1
|
Huang S, Yue C, Uvdal K, Hu Z. Recent advances in irradiation-mediated synthesis and tailoring of inorganic nanomaterials for photo-/electrocatalysis. NANOSCALE ADVANCES 2025; 7:384-418. [PMID: 39610792 PMCID: PMC11601122 DOI: 10.1039/d4na00806e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/02/2024] [Indexed: 11/30/2024]
Abstract
Photo-/electrocatalysis serves as a cornerstone in addressing global energy shortages and environmental pollution, where the development of efficient and stable catalysts is essential yet challenging. Despite extensive efforts, it's still a formidable task to develop catalysts with excellent catalytic behaviours, stability, and low cost. Because of its high precision, favorable controllability and repeatability, radiation technology has emerged as a potent and versatile strategy for the synthesis and modification of nanomaterials. Through meticulous control of irradiation parameters, including energy, fluence and ion species, various inorganic photo-/electrocatalysts can be effectively synthesized with tailored properties. It also enables the efficient adjustment of physicochemical characteristics, such as heteroatom-doping, defect generation, heterostructure construction, micro/nanostructure control, and so on, all of which are beneficial for lowering reaction energy barriers and enhancing energy conversion efficiency. This review comprehensively outlines the principles governing radiation effects on inorganic catalysts, followed by an in-depth discussion of recent advancements in irradiation-enhanced catalysts for various photo-/electrocatalytic applications, such as hydrogen and oxygen evolution reactions, oxygen reduction reactions, and photocatalytic applications. Furthermore, the challenges associated with ionizing and non-ionizing radiation are discussed and potential avenues for future development are outlined. By summarizing and articulating these innovative strategies, we aim to inspire further development of sustainable energy and environmental solutions to drive a greener future.
Collapse
Affiliation(s)
- Shoushuang Huang
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
- Division of Molecular Surface Physics & Nanoscience, Department of Physics, Chemistry and Biology, Linköping University Linköping 58183 Sweden
| | - Can Yue
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Kajsa Uvdal
- Division of Molecular Surface Physics & Nanoscience, Department of Physics, Chemistry and Biology, Linköping University Linköping 58183 Sweden
| | - Zhangjun Hu
- Division of Molecular Surface Physics & Nanoscience, Department of Physics, Chemistry and Biology, Linköping University Linköping 58183 Sweden
| |
Collapse
|
2
|
Sultanov F, Tatykayev B, Bakenov Z, Mentbayeva A. The role of graphene aerogels in rechargeable batteries. Adv Colloid Interface Sci 2024; 331:103249. [PMID: 39032342 DOI: 10.1016/j.cis.2024.103249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Energy storage systems, particularly rechargeable batteries, play a crucial role in establishing a sustainable energy infrastructure. Today, researchers focus on improving battery energy density, cycling stability, and rate performance. This involves enhancing existing materials or creating new ones with advanced properties for cathodes and anodes to achieve peak battery performance. Graphene aerogels (GAs) possess extraordinary attributes, including a hierarchical porous and lightweight structure, high electrical conductivity, and robust mechanical stability. These qualities facilitate the uniform distribution of active sites within electrodes, mitigate volume changes during repeated cycling, and enhance overall conductivity. When integrated into batteries, GAs expedite electron/ion transport, offer exceptional structural stability, and deliver outstanding cycling performance. This review offers a comprehensive survey of the advancements in the preparation, functionalization, and modification of GAs in the context of battery research. It explores their application as electrodes and hosts for the dispersion of active material nanoparticles, resulting in the creation of hybrid electrodes for a wide range of rechargeable batteries including lithium-ion batteries (LIBs), Li-metal-air batteries, sodium-ion batteries (SIBs), zinc-ion batteries (AZIBs) and zinc-air batteries (ZABs), aluminum-ion batteries (AIBs) and aluminum-air batteries and other.
Collapse
Affiliation(s)
- Fail Sultanov
- National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Batukhan Tatykayev
- National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Zhumabay Bakenov
- National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan; Department of Chemical and Materials Engineering, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Almagul Mentbayeva
- National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan; Department of Chemical and Materials Engineering, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan.
| |
Collapse
|
3
|
Yan W, Liu Y, Shao G, Zhu K, Cui S, Wang W, Shen X. Chemical Surface Adsorption and Trace Detection of Alcohol Gas in Graphene Oxide-Based Acid-Etched SnO 2 Aerogels. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20467-20478. [PMID: 33880925 DOI: 10.1021/acsami.1c00302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An acidified SnO2/rGO aerogel (ASGA) is an attractive contributor in ethanol gas sensing under ultralow concentration because of the sufficient active sites and adsorption pores in SnO2 and the rGA, respectively. Furthermore, a p-n heterojunction is successfully constructed by the high electron mobility between ASP and rGA to establish a brand-new bandgap of 2.72 eV, where more electrons are released and the surface energy is decreased, to improve the gas sensitivity. The ASGA owns a specific surface area of 256.1 m2/g, far higher than SnO2 powder (68.7 m2/g), indicating an excellent adsorption performance, so it can acquire more ethanol gas for a redox reaction. For gas-sensing ability, the ASGA exhibits an excellent response of Ra/Rg = 137.4 to 20 ppm of ethanol at the optimum temperature of 210 °C and can reach a response of 1.2 even at the limit detection concentration of 0.25 ppm. After the concentration gradient change test, a nonlinear increase between concentration and sensitivity (S-C curve) is observed, and it indirectly proves the chemical adsorption between ethanol and ASGA, which exhibits charge transfer and improves electron mobility. In addition, a detailed energy band diagram and sensor response diagram jointly depict the gas-sensitive mechanism. Finally, a conversed calculation explains the feasibility of the nonlinear S-C curve from the atomic level, which further verifies the chemical adsorption during the sensing process.
Collapse
Affiliation(s)
- Wenqian Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China
| | - Yiming Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China
| | - Gaofeng Shao
- Institute of Advanced Materials and Flexible Electronics, School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Kunmeng Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China
| | - Sheng Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China
| | - Wei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China
| | - Xiaodong Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
4
|
Ultrasmall metal oxide nanocrystals embedded in nitrogen-doped carbon networks based on one-step pyrolysis of bi-functional metallo-organic molecules for high-performance lithium-ion batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
New type of doping effect via metallization of surface reduction in SnO 2. Sci Rep 2019; 9:8129. [PMID: 31148583 PMCID: PMC6544616 DOI: 10.1038/s41598-019-44634-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/21/2019] [Indexed: 11/09/2022] Open
Abstract
The use of conventional doping methods requires consideration of not only the energy connection with the base material but also the limits of the type and doping range of the dopant. The scope of the physico-chemical change must be determined from the properties of the base material, and when this limit is exceeded, a large energy barrier must be formed between the base material and the dopant as in a heterojunction. Thus, starting from a different viewpoint, we introduce a so-called metallization of surface reduction method, which easily overcomes the disadvantages of existing methods while having the effect of doping the base material. Such new synthetic techniques enable sequential energy arrangements–gradients from the surface to the centre of the material–so that free energy transfer effects can be obtained as per the energies in the semiconducting band, eliminating the energy discontinuity of the heterojunction.
Collapse
|
6
|
Gao L, Gu C, Ren H, Song X, Huang J. Synthesis of tin(IV) oxide@reduced graphene oxide nanocomposites with superior electrochemical behaviors for lithium-ions batteries. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.09.059] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|