1
|
Chen X, Dong X, Zhang C, Zhu M, Ahmed E, Krishnamurthy G, Rouzbahani R, Pobedinskas P, Gauquelin N, Jannis D, Kaur K, Hafez AME, Thiel F, Bornemann R, Engelhard C, Schönherr H, Verbeeck J, Haenen K, Jiang X, Yang N. Interlayer Affected Diamond Electrochemistry. SMALL METHODS 2025; 9:e2301774. [PMID: 38874124 PMCID: PMC11843408 DOI: 10.1002/smtd.202301774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Diamond electrochemistry is primarily influenced by quantities of sp3-carbon, surface terminations, and crystalline structure. In this work, a new dimension is introduced by investigating the effect of using substrate-interlayers for diamond growth. Boron and nitrogen co-doped nanocrystalline diamond (BNDD) films are grown on Si substrate without and with Ti and Ta as interlayers, named BNDD/Si, BNDD/Ti/Si, and BNDD/Ta/Ti/Si, respectively. After detailed characterization using microscopies, spectroscopies, electrochemical techniques, and density functional theory simulations, the relationship of composition, interfacial structure, charge transport, and electrochemical properties of the interface between diamond and metal is investigated. The BNDD/Ta/Ti/Si electrodes exhibit faster electron transfer processes than the other two diamond electrodes. The interlayer thus determines the intrinsic activity and reaction kinetics. The reduction in their barrier widths can be attributed to the formation of TaC, which facilitates carrier tunneling, and simultaneously increases the concentration of electrically active defects. As a case study, the BNDD/Ta/Ti/Si electrode is further employed to assemble a redox-electrolyte-based supercapacitor device with enhanced performance. In summary, the study not only sheds light on the intricate relationship between interlayer composition, charge transfer, and electrochemical performance but also demonstrates the potential of tailored interlayer design to unlock new capabilities in diamond-based electrochemical devices.
Collapse
Affiliation(s)
- Xinyue Chen
- Institute of Materials EngineeringUniversity of Siegen57076SiegenGermany
| | - Ximan Dong
- Institute of Materials EngineeringUniversity of Siegen57076SiegenGermany
| | - Chuyan Zhang
- Institute of Materials EngineeringUniversity of Siegen57076SiegenGermany
| | - Meng Zhu
- Institute of Materials EngineeringUniversity of Siegen57076SiegenGermany
| | - Essraa Ahmed
- Institute for Materials Research (IMO)Institute for Materials Research in MicroElectronics (IMOMEC)IMEC vzwHasselt UniversityDiepenbeek3590Belgium
| | - Giridharan Krishnamurthy
- Institute for Materials Research (IMO)Institute for Materials Research in MicroElectronics (IMOMEC)IMEC vzwHasselt UniversityDiepenbeek3590Belgium
| | - Rozita Rouzbahani
- Institute for Materials Research (IMO)Institute for Materials Research in MicroElectronics (IMOMEC)IMEC vzwHasselt UniversityDiepenbeek3590Belgium
| | - Paulius Pobedinskas
- Institute for Materials Research (IMO)Institute for Materials Research in MicroElectronics (IMOMEC)IMEC vzwHasselt UniversityDiepenbeek3590Belgium
| | - Nicolas Gauquelin
- Electron Microscopy for Materials Research (EMAT)University of AntwerpAntwerp2020Belgium
| | - Daen Jannis
- Electron Microscopy for Materials Research (EMAT)University of AntwerpAntwerp2020Belgium
| | - Kawaljit Kaur
- Physical Chemistry IDepartment of Chemistry and Biology and Department of Chemistry and Biology and Research Center of Micro and Nanochemistry and (Bio)Technology (Cµ)University of Siegen57075SiegenGermany
| | - Aly Mohamed Elsayed Hafez
- Analytical ChemistryDepartment of Chemistry and Biology and Research Center of Micro and Nanochemistry and (Bio)Technology (Cµ)University of Siegen57075SiegenGermany
| | - Felix Thiel
- Institute for High Frequency and Quantum ElectronicsUniversity of Siegen57076SiegenGermany
| | - Rainer Bornemann
- Institute for High Frequency and Quantum ElectronicsUniversity of Siegen57076SiegenGermany
| | - Carsten Engelhard
- Analytical ChemistryDepartment of Chemistry and Biology and Research Center of Micro and Nanochemistry and (Bio)Technology (Cµ)University of Siegen57075SiegenGermany
| | - Holger Schönherr
- Physical Chemistry IDepartment of Chemistry and Biology and Department of Chemistry and Biology and Research Center of Micro and Nanochemistry and (Bio)Technology (Cµ)University of Siegen57075SiegenGermany
| | - Johan Verbeeck
- Electron Microscopy for Materials Research (EMAT)University of AntwerpAntwerp2020Belgium
| | - Ken Haenen
- Institute for Materials Research (IMO)Institute for Materials Research in MicroElectronics (IMOMEC)IMEC vzwHasselt UniversityDiepenbeek3590Belgium
| | - Xin Jiang
- Institute of Materials EngineeringUniversity of Siegen57076SiegenGermany
| | - Nianjun Yang
- Department of ChemistryInstitute for Materials Research in MicroElectronics (IMOMEC)IMEC vzwHasselt UniversityDiepenbeek3590Belgium
| |
Collapse
|
2
|
de Aguiar Pedott V, Della Rocca DG, Weschenfelder SE, Mazur LP, Gomez Gonzalez SY, Andrade CJD, Moreira RFPM. Principles, challenges and prospects for electro-oxidation treatment of oilfield produced water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122638. [PMID: 39342833 DOI: 10.1016/j.jenvman.2024.122638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
The oil industry is facing substantial environmental challenges, especially in managing waste streams such as Oilfield Produced Water (OPW), which represents a significant component of the industrial ecological footprint. Conventional treatment methods often fail to effectively remove dissolved oils and grease compounds, leading to operational difficulties and incomplete remediation. Electrochemical oxidation (EO) has emerged as a promising alternative due to its operational simplicity and ability to degrade pollutants directly and indirectly, which has already been applied in treating several effluents containing organic compounds. The application of EO treatment for OPW is still in an initial stage, due to the intricate nature of this matrix and scattered information about it. This study provides a technological overview of EO technology for OPW treatment, from laboratory scale to the development of large-scale prototypes, identifying design and process parameters that can potentially permit high efficiency, applicability, and commercial deployment. Research in this domain has demonstrated notable rates of removal of recalcitrant pollutants (>90%), utilizing active and non-active electrodes. Electro-generated active species, primarily from chloride, play a pivotal role in the oxidation of organic compounds. However, the highly saline conditions in OPW hinder the complete mineralization of these organics, which can be improved by using non-active anodes and lower salinity levels. The performance of electrodes greatly influences the efficiency and effectiveness of OPW treatment. Various factors must be considered when selecting the electrode material, such as its conductivity, stability, surface area, corrosion resistance, and cost. Additionally, the specific contaminants present in the OPW, and their electrochemical reactivity must be considered to ensure optimal treatment outcomes. Balancing these considerations can be challenging, but it is crucial for achieving successful OPW treatment. Active electrode materials exhibit a high affinity for chloride molecules, generating more active species than non-active materials, which exhibit more significant degradation potential due to the production of hydroxyl radicals. Regarding scale-up, key challenges include low current efficiency, the formation of by-products, electrode deactivation, and limitations in mass transfer. To address these issues, enhanced mass transfer rates and appropriate residence times can be achieved using flow-through mesh anodes and moderate current densities, which have proven to be the optimal configuration for this process.
Collapse
Affiliation(s)
- Victor de Aguiar Pedott
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Daniela Gier Della Rocca
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Luciana Prazeres Mazur
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Sergio Yesid Gomez Gonzalez
- Laboratory of Mass Transfer and Numerical Simulation of Chemical Systems - LABSIN-LABMASSA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Cristiano José de Andrade
- Laboratory of Mass Transfer and Numerical Simulation of Chemical Systems - LABSIN-LABMASSA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Regina F P M Moreira
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
3
|
Zeng J, Liu X, Chen Q, Hu D. A chemical coating strategy for assembling a boron-doped diamond anode towards electrocatalytic degradation of late landfill leachate. RSC Adv 2024; 14:18355-18366. [PMID: 38854836 PMCID: PMC11160392 DOI: 10.1039/d4ra03107e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
The high efficiency electrocatalytic degradation of late landfill leachate is still not an easy task due to the complexity and variability of organic pollutants. A chemical coating strategy for assembling a boron-doped diamond anode (BDD) towards electrocatalytic degradation of late landfill leachate was adopted and studied. The results shows the high removal rates of organic carbon (TOC) and ammonia nitrogen (NH3-N) after electrochemical oxidation for 5 h can reach 99% and 100%. Further, the organic migration and transformation depends on current density, A/V value, initial pH, electrochemical degradation time, and composition of the stock solution. Specifically, alkaline conditions can increase both TOC and NH3-N removal rates, which is reflected in the NH3-N removal rate of 100% when the pH is 8.5 after only 5 h. The types of organic matter decreased from 63 species to 24 species in 5 h, in which the removal of fulvic acids is superior to that of soluble biometabolites. Amides/olefins and phenolic alcohols are all degraded and converted into other substances or decomposed into CO2 and H2O by BDD, accompanied by the continuous decomposition of alcohol-phenols into alkanes. In all, this study provides a core reference on electrocatalytic degradation of late landfill leachate.
Collapse
Affiliation(s)
- Juanmei Zeng
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University Nanning 530004 China
| | - Xi Liu
- Guangxi Environmental Protection Industry Development Research Institute Co., Ltd, Guangxi Key Laboratory of Environmental Pollution Control and Ecological Restoration Technology Nanning 530007 China
| | - Qizhi Chen
- Guangxi Huiyuan Manganese Industry Co., Ltd Laibin 546100 China
| | - Dongying Hu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University Nanning 530004 China
| |
Collapse
|
4
|
Liu Z, Qian W, Chen M, Zhou W, Song B, Zhang B, Bao X, Tang Q, Liu Y, Zhang C. Electrocatalytic oxidation of gaseous toluene in an all-solid cell using a foam Ti/Sb-SnO 2/β-PbO 2 anode. J Environ Sci (China) 2023; 134:77-85. [PMID: 37673535 DOI: 10.1016/j.jes.2022.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/23/2022] [Accepted: 10/23/2022] [Indexed: 09/08/2023]
Abstract
Mineralization of benzene, toluene, and xylene (BTX) with high efficiency at room temperature is still a challenge for the purification of indoor air. In this work, a foam Ti/Sb-SnO2/β-PbO2 anode catalyst was prepared for electrocatalytically oxidizing gaseous toluene in an all-solid cell at ambient temperature. The complex Ti/Sb-SnO2/β-PbO2 anode, which was prepared by sequentially deposing Sb-SnO2 and β-PbO2 on a foam Ti substrate, shows high electrocatalytic oxidation efficiency of toluene (80%) at 7 hr of reaction and high CO2 selectivity (94.9%) under an optimized condition, i.e., a cell voltage of 2.0 V, relative humidity of 60% and a flow rate of 100 mL/min. The better catalytic performance can be ascribed to the high production rate of ⋅OH radicals from discharging adsorbed water and the inhibition of oxygen evolution on the surface of foam Ti/Sb-SnO2/β-PbO2 anode when compared with the foam Ti/Sb-SnO2 anode. Our results demonstrate that prepared complex electrodes can be potentially used for electrocatalytic removal of gaseous toluene at room temperature with a good performance.
Collapse
Affiliation(s)
- Zhikun Liu
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weiming Qian
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Min Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenshuo Zhou
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Boying Song
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bo Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaolei Bao
- Hebei Technological Innovation Center for Volatile Organic Compounds Detection and Treatment in Chemical Industry, Department of quality inspection and management, Hebei Chemical and Pharmaceutical College, Shijiazhuang 050026, China
| | - Qiong Tang
- College of Energy materials and Chemicals, Leshan Normal University, Leshan 614000, China
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
5
|
AlJaberi FY, Ahmed SA, Makki HF, Naje AS, Zwain HM, Salman AD, Juzsakova T, Viktor S, Van B, Le PC, La DD, Chang SW, Um MJ, Ngo HH, Nguyen DD. Recent advances and applicable flexibility potential of electrochemical processes for wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161361. [PMID: 36610626 DOI: 10.1016/j.scitotenv.2022.161361] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
This study examined >140 relevant publications from the last few years (2018-2021). In this study, classification was reviewed depending on the operation's progress. Electrocoagulation (EC), electrooxidation (EO), electroflotation (EF), electrodialysis (ED), and electro-Fenton (EFN) processes have received considerable attention. The type of action (individual or hybrid) for each electrochemical procedure was evaluated, and statistical analysis was performed to compare them as a new manner of reviewing cited papers providing a massive amount of information efficiently to the readers. Individual or hybrid operation progress of the electrochemical techniques is critical issues. Their design, operation, and maintenance costs vary depending on the in-situ conditions, as evidenced by surveyed articles and statistical analyses. This work also examines the variables affecting the elimination efficacy, such as the applied current, reaction time, pH, type of electrolyte, initial pollutant concentration, and energy consumption. In addition, owing to its efficacy in removing toxins, the hybrid activity showed a good percentage among the studies reviewed. The promise of each wastewater treatment technology depends on the type of contamination. In some cases, EO requires additives to oxidise the pollutants. EF and EFN eliminated lightweight organic pollutants. ED has been used to treat saline water. Compared to other methods, EC has been extensively employed to remove a wide variety of contaminants.
Collapse
Affiliation(s)
- Forat Yasir AlJaberi
- Chemical Engineering Department, College of Engineering, Al-Muthanna University, Al-Muthanna, Iraq.
| | - Shaymaa A Ahmed
- Chemical Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Hasan F Makki
- Chemical Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Ahmed Samir Naje
- College of Engineering, Al-Qasim Green University, Al-Qasim Province, 51001 Babylon, Iraq
| | - Haider M Zwain
- College of Engineering, Al-Qasim Green University, Al-Qasim Province, 51001 Babylon, Iraq
| | - Ali Dawood Salman
- Sustainability Solutions Research Lab, University of Pannonia, Veszprém, Hungary; Department of Chemical and Petroleum Refining Engineering, College of Oil and Gas Engineering, Basra University, Iraq
| | - Tatjána Juzsakova
- Sustainability Solutions Research Lab, University of Pannonia, Veszprém, Hungary
| | - Sebestyen Viktor
- Sustainability Solutions Research Lab, University of Pannonia, Veszprém, Hungary
| | - B Van
- Institute of Research and Development, Duy Tan University, 550000 Danang, Viet Nam; School of Medicine and Pharmacy, Duy Tan University, 550000 Danang, Viet Nam.
| | - Phuoc-Cuong Le
- The University of Danang-University of Science and Technology, 54 Nguyen Luong Bang, Danang 550000, Viet Nam.
| | - D Duong La
- Institute of Chemistry and Materials, Nghia Do, Cau Giay, Hanoi 100000, Viet Nam
| | - S Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 442-760, Republic of Korea
| | - Myoung-Jin Um
- Department of Civil Engineering, Kyonggi University, Suwon 442-760, Republic of Korea
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - D Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 442-760, Republic of Korea; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, HCM City 755414, Viet Nam.
| |
Collapse
|
6
|
Zhang K, Zhang K, Ma Y, Wang H, Shao J, Li M, Shao G, Fan B, Lu H, Xu H, Zhang R, Shi H. Construction of Z-Scheme TiO 2/Au/BDD Electrodes for an Enhanced Electrocatalytic Performance. MATERIALS (BASEL, SWITZERLAND) 2023; 16:868. [PMID: 36676605 PMCID: PMC9862263 DOI: 10.3390/ma16020868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
TiO2/Au/BDD composites with a Z-scheme structure was prepared by orderly depositing gold (Au) and titanium dioxide (TiO2) on the surface of a boron-doped diamond (BDD) film using sputtering and electrophoretic deposition methods. It was found that the introduction of Au between TiO2 and the BDD, not only could reduce their contact resistance, to increase the carrier transport efficiency, but also could improve the surface Hall mobility of the BDD electrode. Meanwhile, the designed Z-scheme structure provided a fast channel for the electrons and holes combination, to promote the effective separation of the electrons and holes produced in TiO2 and the BDD under photoirradiation. The electrochemical characterization elucidated that these modifications of the structure obviously enhanced the electrocatalytic performance of the electrode, which was further verified by the simulated wastewater degradation experiments with reactive brilliant red X-3B. In addition, it was also found that the photoirradiation effectively enhanced the pollution degradation efficiency of the modified electrode, especially for the TiO2/Au/BDD-30 electrode.
Collapse
Affiliation(s)
- Kai Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- Zhongyuan Critical Metals Laboratory, Zhengzhou 450001, China
| | - Kehao Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yuxiang Ma
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hailong Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- Zhongyuan Critical Metals Laboratory, Zhengzhou 450001, China
| | - Junyong Shao
- State Key Laboratory of Superabrasives, Zhengzhou Research Institute for Abrasives & Grinding Co., Ltd., Zhengzhou 450001, China
| | - Mingliang Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- Zhongyuan Critical Metals Laboratory, Zhengzhou 450001, China
| | - Gang Shao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Bingbing Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hongxia Lu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hongliang Xu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Rui Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- School of Material Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Huanhuan Shi
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Xie J, Zhang C, Waite TD. Hydroxyl radicals in anodic oxidation systems: generation, identification and quantification. WATER RESEARCH 2022; 217:118425. [PMID: 35429884 DOI: 10.1016/j.watres.2022.118425] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/17/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Anodic oxidation has emerged as a promising treatment technology for the removal of a broad range of organic pollutants from wastewaters. Hydroxyl radicals are the primary species generated in anodic oxidation systems to oxidize organics. In this review, the methods of identifying hydroxyl radicals and the existing debates and misunderstandings regarding the validity of experimental results are discussed. Consideration is given to the methods of quantification of hydroxyl radicals in anodic oxidation systems with particular attention to approaches used to compare the electrochemical performance of different anodes. In addition, we describe recent progress in understanding the mechanisms of hydroxyl radical generation at the surface of most commonly used anodes and the utilization of hydroxyl radical in typical electrochemical reactors. This review shows that the key challenges facing anodic oxidation technology are related to i) the elimination of mistakes in identifying hydroxyl radicals, ii) the establishment of an effective hydroxyl radical quantification method, iii) the development of cost effective anode materials with high corrosion resistance and high electrochemical activity and iv) the optimization of electrochemical reactor design to maximise the utilization efficiency of hydroxyl radicals.
Collapse
Affiliation(s)
- Jiangzhou Xie
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province, 214206, P.R. China.
| |
Collapse
|
8
|
Improved NH3-N conversion efficiency to N2 activated by BDD substrate on NiCu electrocatalysis process. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Zhang F, Wang W, Xu L, Zhou C, Sun Y, Niu J. Treatment of Ni-EDTA containing wastewater by electrochemical degradation using Ti 3+ self-doped TiO 2 nanotube arrays anode. CHEMOSPHERE 2021; 278:130465. [PMID: 34126689 DOI: 10.1016/j.chemosphere.2021.130465] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Ethylene diamine tetraacetic acid (EDTA) could form stable complexes with nickel due to its strong chelation. Ni-EDTA has significant impacts on human health because of its acute toxicity and low biodegradability, thus some appropriate approaches are required for its removal. In this research, a Ti3+ self-doped TiO2 nanotube arrays electrode (ECR-TiO2 NTA) was prepared and employed in electrochemical degradation of Ni-EDTA. The oxygen evolution potential of ECR-TiO2 NTA was 2.6 V vs. SCE. More than 96% Ni-EDTA and 88% TOC was removed after reaction for 120 min at current density 2 mA cm-2 at pH 4.34. The degradation of Ni-EDTA was mainly through the cleavage of amine group within Ni-EDTA and furthermore decomposed it into small molecular acids and inorganic ions including NH4+and NO3-. The electro-deposition of nickel ions at cathode was confirmed by XPS and was greatly affected by the pH of solution. The effects of current density, initial Ni-EDTA concentration, initial pH of solution and HCO3- concentration on Ni-EDTA degradation were investigated. The results exhibited that the ECR-TiO2 NTA had excellent efficiencies in electrochemical degradation of Ni-EDTA. The LSV analysis suggested that Ni-EDTA oxidation on ECR-TiO2 NTA anode and the production of hydroxyl radical (·OH) on the anode played an important role in the removal of Ni-EDTA.
Collapse
Affiliation(s)
- Fan Zhang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Weilai Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Lei Xu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Chengzhi Zhou
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Yanglong Sun
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Junfeng Niu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| |
Collapse
|
10
|
Electrochemical investigation of different electrodes toward the removal of non-basic nitrogen compound from model diesel fuel. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Wang G, Zhang H, Wang W, Zhang X, Zuo Y, Tang Y, Zhao X. Fabrication of Fe-TiO2-NTs/SnO2-Sb-Ce electrode for electrochemical degradation of aniline. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Xie J, Ma J, Zhao S, Waite TD. Flow anodic oxidation: Towards high-efficiency removal of aqueous contaminants by adsorbed hydroxyl radicals at 1.5 V vs SHE. WATER RESEARCH 2021; 200:117259. [PMID: 34058481 DOI: 10.1016/j.watres.2021.117259] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Electrochemical advanced oxidation processes (EAOPs) have emerged as a promising water treatment alternative but major breakthroughs are still needed in order for EAOPs to be competitive with traditional treatment technologies in terms of energy cost. Most existing studies have been conducted at high potentials to generate the powerful hydroxyl radical oxidant (aqueous •OH). While adsorbed hydroxyl radicals (OH*) may form at a much lower energy cost, their possible utilization is limited due to the poor mass transfer of this highly reactive species on solid electrodes. In this report, we describe a novel flow anode system using 4-16 μm Magnéli phase titanium suboxide particles as the anode material which enables the generation of a high steady state •OH concentration (5.4 × 10-12 mol m-2) at only 1.5 V (vs SHE) in a dilute electrolyte (5 mM KH2PO4). The energy cost of removal per order of selected water contaminants (tetracycline and orange II in this study) using the flow anode is 1.5--6.7 Wh m-3, which is 1 - 4 orders of magnitude lower than that of existing techniques. The anode material used demonstrates great stability with the configuration readily scaled up. The results of this study provide new insight into a high efficiency, low cost water treatment technology for organic contaminant degradation.
Collapse
Affiliation(s)
- Jiangzhou Xie
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jinxing Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shixin Zhao
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province, 214206, PR China.
| |
Collapse
|
13
|
Sun G, Wang C, Gu W, Song Q. A facile electroless preparation of Cu, Sn and Sb oxides coated Ti electrode for electrocatalytic degradation of organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144908. [PMID: 33578158 DOI: 10.1016/j.scitotenv.2020.144908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Electrocatalytic degradation of organic pollutants is an encouraging technology for wastewater treatment. To achieve practical application, electrode plate with cost effective fabrication, high catalytic efficiency and long service life is urgently required. This work prepared a CuO-SnO2-SbOX electrode on Ti substrate, which is achieved by ultrasonic assisted deposition of Cu layer, followed by electroless deposition of SnSb layer and finalized by calcination at 500 °C. The obtained electrode (Ti/CuO-SnO2-SbOX) exhibited high catalytic degradation activity and a high oxygen evolution potential (OEP) of 2.13 V, which is 0.4 V greater than that of the widely recognized Ti/SnO2-SbOX electrode. The oxygen evolution reaction (OER) models of active oxygen intermediate adsorption was optimized by density functional theory (DFT) calculations. The results revealed that (1) the ΔG of the OER rate-determining step was raised to 2.30 eV after Cu doping on 101 plane; (2) binding energies of the optimized surface with reactive oxygen species (ROS) were substantially decreased. Furthermore, the as-prepared electrode has a high yield of hydroxyl radical generation as evidenced by terephthalic acid detection. The potential for hydroxyl radical generation was measured to be 1.8 V at pH = 12 and 2.6 V at pH = 2.The catalytic degradation rate of methylene blue (MB) follows pseudo first order reaction kinetics, and the reaction constant K value reached 0.02964 -k/min-1, twice as much as that obtained from electrodeposition electrode (Ti/Cu/SnO2-SbOX). A degradation rate of 94.6% was achieved for MB in 100 min in the first run, and the value remained over 85% in the subsequent 10 runs. At the same conditions, the degradation rate of p-nitrophenol was over 90% in 100 min and complete mineralization was achieved in 4 h.
Collapse
Affiliation(s)
- Guowei Sun
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China
| | - Chan Wang
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China
| | - Wenxiu Gu
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China
| | - Qijun Song
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China.
| |
Collapse
|
14
|
|
15
|
Electrochemical Properties and Chemical Oxygen Demand Depending on the Thickness of Boron-Doped Diamond. COATINGS 2020. [DOI: 10.3390/coatings10111097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, boron-doped diamond (BDD) film was deposited by hot-filament chemical vapor deposition (HFCVD) using acetone as the carbon source and trimethyl borate (TMB) as the boron source with the aim of lowering the manufacturing cost of BDD electrodes. The BDD film was deposited for 12 and 60 h to observe changes in the morphological behavior of the film as well as subsequent changes in the electrochemical properties. The morphology of the BDD film was not affected by the deposition time, but the thickness increased with increasing deposition time. As the deposition time increased, the deposition rate of the BDD film did not increase or decrease; rather, it remained constant at 100 nm/h. As the thickness of the BDD film increased, an increase in the potential window was observed. On the other hand, no distinct change was observed in the electrochemical activation and catalytic activity depending on the thickness, and there were not many differences. Chemical oxygen demand (COD) was measured to determine the practical applicability of the deposited BDD film. Unlike the potential window, the COD removal rate was almost the same and was not affected by the increase in the thickness of the BDD film. Both films under the two deposition conditions showed a high removal rate of 90% on average. This study confirms that BDD electrodes are much more useful for water treatment than the existing electrodes.
Collapse
|
16
|
Polycrystalline boron-doped diamond-based electrochemical biosensor for simultaneous detection of dopamine and melatonin. Anal Chim Acta 2020; 1135:73-82. [PMID: 33070861 DOI: 10.1016/j.aca.2020.08.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/13/2020] [Accepted: 08/22/2020] [Indexed: 11/20/2022]
Abstract
In this study, boron-doped diamond (BDD) electrodes with varied B contents are prepared to determine the feasibility of the direct usage of BDD as an electrochemical biosensor without any modification. The electrochemical performance of the electrodes was investigated through the characterization of electrochemical impedance spectroscopy for potassium ferricyanide/potassium ferrocyanide (K3Fe(CN)6/K4Fe(CN)6) redox couples, as well as through qualitative and quantitative analysis of the two biomolecules dopamine (DA) and melatonin (MLT). The results show that the B content of BDD is the primary parameter for controlling the electrocatalytic current, that is, the response sensitivity. However, the abundant crystal planes and low background current are the key factors in improving the selectivity of the biomarkers to identify multiple analytes. Considering the catalytic current and its ability to distinguish the biomolecules, BDD with a B source carrier gas flow rate of 18 sccm is used as the sensing electrode for the simultaneous detection of DA and MLT. The response peak potential difference reaches 500 mV, and the linear concentration range for the two analytes is 0.4-600 μM, with detection limits of 0.1 μM for DA and 0.003 μM for MLT. These results match those observed for electrochemical sensors modified by various sensitive materials. BDD electrodes show good chemical resistance, good stability, and no pollution and are suitable for long-term usage as biomarker sensors.
Collapse
|
17
|
Preparation of boron-doped diamond nanospikes on porous Ti substrate for high-performance supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136649] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Effect of Boron Doping on Diamond Film and Electrochemical Properties of BDD According to Thickness and Morphology. COATINGS 2020. [DOI: 10.3390/coatings10040331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diamond coating using hot-filament chemical vapor deposition (HFCVD) is now widely used in many fields. The quality of the diamond film and many factors determine the success of the coating, such as temperature, time, and pressure during coating. The purpose of this study was to produce coated boron-doped diamond (BDD) films by doping boron in the diamond film and to assess them through comparative analysis with foreign acid BDD, which is widely used as a water-treatment electrode in the present industry. The bending of the titanium substrate due to the high temperature during the diamond deposition was avoided by adding an intermediate layer with a columnar structure to niobium film. The filament temperature and pressure were determined through preliminary experiments, and BDD films were coated. The BDD film deposition rate was confirmed to be 100 nm/h, and the potential window increased with increasing thickness. The electrochemical activation and catalytic performance were confirmed according to the surface characteristics. Although the high deposition rate of the BDD coating is also an important factor, it was confirmed that conducting coating so that amorphous carbonization does not occur by controlling the temperature during coating can improve the electrochemical properties of BDD film.
Collapse
|
19
|
Cornejo OM, Murrieta MF, Castañeda LF, Nava JL. Characterization of the reaction environment in flow reactors fitted with BDD electrodes for use in electrochemical advanced oxidation processes: A critical review. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135373] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
20
|
Optimizing the Microstructure and Corrosion Resistance of BDD Coating to Improve the Service Life of Ti/BDD Coated Electrode. MATERIALS 2019; 12:ma12193188. [PMID: 31569438 PMCID: PMC6804151 DOI: 10.3390/ma12193188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/03/2022]
Abstract
The short service life of the Ti/BDD coated electrode is the main reason that limits its practical use. In this paper, the effect of structural change on the service life was studied using Ti/BDD coated electrodes prepared with the arc plasma chemical vapor deposition (CVD) method. It was found that the microstructural defects and corrosion resistance of BDD coatings were the main factors affecting the electrode service life. By optimizing the process parameters in different deposition stages, reducing the structural defects and improving the corrosion resistance of the BDD coating were conducted successfully, which increased the service life of the Ti/BDD coated electrodes significantly. The lifetime of the Ti/BDD samples increased from 360 h to 655 h under the electrolysis condition with a current density of 0.5 A/cm2, with an increase of 82%.
Collapse
|
21
|
Ma J, Qin G, Wei W, Xiao T, Liu S, Jiang L. Anti-corrosion porous RuO2/NbC anodes for the electrochemical oxidation of phenol. RSC Adv 2019; 9:17373-17381. [PMID: 35519841 PMCID: PMC9064596 DOI: 10.1039/c9ra03353j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 05/25/2019] [Indexed: 11/21/2022] Open
Abstract
Efficient anode materials with porous structures have drawn increasing attention due to their high specific surface area, which can compensate for the slow reaction rate of electrochemical oxidation. However, the use of these materials is often limited due to their poor corrosion resistance. Herein, we report a facile scale-up method, by carbothermal reduction, for the preparation of porous niobium carbide to be used as an anode for the electrochemical oxidation of phenol in water. No niobium ions were detected when the anodes were under aggressive attack by sulfuric acid and under electrochemical corrosion tests with a current density less than 20.98 mA cm−2. The porous niobium carbide was further modified by applying a ruthenium oxide coating to improve its catalytic activity. The removal rates of phenol and chemical oxygen demand by the RuO2/NbC anode reached 1.87 × 10−2 mg min−1 cm−2 and 6.33 × 10−2 mg min−1 cm−2, respectively. The average current efficiency was 85.2%. Thus, an anti-corrosion, highly catalytically active and energy-efficient porous RuO2/NbC anode for the degradation of aqueous phenol in wastewater was successfully prepared. Efficient anode materials with porous structures have drawn increasing attention due to their high specific surface area, which can compensate for the slow reaction rate of electrochemical oxidation.![]()
Collapse
Affiliation(s)
- Jing Ma
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education
- Beihang University
- Shahe Campus
- Beijing 102206
- China
| | - Guotong Qin
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education
- Beihang University
- Shahe Campus
- Beijing 102206
- China
| | - Wei Wei
- College of Biochemical Engineering
- Beijing Union University
- Beijing 100023
- China
| | - Tianliang Xiao
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education
- Beihang University
- Shahe Campus
- Beijing 102206
- China
| | - Shaomin Liu
- Department of Chemical Engineering
- Curtin University
- Perth
- Australia
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education
- Beihang University
- Shahe Campus
- Beijing 102206
- China
| |
Collapse
|