1
|
Li L, Wang S, Peng J, Lai J, Zhang H, Yang J. Transition Metal Selenide-Based Anodes for Advanced Sodium-Ion Batteries: Electronic Structure Manipulation and Heterojunction Construction Aspect. Molecules 2024; 29:3083. [PMID: 38999035 PMCID: PMC11243387 DOI: 10.3390/molecules29133083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
In recent years, sodium-ion batteries (SIBs) have gained a foothold in specific applications related to lithium-ion batteries, thanks to continuous breakthroughs and innovations in materials by researchers. Commercial graphite anodes suffer from small interlayer spacing (0.334 nm), limited specific capacity (200 mAh g-1), and low discharge voltage (<0.1 V), making them inefficient for high-performance operation in SIBs. Hence, the current research focus is on seeking negative electrode materials that are compatible with the operation of SIBs. Many studies have been reported on the modification of transition metal selenides as anodes in SIBs, mainly targeting the issue of poor cycling life attributed to the volume expansion of the material during sodium-ion extraction and insertion processes. However, the intrinsic electronic structure of transition metal selenides also influences electron transport and sodium-ion diffusion. Therefore, modulating their electronic structure can fundamentally improve the electron affinity of transition metal selenides, thereby enhancing their rate performance in SIBs. This work provides a comprehensive review of recent strategies focusing on the modulation of electronic structures and the construction of heterogeneous structures for transition metal selenides. These strategies effectively enhance their performance metrics as electrodes in SIBs, including fast charging, stability, and first-cycle coulombic efficiency, thereby facilitating the development of high-performance SIBs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Yang
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (L.L.); (S.W.); (J.P.); (J.L.); (H.Z.)
| |
Collapse
|
2
|
Song H, Zhou Q, Song Z, Tian K, Guan C, Yuan Fang Z, Yuan G, Lu M, Wei D, Li X. Optimized crystal orientation for enhanced reaction kinetics and reversibility of SnSe/NC hollow nanospheres towards high-rate and long-term lithium/sodium storage. Dalton Trans 2023; 52:14088-14099. [PMID: 37743760 DOI: 10.1039/d3dt02237d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The development of anode materials with high theoretical capacity and cycling stability is very important for the electrochemical performance of lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). Herein, SnSe/NC hollow nanospheres with different crystal orientations were prepared by regulating the high-temperature selenization of the PDA@SnO2 precursor for lithium/sodium storage. In SnSe/NC hollow nanospheres, the physical buffering and chemical bonding of the nitrogen carbon matrix and SnSe nanoparticles could inhibit volume expansion and polyselenide loss, thus maintaining long-term structural stability. More importantly, electrochemical tests and DFT calculations show that the diffusion energy barrier of Li+/Na+ is significantly reduced at the SnSe (400) rather than the usual (111) facet, which is conducive to the uniformity of ion insertion into SnSe, thus effectively enhancing the reaction kinetics and reversibility of lithium/sodium storage. Therefore, SnSe/NC hollow nanospheres with rich SnSe (400) and good dispersion formed at 550 °C delivered the best reversible specific capacity and rate performance. After a long period of 900 cycles, the capacity retention of lithium/sodium ion batteries is close to 84.88% and 77.05%, respectively. Our findings provide valuable insights into the design of metal selenides for advanced LIBs/SIBs.
Collapse
Affiliation(s)
- Huihui Song
- Fujian Provincial Key Laboratory of Functional Materials and Applications, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China.
| | - Qiang Zhou
- Fujian Provincial Key Laboratory of Functional Materials and Applications, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China.
| | - Zhicheng Song
- Fujian Provincial Key Laboratory of Functional Materials and Applications, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China.
| | - Kun Tian
- Fujian Provincial Key Laboratory of Functional Materials and Applications, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China.
| | - Chaohui Guan
- Fujian Provincial Key Laboratory of Functional Materials and Applications, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China.
| | - Zheng Yuan Fang
- Fujian Provincial Key Laboratory of Functional Materials and Applications, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China.
| | - Gengyang Yuan
- Fujian Provincial Key Laboratory of Functional Materials and Applications, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China.
| | - Mi Lu
- Fujian Provincial Key Laboratory of Functional Materials and Applications, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China.
| | - Dong Wei
- College of Physics and Energy, Fujian Normal University, Fuzhou, 350117, China
| | - Xiaodan Li
- Fujian Provincial Key Laboratory of Functional Materials and Applications, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China.
| |
Collapse
|
3
|
Geng J, Dong H, Liu J, Lv C, Wei H, Cheng Y, Yang J, Geng H. In situ Cu doping of ultralarge CoSe nanosheets with accelerated electronic migration for superior sodium-ion storage. NANOSCALE 2023; 15:14641-14650. [PMID: 37622380 DOI: 10.1039/d3nr03182a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The progress of sodium-ion batteries is currently confronted with a noteworthy obstacle, specifically the paucity of electrode materials that can store large quantities of Na+ in a reversible fashion while maintaining competitiveness. Herein, ultrafast and long-life sodium storage of metal selenides is rationally demonstrated by employing micron-sized nanosheets (Cu-CoSe@NC) through electron accumulation engineering. The nanosheet structure proves to be effective in reducing the transport distance of sodium ions. Furthermore, the addition of Cu ions enhances the electron conductivity of CoSe and accelerates charge delocalization. As an anode for sodium-ion batteries, Cu-CoSe@NC exhibits a noticeably enhanced specific capacity of 527.2 mA h g-1 at 1.0 A g-1 after 100 cycles. Additionally, Cu-CoSe@NC maintains a capacity of 428.5 mA h g-1 at 5.0 A g-1 after 800 cycles. It is possible to create sodium-ion full batteries with a high energy density of 101.1 W h kg-1. The superior sodium storage performance of Cu-CoSe@NC is attributed to the high pseudo-capacitance and diffusion control mechanisms, as evidenced by theoretical calculations and ex situ measurements.
Collapse
Affiliation(s)
- Jitao Geng
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China.
| | - Huilong Dong
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China.
| | - Jing Liu
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China.
| | - Chengkui Lv
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China.
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Huaixin Wei
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yafei Cheng
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China.
| | - Jun Yang
- School of Material Science & Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Hongbo Geng
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China.
| |
Collapse
|
4
|
Yang W, Chen Y, Yin X, Lai X, Wang J, Jian J. SnSe Nanosheet Array on Carbon Cloth as a High-Capacity Anode for Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42811-42822. [PMID: 37655468 DOI: 10.1021/acsami.3c06868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Binder-free electrodes offer a great opportunity for developing high-performance sodium-ion batteries (SIBs) aiming at the application in energy storage devices. Tin selenide (SnSe) is considered to be a promising anode material for SIBs owing to its high theoretical capacity (780 mA h g-1). In this work, a SnSe nanosheet array (SnSe NS) on a carbon cloth is prepared using a vacuum thermal evaporation method. The as-prepared SnSe NS electrode does not have metal current collectors, binders, or any conductive additives. In comparison with the electrode of SnSe blocky particles (SnSe BP), the SnSe NS electrode delivers a higher initial charge capacity of 713 mA h g-1 at a current density of 0.1C and maintains a higher charge capacity of 410 mA h g-1 after 50 cycles. Furthermore, the electrochemical behaviors of the SnSe NS electrode are determined via pseudocapacitance and electrochemical impedance spectroscopy measurements, indicating a faster kinetic process of the SnSe NS electrode compared to that of the SnSe BP. Operando X-ray diffraction measurements prove that the SnSe NS exhibits better phase reversibility than the SnSe BP. After the cycles, the SnSe NS electrode still maintains its particular structure. This work provides a feasible method to prepare SnSe nanostructures with high capacity and improved sodium ion diffusion ability.
Collapse
Affiliation(s)
- Wenlong Yang
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yuncai Chen
- School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xingxing Yin
- School of Materials, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Xiaofang Lai
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jun Wang
- School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Jikang Jian
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
5
|
Fan L, Zhu H, Wang K, Liu H, Hu W, Xu X, Yan S. Study on the Degradation of Methylene Blue by Cu-Doped SnSe. Molecules 2023; 28:5988. [PMID: 37630239 PMCID: PMC10459322 DOI: 10.3390/molecules28165988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Treatment of organic wastewater is still a difficult problem to solve. In this paper, Cu-doped SnSe powder was synthesized by a convenient and efficient hydrothermal method. Meanwhile, the degradation effect of different doping concentrations of SnSe on methylene blue was investigated. It was found that at low doping concentrations, the degradation effect on methylene blue was not obvious because Cu was dissolved in the lattice of the SnSe matrix at low concentrations. As the doping concentration increased, SnSe changed from a layered structure to a nanocluster structure with reduced particle size, and a mixed phase of SnSe and Cu2SnSe4 appeared. In fact, the degradation effect on methylene blue was significantly enhanced, and we found that the catalytic degradation effect on methylene blue was best at a doping concentration of 10 wt.%.
Collapse
Affiliation(s)
- Li Fan
- School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.F.); (H.Z.)
| | - Hongliang Zhu
- School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.F.); (H.Z.)
| | - Kaili Wang
- School of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
| | - Hao Liu
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (H.L.); (W.H.); (X.X.)
| | - Weina Hu
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (H.L.); (W.H.); (X.X.)
| | - Xin Xu
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (H.L.); (W.H.); (X.X.)
| | - Shancheng Yan
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (H.L.); (W.H.); (X.X.)
| |
Collapse
|
6
|
Palchoudhury S, Ramasamy K, Han J, Chen P, Gupta A. Transition metal chalcogenides for next-generation energy storage. NANOSCALE ADVANCES 2023; 5:2724-2742. [PMID: 37205287 PMCID: PMC10187023 DOI: 10.1039/d2na00944g] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/23/2023] [Indexed: 05/21/2023]
Abstract
Transition-metal chalcogenide nanostructures provide a unique material platform to engineer next-generation energy storage devices such as lithium-ion, sodium-ion, and potassium-ion batteries and flexible supercapacitors. The transition-metal chalcogenide nanocrystals and thin films have enhanced electroactive sites for redox reactions and hierarchical flexibility of structure and electronic properties in the multinary compositions. They also consist of more earth-abundant elements. These properties make them attractive and more viable new electrode materials for energy storage devices compared to the traditional materials. This review highlights the recent advances in chalcogenide-based electrodes for batteries and flexible supercapacitors. The viability and structure-property relation of these materials are explored. The use of various chalcogenide nanocrystals supported on carbonaceous substrates, two-dimensional transition metal chalcogenides, and novel MXene-based chalcogenide heterostructures as electrode materials to improve the electrochemical performance of lithium-ion batteries is discussed. The sodium-ion and potassium-ion batteries offer a more viable alternative to lithium-ion technology as they consist of readily available source materials. Application of various transition metal chalcogenides such as MoS2, MoSe2, VS2, and SnSx, composite materials, and heterojunction bimetallic nanosheets composed of multi-metals as electrodes to enhance the long-term cycling stability, rate capability, and structural strength to counteract the large volume expansion during the ion intercalation/deintercalation processes is highlighted. The promising performances of layered chalcogenides and various chalcogenide nanowire compositions as electrodes for flexible supercapacitors are also discussed in detail. The review also details the progress made in new chalcogenide nanostructures and layered mesostructures for energy storage applications.
Collapse
Affiliation(s)
| | | | - Jinchen Han
- Chemical and Materials Engineering, University of Dayton OH USA
| | - Peng Chen
- Chemical and Materials Engineering, University of Dayton OH USA
| | - Arunava Gupta
- Department of Chemistry and Biochemistry, The University of Alabama AL USA
| |
Collapse
|
7
|
Gong Y, Li Y, Li Y, Liu M, Bai Y, Wu C. Metal Selenides Anode Materials for Sodium Ion Batteries: Synthesis, Modification, and Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206194. [PMID: 36437114 DOI: 10.1002/smll.202206194] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The powerful and rapid development of lithium-ion batteries (LIBs) in secondary batteries field makes lithium resources in short supply, leading to rising battery costs. Under the circumstances, sodium-ion batteries (SIBs) with low cost, inexhaustible sodium reserves, and analogous work principle to LIBs, have evolved as one of the most anticipated candidates for large-scale energy storage devices. Thereinto, the applicable electrode is a core element for the smooth development of SIBs. Among various anode materials, metal selenides (MSex ) with relatively high theoretical capacity and unique structures have aroused extensive interest. Regrettably, MSex suffers from large volume expansion and unwished side reactions, which result in poor electrochemistry performance. Thus, strategies such as carbon modification, structural design, voltage control as well as electrolyte and binder optimization are adopted to alleviate these issues. In this review, the synthesis methods and main reaction mechanisms of MSex are systematically summarized. Meanwhile, the major challenges of MSex and the corresponding available strategies are proposed. Furthermore, the recent research progress on layered and nonlayered MSex for application in SIBs is presented and discussed in detail. Finally, the future development focuses of MSex in the field of rechargeable ion batteries are highlighted.
Collapse
Affiliation(s)
- Yuteng Gong
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yu Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ying Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Mingquan Liu
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, P. R. China
| | - Ying Bai
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Chuan Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, P. R. China
| |
Collapse
|
8
|
Metal-organic framework derived core-shell structured Cu-doped Co0.85Se@NC@C microcubes as advanced anodes for sodium-ion batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Jagani HS, Dixit V, Patel A, Gohil J, Pathak VM. Stability & durability of self-driven photo-detective parameters based on Sn 1-β Sb β Se ( β = 0, 0.05, 0.10, 0.15, 0.20) ternary alloy single crystals. RSC Adv 2022; 12:28693-28706. [PMID: 36320516 PMCID: PMC9549486 DOI: 10.1039/d2ra05492b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
In the present investigation Sn1-β Sb β Se crystals are grown using the direct vapor transport method. The crystals after growth were analyzed by EDAX and XPS to confirm the elemental composition. The surface morphological properties were studied by scanning electron microscope, confirming a flat surface and layered growth of the Sn1-β Sb β Se crystals. The structural properties studied by X-ray diffraction and high-resolution transmission electron microscopy confirm the orthorhombic structure of the grown Sn1-β Sb β Se crystals. The Raman spectroscopic measurements evince the presence of B2g and Ag vibration modes. The PL intensity peak at ∼400 nm to 500 nm confirms the energy band gap. The indirect energy band gap of 1.18 eV was evaluated using Tauc plot by employing UV-visible spectroscopy making it a promising candidate for optoelectronic and photonic applications. The pulse photo response of pure and doped samples was studied under a monochromatic source of wavelength 670 nm and intensity of 30 mW cm-2 at zero biasing voltage firstly on day one and then the same samples were preserved for 50 days and the stability of the photodetectors was observed. Photodetector parameters such as rise time, decay time, photocurrent, responsivity, sensitivity, and detectivity were observed, and evaluated results are presented in this article.
Collapse
Affiliation(s)
| | - Vijay Dixit
- Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388 120 Gujarat India
| | - Abhishek Patel
- Department of Physics, A. N. Patel Post Graduate Institute of Science and Research Anand 388001 India
| | - Jagrutiba Gohil
- Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388 120 Gujarat India
| | - V M Pathak
- Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388 120 Gujarat India
| |
Collapse
|
10
|
Mao B, Xu D, Meng T, Cao M. Advances and challenges in metal selenides enabled by nanostructures for electrochemical energy storage applications. NANOSCALE 2022; 14:10690-10716. [PMID: 35861338 DOI: 10.1039/d2nr02304k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of nanomaterials and their related electrochemical energy storage (EES) devices can provide solutions for improving the performance and development of existing EES systems owing to their high electronic conductivity and ion transport and abundant embeddable sites. Recent progress has demonstrated that metal selenides are attracting increasing attention in the field of EES because of their unique structures, high theoretical capacities, rich element resources, and high conductivity. However, there are still many challenges in their application in EES, and thus the use of nanoscale metal selenide materials in commercial devices is limited. In this review, we summarize recent advances in the nanostructured design of metal selenides (e.g., zero-, one-, two-, and three-dimensional, and self-supported structures) and present their advantages in terms of EES performance. Moreover, some remarks on the potential challenges and research prospects of nanostructured metal selenides in the field of EES are presented.
Collapse
Affiliation(s)
- Baoguang Mao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Dan Xu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Tao Meng
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Minhua Cao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| |
Collapse
|
11
|
Kumar M, Rani S, Singh Y, Gour KS, Singh VN. Tin-selenide as a futuristic material: properties and applications. RSC Adv 2021; 11:6477-6503. [PMID: 35423185 PMCID: PMC8694900 DOI: 10.1039/d0ra09807h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/26/2020] [Indexed: 12/14/2022] Open
Abstract
SnSe/SnSe2 is a promising versatile material with applications in various fields like solar cells, photodetectors, memory devices, lithium and sodium-ion batteries, gas sensing, photocatalysis, supercapacitors, topological insulators, resistive switching devices due to its optimal band gap. In this review, all possible applications of SnSe/SnSe2 have been summarized. Some of the basic properties, as well as synthesis techniques have also been outlined. This review will help the researcher to understand the properties and possible applications of tin selenide-based materials. Thus, this will help in advancing the field of tin selenide-based materials for next generation technology.
Collapse
Affiliation(s)
- Manoj Kumar
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus Ghaziabad Uttar Pradesh 201002 India
- Indian Reference Materials (BND) Division, National Physical Laboratory, Council of Scientific and Industrial Research (CSIR) Dr K. S. Krishnan Road New Delhi 110012 India
| | - Sanju Rani
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus Ghaziabad Uttar Pradesh 201002 India
- Indian Reference Materials (BND) Division, National Physical Laboratory, Council of Scientific and Industrial Research (CSIR) Dr K. S. Krishnan Road New Delhi 110012 India
| | - Yogesh Singh
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus Ghaziabad Uttar Pradesh 201002 India
- Indian Reference Materials (BND) Division, National Physical Laboratory, Council of Scientific and Industrial Research (CSIR) Dr K. S. Krishnan Road New Delhi 110012 India
| | - Kuldeep Singh Gour
- Optoelectronics Convergence Research Center, Chonnam National University Gwangju 61186 Republic of Korea
| | - Vidya Nand Singh
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus Ghaziabad Uttar Pradesh 201002 India
- Indian Reference Materials (BND) Division, National Physical Laboratory, Council of Scientific and Industrial Research (CSIR) Dr K. S. Krishnan Road New Delhi 110012 India
| |
Collapse
|
12
|
Yu Q, Wang B, Wang J, Hu S, Hu J, Li Y. Flowerlike Tin Diselenide Hexagonal Nanosheets for High-Performance Lithium-Ion Batteries. Front Chem 2020; 8:590. [PMID: 32903612 PMCID: PMC7438772 DOI: 10.3389/fchem.2020.00590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/08/2020] [Indexed: 11/21/2022] Open
Abstract
SnSe2 nanosheet is a common anode for lithium-ion batteries (LIBs), but its severe agglomeration hinders its practical application. Herein, a three-dimensional (3D) SnSe2 nanoflower (F-SnSe2) composed of non-stacking vertical upward hexagonal nanosheets was prepared through a colloidal method as an anode material for LIBs. Benefiting from the advantages of fast reaction-diffusion kinetics and buffering unavoidable volume variation during cycling, the F-SnSe2 electrode displays remarkable specific capacity of 795 mAh g-1 after 100 cycles at 100 mA g-1 and superior rate performance (282 mAh g-1 at 2,000 mA g-1). This work provides an effective way to get non-stacking nanosheets in energy storage field.
Collapse
Affiliation(s)
- Qiyao Yu
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China
| | - Bo Wang
- School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Jian Wang
- School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Sisi Hu
- School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Jun Hu
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China
| | - Ying Li
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
13
|
|
14
|
Kong P, Zhu L, Li F, Xu G. Self‐Supporting Electrode Composed of SnSe Nanosheets, Thermally Treated Protein, and Reduced Graphene Oxide with Enhanced Pseudocapacitance for Advanced Sodium‐Ion Batteries. ChemElectroChem 2019. [DOI: 10.1002/celc.201901517] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Peng Kong
- Department of PhysicsJishou University Jishou 416000, Hunan P.R. China
| | - Ling Zhu
- Department of PhysicsJishou University Jishou 416000, Hunan P.R. China
| | - Fengrong Li
- College of Materials Science and EngineeringChangsha University of Science and Technology Changsha 410114 China
| | - Guobao Xu
- National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and EngineeringXiangtan University Hunan 411105 China
| |
Collapse
|
15
|
Wang J, Kong F, Chen J, Han Z, Tao S, Qian B, Jiang X. Metal‐Organic‐Framework‐Derived FeSe
2
@Carbon Embedded into Nitrogen‐Doped Graphene Sheets with Binary Conductive Networks for Rechargeable Batteries. ChemElectroChem 2019. [DOI: 10.1002/celc.201900590] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jian Wang
- Department of Physics and Electronic EngineeringChangshu Institute of Technology Changshu 215500 China
- College of Chemistry Chemical Engineering and Materials ScienceSoochow University Suzhou 215006 China
| | - Fanjun Kong
- Department of Physics and Electronic EngineeringChangshu Institute of Technology Changshu 215500 China
- Department of Chemical and Materials EngineeringNew Mexico State University NM 88003 United States
| | - Jiyun Chen
- Department of Physics and Electronic EngineeringChangshu Institute of Technology Changshu 215500 China
| | - Zhengsi Han
- Department of Physics and Electronic EngineeringChangshu Institute of Technology Changshu 215500 China
| | - Shi Tao
- Department of Physics and Electronic EngineeringChangshu Institute of Technology Changshu 215500 China
| | - Bin Qian
- Department of Physics and Electronic EngineeringChangshu Institute of Technology Changshu 215500 China
- College of Chemistry Chemical Engineering and Materials ScienceSoochow University Suzhou 215006 China
| | - Xuefan Jiang
- Department of Physics and Electronic EngineeringChangshu Institute of Technology Changshu 215500 China
| |
Collapse
|
16
|
Li Y, Wu F, Xiong S. Embedding ZnSe nanoparticles in a porous nitrogen-doped carbon framework for efficient sodium storage. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.059] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|