4
|
Mphuthi N, Sikhwivhilu L, Ray SS. Functionalization of 2D MoS 2 Nanosheets with Various Metal and Metal Oxide Nanostructures: Their Properties and Application in Electrochemical Sensors. BIOSENSORS 2022; 12:bios12060386. [PMID: 35735534 PMCID: PMC9220812 DOI: 10.3390/bios12060386] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 05/24/2023]
Abstract
Two-dimensional transition metal dichalcogenides (2D TMDs) have gained considerable attention due to their distinctive properties and broad range of possible applications. One of the most widely studied transition metal dichalcogenides is molybdenum disulfide (MoS2). The 2D MoS2 nanosheets have unique and complementary properties to those of graphene, rendering them ideal electrode materials that could potentially lead to significant benefits in many electrochemical applications. These properties include tunable bandgaps, large surface areas, relatively high electron mobilities, and good optical and catalytic characteristics. Although the use of 2D MoS2 nanosheets offers several advantages and excellent properties, surface functionalization of 2D MoS2 is a potential route for further enhancing their properties and adding extra functionalities to the surface of the fabricated sensor. The functionalization of the material with various metal and metal oxide nanostructures has a significant impact on its overall electrochemical performance, improving various sensing parameters, such as selectivity, sensitivity, and stability. In this review, different methods of preparing 2D-layered MoS2 nanomaterials, followed by different surface functionalization methods of these nanomaterials, are explored and discussed. Finally, the structure-properties relationship and electrochemical sensor applications over the last ten years are discussed. Emphasis is placed on the performance of 2D MoS2 with respect to the performance of electrochemical sensors, thereby giving new insights into this unique material and providing a foundation for researchers of different disciplines who are interested in advancing the development of MoS2-based sensors.
Collapse
Affiliation(s)
- Ntsoaki Mphuthi
- DSI-Mintek Nanotechnology Innovation Centre, Randburg 2125, South Africa;
- Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | - Lucky Sikhwivhilu
- DSI-Mintek Nanotechnology Innovation Centre, Randburg 2125, South Africa;
- Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| | - Suprakas Sinha Ray
- Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, South Africa
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific Industrial Research, Pretoria 0001, South Africa
| |
Collapse
|
5
|
Younis MR, An R, Wang Y, He G, Gurram B, Wang S, Lin J, Ye D, Huang P, Xia XH. Plasmon-Accelerated Generation of Singlet Oxygen on an Au/MoS 2 Nanohybrid for Enhanced Photodynamic Killing of Bacterial Pathogens/Cancerous Cells. ACS APPLIED BIO MATERIALS 2022; 5:747-760. [PMID: 35040617 DOI: 10.1021/acsabm.1c01147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Benefiting from its strong cytotoxic features, singlet oxygen (1O2) has garnered considerable research attention in photodynamic therapy (PDT) and thus, plenty of inorganic PDT agents have been recently developed. However, inorganic PDT agents consisting of metal/semiconductor hybrids are surprisingly rare, bearing very low 1O2 quantum yield, and their in vivo PDT applications remain elusive. Herein, we provide an unprecedented report that the Au/MoS2 hybrid under plasmon resonant excitation can sensitize 1O2 generation with a quantum yield of about 0.22, which is much higher than that of the reported hybrid-based photosensitizers (PSs). This significant enhancement in 1O2 quantum yield is attributed to the hot-electron injection from plasmonic AuNPs to MoS2 NSs due to the matched energy levels. Electron paramagnetic resonance (EPR) spectroscopy with spin trapping and spin labeling verifies the plasmonic generation of hot charge carriers and reactive oxygen species such as superoxide and 1O2. This plasmonic PDT agent shows a remarkable photodynamic bacterial inactivation in vitro and anti-cancer therapeutic ability both in vitro and in vivo, which is solely attributed to high 1O2 generation rather than the plasmonic photothermal effect. Hence, plasmonic Au/MoS2 with enhanced 1O2 quantum yield and appreciable in vivo cancer plasmonic PDT performance holds great promise as an inorganic PS to treat near-surface tumors. As a first demonstration of how metal localized surface plasmon resonance could enhance 1O2 generation, the present study opens up promising opportunities for enhancing 1O2 quantum yield of hybrid-based PSs, leading to achieving a high therapeutic index in plasmon PDT.
Collapse
Affiliation(s)
- Muhammad Rizwan Younis
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ruibing An
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Gang He
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Bhaskar Gurram
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shouju Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Applications of two-dimensional layered nanomaterials in photoelectrochemical sensors: A comprehensive review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214156] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Jing J, Liu K, Jiang J, Xu T, Wang S, Ma J, Zhang Z, Zhang W, Liu T. Double-Antibody Sandwich Immunoassay and Plasmonic Coupling Synergistically Improved Long-Range SPR Biosensor with Low Detection Limit. NANOMATERIALS 2021; 11:nano11082137. [PMID: 34443967 PMCID: PMC8400597 DOI: 10.3390/nano11082137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022]
Abstract
A long-range surface plasmonic resonance (LR-SPR) biosensor modified with double-antibody sandwich immunoassay and plasmonic coupling is demonstrated for human-immunoglobulin G detection with a low limit of detection (LOD). The double-antibody sandwich immunoassay dramatically changes the average refractive index of the medium layer on the sensor surface. The near-field electron coupling between the localized surface plasmon and the long-range surface plasmon leads to a significant perturbation of the evanescent field. The large penetration depth and the long propagation distance of the long-range surface plasmonic waves facilitate the LR-SPR sensor in the detection of biological macromolecules. The unique light absorption characteristic of the nanocomposite material in the sensor provides the in situ self-compensation for the disturbance. Therefore, besides the inherent advantages of optical fiber sensors, the developed biosensor can realize the detection of biomolecules with high sensitivity, low LOD and high accuracy and reliability. Experimental results demonstrate that the LOD of the biosensor is as low as 0.11 μg/mL in the detection of the phosphate-buffered saline sample, and the spike-and-repetition rate is 105.56% in the detection of the real serum sample, which partly shows the practicability of the biosensor. This indicates that the LR-SPR biosensor provides better response compared with existing similar sensors and can be regarded as a valuable method for biochemical analysis and disease detection.
Collapse
Affiliation(s)
- Jianying Jing
- School of Precision Instruments and Opto–Electronics Engineering, Tianjin University, Tianjin 300072, China; (J.J.); (J.J.); (T.X.); (S.W.); (J.M.); (Z.Z.); (W.Z.); (T.L.)
- Key Laboratory of Opto–Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Kun Liu
- School of Precision Instruments and Opto–Electronics Engineering, Tianjin University, Tianjin 300072, China; (J.J.); (J.J.); (T.X.); (S.W.); (J.M.); (Z.Z.); (W.Z.); (T.L.)
- Key Laboratory of Opto–Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
- Correspondence: ; Tel.: +86-022-27404459
| | - Junfeng Jiang
- School of Precision Instruments and Opto–Electronics Engineering, Tianjin University, Tianjin 300072, China; (J.J.); (J.J.); (T.X.); (S.W.); (J.M.); (Z.Z.); (W.Z.); (T.L.)
- Key Laboratory of Opto–Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Tianhua Xu
- School of Precision Instruments and Opto–Electronics Engineering, Tianjin University, Tianjin 300072, China; (J.J.); (J.J.); (T.X.); (S.W.); (J.M.); (Z.Z.); (W.Z.); (T.L.)
- Key Laboratory of Opto–Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Shuang Wang
- School of Precision Instruments and Opto–Electronics Engineering, Tianjin University, Tianjin 300072, China; (J.J.); (J.J.); (T.X.); (S.W.); (J.M.); (Z.Z.); (W.Z.); (T.L.)
- Key Laboratory of Opto–Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Jinying Ma
- School of Precision Instruments and Opto–Electronics Engineering, Tianjin University, Tianjin 300072, China; (J.J.); (J.J.); (T.X.); (S.W.); (J.M.); (Z.Z.); (W.Z.); (T.L.)
- Key Laboratory of Opto–Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Zhao Zhang
- School of Precision Instruments and Opto–Electronics Engineering, Tianjin University, Tianjin 300072, China; (J.J.); (J.J.); (T.X.); (S.W.); (J.M.); (Z.Z.); (W.Z.); (T.L.)
- Key Laboratory of Opto–Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Wenlin Zhang
- School of Precision Instruments and Opto–Electronics Engineering, Tianjin University, Tianjin 300072, China; (J.J.); (J.J.); (T.X.); (S.W.); (J.M.); (Z.Z.); (W.Z.); (T.L.)
- Key Laboratory of Opto–Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Tiegen Liu
- School of Precision Instruments and Opto–Electronics Engineering, Tianjin University, Tianjin 300072, China; (J.J.); (J.J.); (T.X.); (S.W.); (J.M.); (Z.Z.); (W.Z.); (T.L.)
- Key Laboratory of Opto–Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| |
Collapse
|
8
|
Zou HY, Kong FY, Lu XY, Lu MJ, Zhu YC, Ban R, Zhao WW, Wang W. Enzymatic photoelectrochemical bioassay based on hierarchical CdS/NiO heterojunction for glucose determination. Mikrochim Acta 2021; 188:243. [PMID: 34231032 DOI: 10.1007/s00604-021-04882-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/31/2021] [Indexed: 01/19/2023]
Abstract
The design and development of a 3D hierarchical CdS/NiO heterojunction and its application in a self-powered cathodic photoelectrochemical (PEC) bioanalysis is introduced. Specifically, NiO nanoflakes (NFs) were in situ formed on carbon fibers via a facile liquid-phase deposition method followed by an annealing step and subsequent integration with CdS quantum dots (QDs). The glucose oxidase (GOx) was then coated on the photocathode to allow the determination of glucose. Under 5 W 410 nm LED light and at a working voltage of 0.0 V (vs. Ag/AgCl), this method can assay glucose concentrations down to 1.77×10-9 M. The linear range was 5×10-7 M to 1×10-3 M, and the relative standard deviation (RSD) was below 5%. The photocathodic biosensor achieved target detection with high sensitivity and selectivity. This work is expected to stimulate more passion in the development of innovative hierarchical heterostructures for advanced self-powered photocathodic bioanalysis. Design of 3D hierarchical CdS/NiO heterojunction and its application in a self-powered cathodic photoelectrochemical (PEC) bioanalysis.
Collapse
Affiliation(s)
- Hui-Yu Zou
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Fen-Ying Kong
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China. .,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Xin-Yang Lu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Meng-Jiao Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,School of Chemical Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Yuan-Cheng Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China. .,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210023, China.
| | - Rui Ban
- School of Chemical Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China. .,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
9
|
Liao XJ, Xiao HJ, Cao JT, Ren SW, Liu YM. A novel split-type photoelectrochemical immunosensor based on chemical redox cycling amplification for sensitive detection of cardiac troponin I. Talanta 2021; 233:122564. [PMID: 34215060 DOI: 10.1016/j.talanta.2021.122564] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Photoelectrochemical (PEC) immunoassay is a burgeoning and promising bioanalytical method. However, the practical application of PEC still exist some challenges such as the inevitable damage of biomolecules caused by the PEC system and the unsatisfactory sensitivity for biomarkers with low abundance in real sample. To solve the problems, we integrated the cosensitized structure of Ag2S/ZnO nanocomposities as photoelectrode with photogenerated hole-induced chemical redox cycling amplification (CRCA) strategy to develop a split-type PEC immunosensor for cardiac troponin I (cTnI) with high sensitivity. Initially, the immunoreaction was carried out on the 96-well plates in which alkaline phosphatase (ALP) could catalyze ascorbic acid 2-phosphate (AAP) to generate the signal-reporting species ascorbic acid (AA). Subsequently, the AA participated and the tris (2-carboxyethyl) phosphine (TCEP) mediated chemical redox cycling reaction took place on the photoelectrode, thus leading to signal amplification. Under the optimized conditions, the immunosensor demonstrated a detection limit (LOD) of 3.0 × 10-15 g mL-1 with a detection range of 1.0 × 10-14 g mL-1 to 1.0 × 10-9 g mL-1 for cTnI. Impressively, the proposed method could determine the cTnI in human serum samples with high sensitivity and satisfactory accuracy. Considering the virtues of the photoelectrode and the chemical redox cycling strategy, the method would hold great potential for highly sensitive biosensing and bioanalysis.
Collapse
Affiliation(s)
- Xiao-Jing Liao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Hui-Jin Xiao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Jun-Tao Cao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China; Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shu-Wei Ren
- Xinyang Central Hospital, Xinyang 464000, China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|
10
|
Li BL, Zou HL, Luo HQ, Leong DT, Li NB. Layered MoS 2 defect-driven in situ synthesis of plasmonic gold nanocrystals visualizes the planar size and interfacial diversity. NANOSCALE 2020; 12:11979-11985. [PMID: 32459251 DOI: 10.1039/d0nr02838j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Current defect theories significantly guide broad research progress, whereas the recognition of defect status remains challenging. Herein, MoS2 defect type, density and exposed state are visually identified with a reagent indicator of HAuCl4. Mo-terminated defects spontaneously reduce [AuCl4]- anions and oxidized Mo species are dissociated. Consequently, MoS2 edges guide the epitaxial branch of Au nanocrystals (NCs), followed by sequential growths at their planar defects. The size-evolution processes of LaMer growth and planar packages of the aggregative growth of Au/MoS2 nanoseeds result in the occupation of Au atomic layers on heterostructures. Consequently, shell-core hybrids are presented with localized surface plasmon resonance characteristics. The mechanism is systematically explored via the discriminated performance of plasmonic characteristics of Au nanostructures on semiconducting MoS2 substrates. With plasmonic identification, defect-associated size and interfacial diversities of MoS2 are visually information-rich. Tunable morphologies and synergistic optical characteristics of plasmonic semiconductor heterostructures inspire many more applications through the edge and planar defects intrinsic in layered MoS2.
Collapse
Affiliation(s)
- Bang Lin Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Hao Lin Zou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
11
|
Chen Y, Zhang S, Dai H, Hong Z, Lin Y. A multiple mixed TiO2 mesocrystal junction based PEC-colorimetric immunoassay for specific recognition of lipolysis stimulated lipoprotein receptor. Biosens Bioelectron 2020; 148:111809. [DOI: 10.1016/j.bios.2019.111809] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
|
12
|
Younis MR, An RB, Yin YC, Wang S, Ye D, Xia XH. Plasmonic Nanohybrid with High Photothermal Conversion Efficiency for Simultaneously Effective Antibacterial/Anticancer Photothermal Therapy. ACS APPLIED BIO MATERIALS 2019; 2:3942-3953. [DOI: 10.1021/acsabm.9b00521] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Muhammad Rizwan Younis
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Rui Bing An
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yun-Chao Yin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shouju Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Zhao CQ, Ding SN. Perspective on signal amplification strategies and sensing protocols in photoelectrochemical immunoassay. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Younis MR, Wang C, An R, Wang S, Younis MA, Li ZQ, Wang Y, Ihsan A, Ye D, Xia XH. Low Power Single Laser Activated Synergistic Cancer Phototherapy Using Photosensitizer Functionalized Dual Plasmonic Photothermal Nanoagents. ACS NANO 2019; 13:2544-2557. [PMID: 30730695 DOI: 10.1021/acsnano.8b09552] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Combination therapy, especially photodynamic/photothermal therapy (PDT/PTT), has shown promising applications in cancer therapy. However, sequential irradiation by two different laser sources and even the utilization of single high-power laser to induce either combined PDT/PTT or individual PTT will be subjected to prolonged treatment time, complicated treatment process, and potential skin burns. Thus, low power single laser activatable combined PDT/PTT is still a formidable challenge. Herein, we propose an effective strategy to achieve synergistic cancer phototherapy under low power single laser irradiation for short duration. By taking advantage of dual plasmonic PTT nanoagents (AuNRs/MoS2), a significant increase in temperature up to 60 °C with an overall photothermal conversion efficiency (PCE) of 68.8% was achieved within 5 min under very low power (0.2 W/cm2) NIR laser irradiation. The enhanced PCE and PTT performance is attributed to the synergistic plasmonic PTT effect (PPTT) of dual plasmonic nanoagents, promoting simultaneous release (85%) of electrostatically bonded indocyanine green (ICG) to induce PDT effects, offering simultaneous PDT/synergistic PPTT. Both in vitro and in vivo investigations reveal complete cell/tumor eradication, implying that simultaneous PDT/synergistic PPTT effects induced by AuNRs/MoS2-ICG are much superior over individual PDT or synergistic PPTT. Notably, synergistic PPTT induced by dual plasmonic nanoagents also demonstrates higher in vivo antitumor efficacy than either individual PDT or PTT agents. Taken together, under single laser activation with low power density, the proposed strategy of simultaneous PDT/synergistic PPTT effectively reduces the treatment time, achieves high therapeutic index, and offers safe treatment option, which may serve as a platform to develop safer and clinically translatable approaches for accelerating cancer therapeutics.
Collapse
Affiliation(s)
- Muhammad Rizwan Younis
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Chen Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
- Department of Physical Chemistry, School of Science , China Pharmaceutical University , Nanjing 210009 , China
| | - Ruibing An
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Shouju Wang
- Department of Radiology , The First Affiliated Hospital of Nanjing Medical University , Nanjing 210000 , China
| | - Muhammad Adnan Younis
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering , Zhejiang University , 38 Zheda Road , Hangzhou 310058 , China
| | - Zhong-Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Yang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Ayesha Ihsan
- National Institute for Biotechnology and Genetic Engineering (NIBGE) , P.O. Box No. 577, Jhang Road , Faisalabad 38000 , Pakistan
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
15
|
Sancho-Fornes G, Avella-Oliver M, Carrascosa J, Fernandez E, Brun EM, Maquieira Á. Disk-based one-dimensional photonic crystal slabs for label-free immunosensing. Biosens Bioelectron 2018; 126:315-323. [PMID: 30448719 DOI: 10.1016/j.bios.2018.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/02/2018] [Indexed: 11/26/2022]
Abstract
One-dimensional photonic crystal slabs are periodic optical nanostructures that produce guided-mode resonance. They couple part of the incident light into the waveguide generating bandgaps in the transmittance spectrum, whose position is sensitive to refractive index variations on their surface. In this study, we present one-dimensional photonic crystal slab biosensors based on the internal nanogrooved structure of Blu-ray disks for label-free immunosensing. We demonstrated that this polycarbonate structure coated with a critical thickness of TiO2 generates guided-mode resonance. Its optical behavior was established comparing it with other compact disk structures. The results were theoretically calculated and experimentally demonstrated, all them being in agreement. The bioanalytical performance of these photonic crystals was experimentally demonstrated in a model assay to quantify IgGs as well as in two immunoassays to determine the biomarkers C-reactive protein and lactate dehydrogenase (detection limits of 0.1, 87, and 13 nM, respectively). The results are promising towards the development of new low-cost, portable, and label-free optical biosensors that join these photonic crystals with dedicated bioanalytical scanners based on compact disk drives.
Collapse
Affiliation(s)
- Gabriel Sancho-Fornes
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Miquel Avella-Oliver
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Javier Carrascosa
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Estrella Fernandez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Eva M Brun
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Ángel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
16
|
Wu Q, Zhang F, Li H, Li Z, Kang Q, Shen D. A ratiometric photoelectrochemical immunosensor based on g-C3N4@TiO2 NTs amplified by signal antibodies–Co3O4 nanoparticle conjugates. Analyst 2018; 143:5030-5037. [DOI: 10.1039/c8an01345d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Herein, we report a ratiometric photoelectrochemical (PEC) immunosensor coupled with secondary antibodies–Co3O4 nanoparticle conjugates (Ab2–Co3O4 NPs) for signal amplification.
Collapse
Affiliation(s)
- Qiong Wu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of MoleCular and Nano Probes
- Ministry of Education
| | - Fengxia Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of MoleCular and Nano Probes
- Ministry of Education
| | - Huijuan Li
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao
- P. R. China
| | - Zhihua Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of MoleCular and Nano Probes
- Ministry of Education
| | - Qi Kang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of MoleCular and Nano Probes
- Ministry of Education
| | - Dazhong Shen
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of MoleCular and Nano Probes
- Ministry of Education
| |
Collapse
|